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Part II. – Systems containing only a
Single Nucleus
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§ 1 General Assumptions

Following the theory of Rutherford, we shall assume that the atoms of the
elements consist of a positively charged nucleus surrounded by a cluster
of electrons. The nucleus is the seat of the essential part of the mass of
the atom, and has linear dimensions exceedingly small compared with the
distance apart of the electrons in the surrounding cluster.
As in the previous paper, we shall assume that the cluster of electrons is

formed by the successive binding by the nucleus of electrons initially nearly
at rest, energy at the same time being radiated away. This will go on until,
when the total negative charge on the bound electrons is numerically equal to
the positive charge on the nucleus, the system will be neutral and no longer
able to exert sensible forces on electrons at distances from the nucleus great
in comparison with the dimensions of the orbits of the bound electrons. We
may regard the formation of helium from α rays as an observed example of

1Part I was published in Phil. Mag. XXVI. p. 1 (1913).
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a process of this kind, an α particle on this view being identical with the
nucleus of a helium atom.
On account of the small dimensions of the nucleus, its internal structure

will not be of sensible influence on the constitution of the cluster of electrons,
and consequently will have no effect on the ordinary physical and chemical
properties of the atom. The latter properties on this theory will depend
entirely on the total charge and mass of the nucleus; the internal structure
of the nucleus will be of influence only on the phenomena of radioactivity.
From the result of experiments on large-angle scattering of α-rays, Ru-

therford2 found an electric charge on the nucleus corresponding per atom
to a number of electrons approximately equal to half the atomic weight.
This result seems to be in agreement with the number of electrons per atom
calculated from experiments on scattering of Röntgen radiation.3 The total
experimental evidence supports the hypothesis4 that the actual number of
electrons in a neutral atom with a few exceptions is equal to the number
which indicated the position of the corresponding element in the series of
element arranged in order of increasing atomic weight. For example on this
view, the atom of oxygen which is the eighth element of the series has eight
electrons and a nucleus carrying eight unit charges.
We shall assume that the electrons are arranged at equal angular inter-

vals in coaxial rings rotating round the nucleus. In order to determine the
frequency and dimensions of the rings we shall use the main hypothesis of
the first paper, viz.; that in the permanent state of an atom the angular
momentum of every electron round the centre of its orbit is equal to the
universal value h/2π, where h is Planck’s constant. We shall take as a con-
dition of stability, that the total energy of the system in the configuration in
question is less than in any neighbouring configuration satisfying the same
condition of the angular momentum of the electrons.
If the charge on the nucleus and the number of electrons in the different

rings is known, the condition in regard to the angular momentum of the
electrons will, as shown in § 2, completely determine the configuration of
the system. i.e., the frequency of revolution and the linear dimensions of the
rings. Corresponding to different distributions of the electrons in the rings,
however, there will, in general, be more than one configuration which will
satisfy the condition of the angular momentum together with the condition
of stability.

2Comp. also Geiger and Marsden, Phil. Mag. XXV. p. 604 (1913).
3Comp. C.G. Barkla, Phil. Mag. XXI. p. 648 (1911).
4Comp. A.v.d. Broek, Phys. Zeitschr. XIV. p. 32 (1913).
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In § 3 and § 4 it will be shown that, on the general view of the formation of
the atoms, we are led to indications of the arrangement of the electrons in the
rings which are consistent with those suggested by the chemical properties
of the corresponding element.
In § 5 will be shown that it is possible from the theory to calculate the

momentum velocity of cathode rays necessary to produce the characteris-
tic Röntgen radiation from the element, and that this is in approximate
agreement with the experimental values.
In § 6 the phenomena of radioactivity will be briefly considered in relation

of the theory.

§ 2 Configuration and Stability of the System

Let us consider an electron of charge e and mass m which moves in a circular
orbit of radius a with a velocity v small compared with the velocity of light.
Let us denote the radial force acting on the electrons by e2/a2F ; F will in
general be dependent on a. The condition of dynamical equilibrium gives

mv2

a
=
e2

a2
F.

Introducing the condition of universal constancy of the angular momen-
tum of the electron, we have

mva =
h

2π
.

From these two conditions we now get

a =
h2

4π2e2m
· F−1 and v =

2πe2

h
· F ; (1)

and for the frequency of revolution w consequently

ω =
4π2e2m

h2
· F 2. (2)

If F is known, the dimensions and frequency of the corresponding orbit are
simply determined by (1) and (2). For a ring of n electrons rotating round
a nucleus of charge ne we have (comp. Part I., p. 20)????

F = N − sn, where sn = 1
4
·
s=n−1∑
s=1

cosec
sπ

n
.
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The values for sn from n = 1 to n = 16 are given in the table 1.
For systems consisting of nuclei and electrons in which the first are at

rest and the latter move in circular orbits with a velocity small compared
with the velocity of light, we have shown (see part I., p. 21)???? that the
total kinetic energy of the electrons is equal to the total amount of energy
emitted during the formation of the system from an original configuration in
which all the particles are at rest and at infinite distances from each other.
Denoting this amount of energy by W , we consequently get

W =
∑ m

2
v2 =

2π2e4m

h2

∑
F 2. (3)

Putting in (1), (2), and (3) e = 4.7·10−10, em = 5.31·10−17, and h = 6.5·10−27
we get

a = 0.55 · 10−8F−1, v = 2.1 · 108F,
ω = 6.2 · 1015F 2, W = 2.0 · 10−11∑F 2. (4)

In neglecting the magnetic forces due to the motion of the electrons
we have in Part I. assumed that the velocities of the particles are small
compared with the velocity of light. The above calculations show that for
this to hold, F must be small compared with 150. As will be seen, the latter
condition will be satisfied for all the electrons in the atoms of elements of
low atomic weight and for a greater part of the electrons contained in the
atoms of the other elements.
If the velocity of the electrons in not small compared with the veloc-

ity of light, the constancy of the angular momentum no longer involved a
constant ratio between the energy and the frequency of revolution. Without
introducing new assumptions, we cannot therefore in this case determine the
configuration of the systems on the basis of the consideration in Part I. Con-
siderations given later suggest, however, that the constancy of the angular
momentum is the principal condition. applying this condition for velocities
not small compared with the velocity of light, we get the same expression
for v as that given by (1), while the quantity m in the expressions for a and
ω is replaced by m/

√
(1− v2/c2), and in the expression for W by

m · 2 c
2

v2
·
1−

√
1− v

2

c2

 .
As stated in Part I., a calculation based on the ordinary mechanics given

the result, that a ring of electrons rotating round a positive nucleus in general
is unstable for displacement of the electrons in the plane of the ring. In order
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to escape from this difficulty, we have assumed that the ordinary principles
of mechanics cannot be used in the discussion of the problem in question,
any more than in the discussion of the connected problem of the mechanism
of binding of electrons. We have also assumed that the stability for such
displacement is secured through the introduction of the hypothesis of the
universal constancy of the angular momentum of the electrons.
As is easily shown, the latter assumption in included in the condition of

stability in § 1. Consider a ring of electrons rotation round a nucleus, and
assume that the system is in dynamical equilibrium and that the radius of the
ring is a0, the v0, the total kinetic energy T0, and the potential energy P0. As
shown in Part i. (p. 21) we have P0 = −2T0. Next consider a configuration
of the system in which the electrons, under influence of extraneous forces,
rotate with the same angular momentum round the nucleus in a ring of
radius a = αa0. In this case we have P =

1
αP0, and on account of the

uniformity of the angular momentum v = 1/α · v0 and T = 1/α2 · T0. Using
the relation P0 = −2T0, we get

P + T =
1

α
· P0 + 1

α2
T0 = P0 + T0 + T0 ·

(
1− 1
α

)2
.

We see that the total energy of the new configuration is greater than in
the original. according to the condition of stability in § 1 the system is
consequently stable for the displacement considered. In this connexion, it
may be remarked that in Part I. we have assumed that the frequency of
radiation emitted or absorbed by the systems cannot be determined from the
frequencies of vibration of the electrons in the plane of the orbits, calculated
by help of the ordinary mechanics. We have, on the contrary, assumed
that the frequency of the radiation is determined by the condition hν = E,
where ν is the frequency, h Planck’s constant, and E the difference in energy
corresponding to two different “stationary” states of the system.
In considering the stability of a ring of electrons rotating round a nucleus

for displacements of the electrons perpendicular to the plane of the ring,
imagine a configuration of the system in which the electrons are displaced by
δz1, δz2, . . . δzn respectively, and suppose that the electrons, under influence
of extraneous forces, rotate in circular orbits parallel to the original plane
with the same radial and the same angular momentum round the axis of the
system as before. The kinetic energy is unaltered by the displacement, and
neglecting powers of the quantities δz1, . . . δzn higher than the second, the
increase of the potential energy of the system is given by

1

2
· e
2

a3
·N∑(δz)2 − 1

32
· e
2

a2
·∑∑ | cosec3π(r − s)

n
| (δzr − δzs)2 ,
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where a is the radius of the ring, Ne the charge on the nucleus, and n the
number of electrons. According to the condition of stability in § 1 the system
is stable for the displacement considered, if the above expression is positive
for arbitrary values of δz1, . . . δzn. By a simple calculation it can be shown
that the latter condition is equivalent to the condition

N > pn,0 − pn,m, (5)

where m denotes the whole number (smaller than n) for which

pn,k =
1

8

s=n−1∑
s=1

cos 2k · sπ
n
cosec3

sπ

n

has its smallest value. This condition is identical with the condition of
stability for displacements of the electrons perpendicular to the plane of the
ring, deduced by help of ordinary mechanical considerations.5

A suggestive illustration is obtained by imagining that the displacements
considered are produced by the effect of extraneous forces acting on the elec-
trons in a direction parallel to the axis of the ring. If the displacements are
produced infinitely slowly the motion of the electrons will at any moment
be parallel to the original plane of the ring, and the angular momentum of
each of the electrons round the centre of its orbit will obviously be equal to
its original value; the increase in the potential energy of the system will be
equal to the work done by the extraneous forces during the displacements
we are led to assume that the ordinary mechanics can be used in calculating
the vibrations of the electrons perpendicular to the plane of the ring – con-
trary to the ease of vibrations in the plane of the ring. This assumptions is
supposed by the apparent agreement with observations obtained by Nichol-
son in his theory of the origin of lines in the spectra of the solar corona and
stellar nebulae (see Part I. pp. 6 & 23).?????? In addition it will be shown
later that the assumption seems to be in agreement with experiments on
dispersion.
The following table gives the values of sn and Pn,0 - Pn,m from n = 1 to

n = 16.

Table 1.

5Comp. J.W. Nicholson, Month. Not. Roy. Astr. Soc. 72. p. 52 (1912).
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n sn pn,0 − pn,m n sn pn,0 − pn,m

1 0 0 9 3.328 13.14
2 0.25 0.25 10 3.863 18.13
3 0.577 0.58 11 4.416 23.60
4 0.957 1.41 12 4.984 30.80
5 1.377 2.43 13 5.565 38.57
6 1.828 4.25 14 6.159 48.38
7 2.305 6.35 15 6.764 58.83
8 2.805 9.56 16 7.379 71.65

We see from the table that the number of electrons which can rotate in
a single ring round a nucleus of charge Ne increases only very slowly for
increasing N ; for N = 20 the maximum value is n = 10; for N = 13; for
N = 60, n = 15. We see, further, that a ring of n electrons cannot rotate in
a single ring round a nucleus of charge ne unless n < 8.
In the above we have suppose that the electrons move under the influence

of a stationary radial force and that their orbits are exactly circular. The
first condition will not be satisfied if we consider a system containing several
rings of electrons which rotate with different frequencies. If, however, the
distance between the rings is not small in comparison with their radii, if
the ratio between their frequency is not near to unity, the deviation from
circular orbits may be very small and the motion of the electrons to a close
approximation may be identical with that obtained on the assumption that
the charge on the electrons is uniformly distributed along the circumference
of the rings. If the ratio between the radii of the rings is not near to unity, the
conditions of stability on this assumption may also be considered sufficient.
We have assumed in § 1 that the electrons in the atoms rotate in coaxial

rings. The calculation indicated that only in the case of systems containing
a great number of electrons will the planes of the rings separate; in the case
of systems containing a moderate number of electrons, all the rings will be
situated in a single plane through the nucleus. For the sake of brevity, we
shall therefore here only consider the latter case.
Let us consider an electric charge E uniformly distributed along the

circumference of a circle of radius a.
At a point distant z from the plane of the ring, and at a distance r from
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the axis of the ring, the electrostatic potential is given by

U =
1

π
· E

π∫
0

dϑ√
a2 + r2 + z2 − 2ar cosϑ.

Putting in this expression z = 0 and ra = tan
2α, and using the notation

K(α) =

π/2∫
0

dϑ√
1− sin2 α cos2 ϑ,

we get for the radial force exerted on an electron in a point in the plane of
the ring

e
∂U

∂r
=
Ee

r2
Q(α),

where

Q(α) =
1

π
sin4 α(K(2α)− cotα ·K ′(2α)).

The corresponding force perpendicular to the plane of the ring at a
distance r from the center of the ring and at a small distance δz from its
plane is given by

e
∂U

∂z
=
Eeδz

r3
R(α),

where

R(α) =
2

π
sin6 α[K(2α) + tan(2α) ·K ′(2α)].

A short table of the functions Q(α) and R(α) is given on p. 485.???
Next consider a system consisting of a number of concentric rings of

electrons which rotate in the same plane round a nucleus of charge Ne. Let
the radial of the rings be a1, a2, . . ., and the number of electrons on the
different rings n1, n2, . . .
Putting ar/as = tan

2(αr,s) we get for the radial force acting on an elec-
tron in the rth ring e2/a2rFr where

Fr = N − s−
∑
nsQ(αr,s).

the summation is to be taken over all the rings except the one considered.
If we know the distribution of the electrons in the different rings, from the

relation (1) on p. 478,???? we can, by help of the above, determine a1, a2, . . ..
The calculation can be made by successive approximations, starting from
a set of values for the α’s, and from them calculating the F ’s, and then
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redetermining the α s by the relation (1) which gives Fs/Fr = ar/as =
tan2(αr,s), and so on.
As in the case of a single ring it is supposed that the systems are stable

for displacements of the electrons in the plane of their orbits. In a calculation
such as that on p. 480,????? the interaction of the rings ought strictly to
be taken into account. This interaction will involve that the quantities F
are not constant, as for a single ring rotating round a nucleus, but will vary
with the radii of the rings; the variation in F , however, if the ratio between
the radii of the rings is not very near to unity, will be too small to be of
influence on the result of the calculation.
Considering the stability of the systems for a displacement of the elec-

trons perpendicular to the plane of the rings, it is necessary to distinguish
between displacements in which the centres of gravity of the electrons in
the single rings are unaltered, and displacements in which all the electrons
inside the same ring are displaced in the same direction. The condition of
stability for the first kind of displacements is given by the condition (5) on
p. 481,???? if for every ring we replace N by a quantity Gr determined
by the condition that e2/a3rGrδz is equal to the component perpendicular
to the plane of the ring of the force – due to the nucleus and the electrons
in the other rings – acting on one of the electrons if it has received a small
displacement δz. Using the same notation as above, we get

Gr = N −
∑
nsR(αr,s).

If all the electrons in one of the rings are displaced in the same direction
by help of extraneous forces, the displacement will produce corresponding
displacements of the electrons in the other rings; and this interaction will be
of influence on the stability. For example, consider a system of m concentric
rings rotating in a plane round a nucleus of charge Ne, and let us assume
that the electrons in the different rings are displaced perpendicular to the
plane by δz1, δz2, . . . , δzm respectively. With the above notation the increase
in the potential energy of the system is given by

1

2
·N∑nr

e2

a3n
(δzn)

2 − 1
4
·∑∑

nrns
e2

a3r
R (αr,s) (δzr − δzs)2 .

The condition of stability is that this expression is positive for arbitrary
values δz1, . . . δzm. This condition can be worked out simply in the usual
way. It is not of sensible influence compared with the condition of stability
for the displacements considered above, except in cases where the system
contains several rings of few electrons.
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The following Table. containing the values of Q(α) and R(α) for every
fifth degree from α = 20◦ to α = 70◦, gives an estimate of the order of
magnitude of these functions: –

Table 2.

α tan2α Q(α) R(α)

20 0.132 0.001 0.002
25 0.217 0.005 0.011
30 0.333 0.021 0.048
35 0.490 0.080 0.217
40 0.704 0.373 1.549
45 1.000 - -
50 1.420 1.708 4.438
55 2.040 1.233 1.839
60 3.000 1.093 1.301
65 4.599 1.037 1.115
70 7.548 1.013 1.041

tan2α indicated the ratio between the radii of the rings
(
tan2(ar,s) =

ar
as

)
.

The values of Q(α) show that unless the ratio of the radii of the rings is
nearly unity the effect of outer rings on the dimensions of inner rings is
very small, and that the corresponding effect of inner rings on outer is to
neutralize approximately the effect of a part of the charge on the nucleus
corresponding to the number of electrons on the ring. The values of R(α)
show that the effect of outer rings on the stability of inner – though greater
than the effect on the dimensions – is small, but that unless the ratio between
the radii is very great, the effect of inner rings on the stability of outer is
considerably greater than to neutralize a corresponding part of the charge
of the nucleus.
The maximum number of electrons which the innermost ring can contain

being unstable is approximately equal to that calculated on p. 482 for a
single ring rotating round a nucleus. For the outer rings, however, we get
considerably smaller numbers than those determined by the condition (5) if
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we replace Ne by the total charge on the nucleus and on the electrons of
inner rings.
If system of rings rotating round a nucleus in a single plane is stable for

small displacements of the electrons perpendicular to this plane, there will
in general be no stable configurations of the rings, satisfying the condition
of the constancy of the angular momentum of the electrons, in which all the
rings are not situated in the plane. An exception occurs in the special case
of two rings containing equal numbers of electrons; in this case there may be
a stable configuration in which the two rings have equal radii and rotate in
parallel planes at equal distances from the nucleus, the electrons in the one
ring being situated just opposite the intervals between the electrons in the
other ring. The latter configuration, however, is unstable if the configuration
in which all the electrons in the two rings are arranged in a single ring is
stable.

§ 3 Constitution of Atoms containing very few Electrons

At stated in § 1, the condition of the universal constancy of the angular
momentum of the electrons, together with the condition of stability, is in
most cases not sufficient to determine completely the constitution of the sys-
tem. On the general view of formation of atoms, however, and by making
use of the knowledge of the properties of the corresponding elements, it will
be attempted , in this section and the next, to obtain indications of what
configurations of the electrons may be expected to occur in the atoms. In
these considerations we shall assume that the number of electrons in the
atom is equal to the number which indicates the position of the correspond-
ing element in the series of elements arranged in order of increasing atomic
weight.
Exceptions to this rule will be supposed to occur only at such places in

the series where deviation from the periodic law of the chemical properties
of the elements are observed. In order to show clearly the principles used
we shall first consider with some detail those atoms containing very few
electrons.
Forsake of brevity we shall, by the symbol N(n1, n2 . . .), refer to a plane

system of rings of electrons rotating round a nucleus of charge Ne, satisfying
the condition of the angular momentum of the electrons with the approx-
imation used in § 2. n1, n2 . . . are the numbers of electrons in the rings,
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starting from inside. By a1, a2, . . . and ω1, ω2 . . . we shall denote the radii
and frequency of the rings taken in the same order. The total amount of
energy W emitted by the formation of the system shall simply be denoted
by W [N(n1, n2, . . .)].

N = 1 Hydrogen.

In Part I. we have considered the binding of an electron by a positive
nucleus of charge e, and have shown that it is possible to account for the
Balmer spectrum of hydrogen on the assumption of the existence of a series
of stationary states in which the angular momentum of the electron round
the nucleus is equal to entire multiplies of the value h/2π, where h is Planck’s
constant. The formula found for the frequencies of the spectrum was

ν =
2π2e4m

h3
·
(
1

τ22
− 1
τ21

)
,

where τ1 and τ2 are entire numbers. Introducing the values for e, m, and
h used on p. 479, we get for the factor before the bracket 3.1 · 1015; 6 the
value observed for the constant in the Balmer spectrum is 3.290 · 1015.
For the permanent state of a neutral hydrogen atom we get from the

formula (1) and (2) in § 2, putting F = 1,

1(1) : α =
h2

4πe2m
= 0.55 · 10−8, ω = 4π

2e4m

h3
= 6.2 · 1015,

W =
2π2e4m

h2
= 2.0 · 10−11.

These values are of the order of magnitude to be expected. For W/e we
get 0.043, which corresponds to 13 volts; the value for the ionizing potential
of a hydrogen atom, calculated by Sir J.J. Thomson from experiments on
positive rays, is 11 volt.7 No other definite data, however are available for
hydrogen atoms. For sake of brevity, we shall in the following denote the
values for a, ω andW corresponding to the configuration 1(1) by a0, ω0, and
W0.

6This value is that calculated in the first part of the paper. Using the values e =
4.78 · 10−10 (see R.A. Millikan, Brit. Assoc. Rep. 1912, p. 410), e/m = 5.31 · 1017 (see
P. Gmelin, Ann. d. Phys. XXVIII. p. 1086 (1909) and A.H. Bucherer, Ann. d. Phys.
XXXVII p. 597 (1912)), and e/h = 7.27 · 1016 calculated by Planck’s theory from the
experiments of E. Warbung G. Leithauser, E. Hupka, and C. Muller, Ann.d.Phys. XL. p.
611 (1913)) we get 2π2e4m/h3 = 3.26 · 1015 in very close agreement with observations.

7J.J. Thomson, Phil. Mag. XXIV. p. 218 (1912).
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At distance from the nucleus, great in comparison with a0, the system
1 (1) will not exert sensible forces on free electrons. Since, however, the
configuration:

1(2) a = 1.33a0, ω = 0.563ω0, W = 1.13W0.

corresponds to a greater value for W than the configuration 1(1), we may
expect that a hydrogen atom under certain conditions can acquire a negative
charge. This is in agreement with experiments on positive rays. Since
W [1(3)] is only 0.54, a hydrogen atom cannot be expected to be able to
acquire a double negative charge.

N = 2 Helium.

As shown in Part I., using the same assumptions as for hydrogen, we
must expect that during the binding of an electron by a nucleus of charge
2e, a spectrum is emitted, expressed by

ν =
2π2me4

h3
·
(
1

( τ22 )
2
− 1

( τ12 )
2

)
.

This spectrum includes the spectrum observed by Pickering in the star
xi Puppis and the spectra recently observed by Folwer in experiments with
vacuum tubes filled with a mixture of hydrogen and helium. These spectra
are generally ascribed to hydrogen.
For the permanent state of a positively charge helium atom, we get

2(1) a =
1

2
a0, ω = 4ω0, W = 4W0.

At distances from the nucleus great compared with the radius of the bound
electron, the system 2(1) will, to a close approximation, act an an electron
as a simple nucleus of charge e. For a system consisting of two electrons
and a nucleus of charge 2e, we may therefore assume the existence of a
series of stationary states in which the electron most lightly bound moves
approximately in the same way as the electron in the stationary states of
a hydrogen atom. Such an assumption has already been used in Part I. in
an attempt to explain the appearance of Rydberg’s constant in the formula
for the line-spectrum of any element. We can, however, hardly assume the
existence of a stable configuration in which the two electrons have the same
angular momentum round the nucleus and move in different orbits, the one
outside the other. In such a configuration the electrons would be so near to
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each other that the deviations from circular orbits would be very great. For
the permanent state of a neutral helium atom, we shall therefore adopt the
configuration

2(2) a = 0.571a0, ω = 3.06ω0, W = 6.13W0.

Since
W [2(2)]−W [2(1)] = 2.13W0,

we see that both electrons in a neutral helium atom are more firmly bound
than the electron in a hydrogen atom. Using the values on p. 488,???? we
get

2.13 · W0
e
= 27 , 2.13 · W0

h
= 6.6 · 10151/sec.

these values are of the same order of magnitude as the value observed for
the ionization potential in helium, 20.5 volt,8 and the value for the fre-
quency of the ultra-violet absorption in helium determined by experiments
on dispersion 5.9 · 1015 1/sec.9
The frequency in question may be regarded as corresponding to vibra-

tions in the plane of the ring (see p. 480).???? The frequency of vibration
of the whole ring perpendicular to the plane, calculated in the ordinary way
(see p. 482), is given by ν = 3.27ω0. The fact that the latter frequency
is great compared with that observed might explain that the number of
electrons in a helium atom, calculated by help of Drude’s theory from the
experiments on dispersion, is only about two-thirds of the number to be
expected. (Using em = 5.31 · 1017 the value calculated is 1.2.)
For a configuration of a helium nucleus and three electrons, we get

2(3) a = 0.703a0, ω = 2.02ω0, W = 6.07W0.

Since W for this configuration is smaller than for the configuration 2( 2),
the theory indicates that a helium atom cannot acquire a negative charge.
This is in agreement with experimental evidence, which shows that helium
atoms have no “affinite” for free electrons.10

8J.Franck u. G. Hertz, Verb. d. Deutsch. Phys. Ges. XV. p. 34 (1913).
9C. and M. Cuthbertson, Proc. Roy. Soc. A. LXXXIV. p. 13 (1910). In a previous

paper (Phil. Mag. Jan. 1913) the author took the values for the refractive index in
helium, given by M. and C. Cuthbertson, as corresponding to atmosphere pressure; these
values, however, refer to double atmosphere pressure. Consequently the value there given
for the number of electrons in a helium atom calculated from Drude’s theory has to be
divided by 2.)
10See J. Franck, Verh. d. Deutsch. Phys. Ges. XII. p. 613 (1910).
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In a later paper it will be shown that the theory offers a simple ex-
planation of the marked in the tendency of hydrogen and helium atoms to
combine into molecules.

N = 3 Lithium.

In analogy with the cases of hydrogen and helium we must expect that
during the binding of an electron by a nucleus of charge 3e, a spectrum is
emitted, given by

ν =
2π2me4

h3
·
(
1

( τ23 )
2
− 1

( τ13 )
2

)
.

On account of the great energy to be spent in removing all the electrons
bound in a lithium atom (see below) the spectrum considered can only be
expected to be observed in extraordinary cases.
In a recent note Nicholson11 has drawn attention to the fact that in the

spectra of certain stars, which show the Pickering spectrum with special
brightness, some lines occur the frequencies of which to a close approxima-
tion can be expressed by the formula

ν = K ·
(
1

4
− 1

(m± 1/3)2
)
.

where K is the same constant as in the Balmer spectrum of hydrogen. From
analogy with the Balmer- and Pickering-spectra, Nicholson has suggested
that the lines in question are due to hydrogen.
It is seen that the lines discussed by Nicholson are given by the above

formula if we put τ2 = 6. The lines in question correspond to τ1 = 10, 13 and
14; if we for τ2 = 6 put τ1 = 9, 12 and 15, we get lines coinciding with lines
of the ordinary Balmer-spectrum of hydrogen. If we in the above formula
put τ = 1, 2, and 3, we get series of lines in the ultra-violet. If we put τ2 = 4
we get only a single line in visible spectrum, viz.: for τ1 = 5 which gives
ν = 6.662 · 1014, or a wave-length λ = 4.503 · 10−8 cm closely coinciding
with the wave-length 4.504 · 10−8 cm of one of the lines of unknown origin
in the table quoted by Nicholson. In this table, however, no lines occur
corresponding to τ2 = 5.
For the permanent state of a lithium atom with two positive charges we

get a configuration

3(1) a =
1

3
a0, ω = 9ω0, W = 9W0.

11J.W. Nicholson, Month. Not. Roy. Astr. Soc. LXXIII. 382 (1913).
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The probably of a permanent configuration in which two electrons move
in different orbits around each other must for lithium be considered still less
probable than for helium, as the ratio between the radii of the orbits would
be still nearer to unity. For a lithium atom with a single positive charge we
shall, therefore, adopt the configuration:

3(2) a = 0.364a0, ω = 7.56ω0, W = 15.13W0.

SinceW [3(2)]−W [3(1)] = 6.13W0 we see that the first two electrons in a
lithium atom very strongly bound compared with the electron in a hydrogen
atom; they are still more rigidly bound than the electrons in a helium atom.
From a consideration of the chemical properties we should expect the

following configuration for the electrons in a neutral lithium atom:

3(2, 1) a1 = 0.362a0, ω1 = 7.65ω0,
W = 16.02W0

a2 = 1.182a0, ω2 = 0.716ω0,

This configuration may be considered as highly probable also from a dy-
namical point view. The deviation of the outermost electron from a circular
orbit will be very small, partly on account of the great values of the ratio
between the radii, and of the ratio between the frequencies of the orbits
of the inner and outer electrons, partly also on account of the symmetrical
arrangement of the inner electrons. accordingly, it appears probable that
the three electrons will not arrange themselves in a single ring and from the
system:

3(3) a = 0.413a0, ω = 5.87ω0, W = 17.61W0,

although W for this configuration is greater than for 3(2,1).
Since W [3(2,1) - W [3(2)] = 0.89W0, we see that the outer electron in

the configuration 3(2,1) is bound even more lightly than the electron in a
hydrogen atom. the difference in the firmness of the binding corresponds
to a difference of 1.4 volts in the ionization potential. A marked difference
between the electron in hydrogen and the outermost electron in lithium lies
also in the greater tendency of the latter electron top leave the plane of this
orbits. The quantity G considered in § 2, which gives a kind of measure for
the stability for displacements perpendicular to this plane, is thus for the
outer electron in lithium only 0.55, while for hydrogen it is 1. This may have
a bearing on the explanation of the apparent tendency of lithium atoms to
take a positive charge in chemical combinations with other elements.
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For a possible negatively charged lithium atom we may expect the con-
figuration:

3(2, 2) a1 = 0.362a0, ω1 = 7.64ω0,
W = 16.16W0

a2 = 1.516a0, ω2 = 0.436ω0,

it should be remarked that we have no detailed knowledge of the prop-
erties in the atomic state, either for lithium or hydrogen, or for most of the
electrons considered below.

N = 4 Beryllium.

For reasons analogous to those considered for helium and lithium we may
for the formation of a neutral beryllium atom assume the following states:

4(1) a = 0.25a0, ω = 16ω0, W = 16W0,
4(2) a = 0.267a0, ω = 14.06ω0, W = 28.13W0,
4(2, 1) a1 = 0.263a0, ω1 = 14.46ω0,

W = 31.65W0,
a2 = 0.605a0, ω2 = 2.74ω0,

4(2, 2) a1 = 0.262a0, ω1 = 14.60ω0,
W = 33, 61W0,

a2 = 0.673a0, ω2 = 2.21ω0,

although the configurations:

4(3) a = 0.292a0, ω = 11.71ω0, W = 35.14W0,
4(4) a = 0.329a0, ω = 9.26ω0, W = 37.04W0,

correspond to less values for the total energy than the configuration 4( 2,1)
and 4(2,2).
From analogy we get further for the configuration of a possible negatively

charged atom,

4(2, 3) a1 = 0.263a0, ω1 = 14.51ω0,
W = 33.66W0

a2 = 0.803a0, ω2 = 1.55ω0,

Comparing the outer ring of the atom considered with the ring of a
helium atom, we see that the presence of the inner ring of two electrons
in the beryllium atom markedly charges the properties of the outer ring;
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partly because the outer electrons in the configuration adopted for a neutral
beryllium atom are more lightly bound than the electrons in a helium atom,
and partly because the quantity G, which for helium is equal to 2, for the
outer ring in the configuration 4(2,2) is only equal 1.12.
Since W [4(2,3)] - W [4(2,2)] = 0.05W0, the beryllium atom will further

have a definite, although very small affinity for free electrons.

§ 4 Atoms containing greater numbers of electrons

From the examples discussed in the former section it will appear that the
problem of the arrangement of the electrons in the atoms is intimately con-
nected with the question of the confluence of two rings of electrons rotating
round a nucleus outside each other, and satisfying the condition of the uni-
versal constancy of the angular momentum. apart from the necessary con-
ditions of stability for displacements of the electrons perpendicular to the
plane of the orbits, the present theory gives very little information on this
problem. It seems, however, possible by the help of simple considerations to
throw some light on the question.
Let us consider two rings rotating round a nucleus in a single plane, the

one outside the other. Let us assume that the electrons in the one ring
act upon the electrons in the other as if the electric charge were uniformly
distributed along the circumference of the ring, and that the ring with this
approximation satisfy the condition of the angular momentum of the elec-
trons and stability for displacements perpendicular to their plane.
Now suppose that, by help of suitable imaginary extraneous forces acting

parallel to the axis of the rings, we pull the inner ring slowly to one side.
During this process, on account of the repulsion from the inner ring, the
outer will move to the opposite side of the original plane of the rings. During
the displacements of the rings angular momentum of the electrons round the
axis of the system will remain constant, and the diameter of the inner ring
will increase while that of the outer will diminish. At the beginning of the
displacement the magnitude of the extraneous forces to be applied to the
original inner ring will increase but thereafter decrease, and at a certain
distance between the plane of the rings the system will be in a configuration
of equilibrium. This equilibrium, however, will not be stable. If we let the
rings slowly return they will either reach their original position, or they
arrive at a position in which the ring, which originally was the outer, is now
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the inner, and vise versa.
If the charge of the electrons were uniformly distributed along the cir-

cumference of the rings, we could by the process considered at most obtain
an interchange of the rings, but obviously not a junction of them. Taking,
however, the discrete distribution of the electrons into account, it can be
shown that in the special case when the number of electrons on the two
rings are equal, and when the rings rotate in the same direction, the rings
will unite by the process, provided that the final configuration is stable. In
this case the radii and the frequency of the rings will be equal in the unstable
configuration of equilibrium mentioned above. In reaching this configura-
tion the electrons in the one ring will further be situated just opposite the
intervals between the electrons in the outer, since such an arrangement will
correspond to the smallest total energy. If now we let the rings return to
their original plane, the electrons in the one ring will pass into the intervals
between the electrons in the other, and from a single ring. Obviously the
ring thus formed will satisfy the same condition of the angular momentum
of the electrons as the original rings.
If the two rings contain unequal numbers of electrons the system will

during a process such as that considered behave very differently, and, con-
trary to the former case, we cannot expect that the rings will flow together,
if by help of extraneous forces acting parallel to the axis of the system they
are displaced slowly from their original plane. It may in this connexion be
noticed that the characteristic for the displacements considered is not the
special assumption about the extraneous forces, but only invariance of the
angular momentum of the electrons round the centre of the rings; displace-
ments of this kind take in the present theory a similar position to arbitrary
displacements in the ordinary mechanics.
The above considerations may be taken as an indication that there is

greater tendency for the confluence of two rings when each contains the
same number of electrons. Considering the successive binding of electrons
by a positive nucleus, we conclude from this that, unless the charge on the
nucleus is very great, rings of electrons will only join together if they contain
equal numbers of electrons; and that accordingly the numbers of electrons
on inner rings will only be 2, 4, 8, . . .. If the charge of the nucleus is very
great the rings of electrons first bound, if few in number, will be very close
together, and we must expect that the configuration will be very unstable,
and that a gradual interchange of electrons between the rings will be greatly
facilitated.
This assumption in regard to the number of electrons in the rings is

strongly supported by the fact that the chemical properties of the elements
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of low atomic weight vary with a period of 8. Further, it follows that the
number of electrons on the outermost ring will always be odd or even, ac-
cording as the total number of electrons in the atom is add or even. This
has a suggestive relation to the fact that the valency of an element of low
atomic weight always is odd or even according as the number of the element
in the periodic series is odd or even.
For the atoms of the elements considered in the former section we have

assumed that the two electrons first bound are arranged in a single ring,
and, further, that the two next electrons are arranged in another ring. If
N ≥ 4 the configuration N (4) will correspond to a smaller value for the
total energy than the configuration N(2,2). The greater the value of N the
closer will the ratio between the radii of the rings in the configuration N(2,2)
approach unity, and the greater will be the energy emitted by an eventual
confluence of the rings. The particular member of the series of the elements
for which the four innermost electrons will be arranged for the first time in
a single ring cannot be determined from the theory. From a consideration
of the chemical properties we can hardly expect that it will have taken
place before boron (N = 5) or carbon (N = 6), on account of the observed
trivalency and tetravalency respectively of these elements; on the other hand,
the periodic system of the elements strongly suggests that already in neon
(N = 10) an inner ring of eight electrons will occur. Unless N > 14 the
configuration N(4,4) corresponds to smaller value for the total energy that
the configuration N(8); already for N ≥ 10 the latter configuration, however,
will be stable for displacements of the electrons perpendicular to the plane
of their orbits. A ring of 16 electrons will not be stable unless N is very
great; but in such a case the simple considerations mentioned do not apply.
The confluence of two rings of equal number of electrons, which rotate

round a nucleus of charge Ne outside a ring of n electrons already bound,
must be expected to take place more easily than the confluence of two similar
rings rotating round a nucleus of charge (N − n) · e; for the stability of the
rings for a displacement perpendicular to their plane will (see § 2) be smaller
in the first than the latter case. This tendency for stability to decrease
for displacements perpendicular to the plane of the ring will be especially
marked for the outer rings of electrons of a neutral atom. In the latter
case we must expect the confluence of rings to be greatly facilitated and
in certain cases it may even happen that the number of electrons in the
outer ring may be greater than in the next, and that the outer ring may
show deviations from the assumption of 1, 2, 4, 8 electrons in the rings, e.g.
the configurations 5(2,3) and 6(2,4) instead of the configuration 5(2,2,1)
and 6(2,2,2). We shall here not discuss further the intricate question of the
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arrangement of the electrons in the outer ring. In the scheme given below the
number of electrons in this rings is arbitrary put equal to the normal valency
of the corresponding element; i.e. for electronegative and electropositive
elements respectively the number of hydrogen atoms and twice the number
of oxygen atoms with which one atom of the element combines.
Such an arrangement of the outer electrons is suggested by considera-

tions of atomic volumes. As is well known, the atomic volume of the elements
is a periodic function of the atomic weights. If arranged in the usual way
according to the periodic system, the elements inside the same column have
approximately the same atomic volume, while this volume changes consider-
ably from one column to another, being greatest for columns corresponding
to the smallest valency 1 and smallest for the greatest valency 4. An ap-
proximate estimate of the radius of the outer ring of a neutral atom can
be obtained by assuming that the total forces due to the nucleus and the
inner electrons is equal to that from a nucleus of charge ne, where n is the
number of electrons in the ring. Putting F = n− sn in the equation (1) on
p. 478, ?????? and denoted the value of a for n = 1 by a0, we get for n = 2,
a = 0.41a0; and for n = 4, a = 0.33a0. According the arrangement chosen
for the electrons will involve a variation in the dimensions of the outer ring
similar to the variation in the atomic volumes of the corresponding elements.
It must, however, be borne in mind that the experimental determinations of
atomic volumes in most cases are deduced from consideration of molecules
rather that atoms.
From the above we are led to the following possible scheme for the ar-

rangement of the electrons in light atoms: –

1(1) 9(4,4,1) 17(8,4,4,1)
2(2) 10(8,2) 18(8,8,2)
3(2,1) 11(8,2,1) 19(8,8,2,1)
4(2,2) 12(8,2,2) 20(8,8,2,2)
5(2,3) 13(8,2,3) 21(8,8,2,3)
6(2,4) 14(8,2,4) 22(8,8,2,4)
7(4,3) 15(8,4,3) 23(8,8,4,3)
8(4,2,2) 16(8,4,2,2) 24(8,8,4,2,2)

Without any fuller discussion it seems not unlikely that this constitution
of the atoms will correspond to properties of the elements similar with those
observed.
In the first place there will be a marked periodicity with a period of 8.

Further, the binding of the outer electrons in every horizontal series of the
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above scheme will become weaker with increasing number of electrons per
atom, corresponding to the observed increase of the electropositive character
for an increase of atomic weight of the elements in every single group of the
periodic system. A corresponding agreement holds for the variation of the
atomic volumes.
In the case of atoms of higher atomic weight the simple assumptions used

do not apply. A few indications, however, are suggested from consideration
of the variations in the chemical properties of the elements. At the end of
the 3rd period of 8 elements we meet with the iron-group. This group takes a
particular position in the system of the elements, since it is the first time that
elements of neighbouring atomic weight show similar chemical properties.
This circumstance indicates that the configurations of the electrons in the
elements of this group differ only in the arrangement of the inner electrons.
The fact that the period in the chemical properties of the elements after the
iron-group is no longer 8, but 18, suggests that elements of higher atomic
weight contain a recurrent configuration of 18 electrons in the innermost
rings. The deviation from 2, 4, 8, 16 may be due to a gradual interchange of
electrons between the rings, such as is indicated on p. 495. Since a ring of
18 electrons will not be stable the electrons may be arranged in two parallel
rings (see p. 486). ??????? Such a configuration of the inner electrons will
act upon the outer electrons in very nearly the same way as nucleus of charge
(N − 18) · e. It might therefore be possible that with increase of N another
configuration of the same type will be formed outside the first, such as is
suggested by the presence of a second period of 18 elements.
On the same lines, the presence of the group of the rare earths indicates

that for still greater values of N another gradual alteration of the inner-
most rings will take place. Since, however, for elements of higher atomic
weight than those of this group, the laws connection the vibration of the
chemical properties with the atomic weight are similar to these between the
elements of low atomic weight, we may conclude that the configuration of
the innermost electrons will be again repeated. The theory, however, is not
sufficiently complete to give a definite answer to such problems.

§ 5 Characteristic Röntgen Radiation

According to the theory of emission of radiation given in Part I., the ordinary
line-spectrum of an element is emitted during the reformation of an atom
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when one or more of the electrons in the other rings are remover. In analogy
it may be supposed that the characteristic Röntgen radiation is sent out
during the setting down of the system if electrons in inner rings are removed
by some agency, e.g. by impact of cathode particles. This view of the
origin of the characteristic Röntgen radiation has been proposed by Sir. J.J.
Thomson.
Without any special assumption in regard to the constitution of the

radiation, we can from this view determine the minimum velocity of the
cathode rays necessary to produce the characteristic Röntgen radiation of
a spacial type by calculating the energy necessary to remove one of the
electrons from the different rings. Even if we know the numbers of electrons
in the rings, a rigorous calculation of this momentum energy might still
be complicated, and the result largely dependent on the assumptions used;
for, as mentioned in Part I., p. 19, ?????????? the calculation cannot
be performed entirely on the basis of the ordinary mechanics. We can,
however, obtain very simply an approximate comparison with experiments
if we consider the innermost ring and as a first approximation neglect the
repulsion from the electrons in comparison with the attraction of the nucleus.
Let us consider a simple system consisting of a bound electron rotating in a
circular orbit round a positive nucleus of charge Ne. From the expressions
(1) on p. 478 ??????? we get for the velocity of the electron, putting F = N ,

v =
2πe2

h
N = 2.1 · 108 ·N.

The total energy to be transferred to the system in order to remove
the electron to an infinite distance from the nucleus is equal to the kinetic
energy of the bound electron. If, therefore, the electron is removed to a great
distance from the nucleus by impact of another rapidly moving electron, the
smallest kinetic energy possessed by the latter when at a great distance from
the nucleus must necessarily be equal to the kinetic energy of the bound
electron before the collision. The velocity of the free electron therefore must
be at least equal to e.
According to Whiddington’s experiments12 the velocity of cathode rays

just able to produce the characteristic Röntgen radiation of the so-called
K-type-the hardest type of radiation observed–from an element of atomic
weight A is for elements from Al to Se approximately equal to A cot 108

cm/sec. As seen this is equal to the above calculated value for r, if we put
N = A/2.

12R. Whiddington, Proc. Roy. Soc. A. LXXXV. p. 323 (1911).
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Since we have obtained approximate agreement with experiment by as-
cribing the characteristic Röntgen radiation of the K-type to the innermost
ring, it is to be expected that no harder type of characteristic radiation will
exist. This is strongly indicated by observations of the penetrating power of
γ rays.13

It is worthy of remark that the theory gives not only nearly the right
value for the energy required to remove an electron from the outer ring, but
also the energy required to remove an electron from the innermost ring. The
approximate agreement between the calculated and experimental values is
all the more striking it is recalled that the energies required in the two cases
for an element of atomic weight 70 differ by a ratio of 1000.
In connexion with this it should be emphasized that the remarkable

homogeneity of the characteristic Röntgen radiation – indicated by experi-
ments on absorption of the rays, as well as by the interference observed in
recent experiments on diffraction of Röntgen rays in crystals – is in agree-
ment with the main assumption used in part I. (see p. 7) in considering the
emission of line-spectra, viz. that the radiation emitted during the passing
of the systems between different stationary states is homogeneous.
Putting in (4) F = N , we get for the diameter of the innermost ring

approximately 2a = 1/N · 10−8 cm. For N = 100 this gives 2a = 10−10 cm,
a value which is very small in comparison with ordinary atomic dimensions
but still very great compared with the dimensions to be expected for the
nucleus. according to Rutherford’s calculation the dimensions of the latter
are of the same order of magnitude as 10−12 cm.

§ 6 Radioactive Phenomena

According to the present theory the cluster of electrons surrounding the
nucleus is formed with emission of energy, and the configuration is deter-
mined by the condition that the energy emitted is a maximum. The stability
involved by these assumptions seems to be in agreement with the general
properties of matter. It is, however, in striking opposition to the phenomena
of radioactivity, and according to the theory the origin of the latter phenom-
ena may therefore be sought elsewhere than in the electronic distribution
round the nucleus.

13Comp. E. Rutherford, Phil. Mag. XXIV. p. 453 (1912).
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A necessary consequence of Rutherford’s theory of the structure of atoms
is that the α-particles have their origin in the nucleus. On the present theory
it seems also necessary that the nucleus is the seat of the expulsion of the
high-speed β-particles. In the first place, the spontaneous expulsion of a
β-particle from the cluster of electrons surrounding the nucleus would be
something quite foreign to the assumed properties of the system. further,
the expulsion of an α-particle can hardly be expected to produce a lasting
effect on the stability of the cluster of electrons. The effect of the expulsion
will be of two different kinds. Partly the particle may collide with the
bound electrons during its passing through the atom. This effect will be
analogous to that produced by bombardment of atoms of other substances
by α-rays and cannot be expected to give rise to a subsequent expulsion
of β-rays. Partly the expulsion of the particle will involve an alteration in
the configuration of the bound electrons, since the charge remaining on the
nucleus is different from the original. In order to consider the latter effect
let us regard a single ring of electrons rotating round a nucleus of charge
Ne, and let us assume that an α-particle is expelled from the nucleus in
a direction perpendicular to the plane of the ring. The expulsion of the
particle will obviously not produce any alteration in the angular momentum
of the electrons; and if the velocity of the α-particle is small compared with
the velocity of the electrons – as it will be if we consider inner rings of an
atom of high atomic weight – the ring during the expulsion will expand
continuously, and after the expulsion will take the position claimed by the
theory for a stable ring rotating round a nucleus of charge (N − 2) · e. The
consideration of this simple case strongly indicates that the expulsion of an
α-particle will not have a lasting effect on the stability of the internal rings
of electrons in the residual atom.
The question of the origin of β-particles may also be considered from

another point of view, based on a consideration of the chemical and physical
properties of the radioactive substances. As is well known, several of these
substances have very similar chemical properties and have hitherto resisted
every attempt to separate them by chemical means. There is also some evi-
dence that the substances in question show the same line-spectrum.14 It has
been suggested by several writers that the substances are different only in
radio-active properties and atomic weight but identical in all other physi-
cal and chemical respects. according to the theory, this would mean that
the charge on the nucleus, as well as the configuration of the surrounding
electrons, was identical in some of the elements, the only difference being

14see A.S. Russel and R. Rossi, Proc. Roy. Soc. A. LXXXVII. p. 478 (1912).
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the mass and the internal condition of the nucleus. From the considerations
of § 4 this assumption is already strongly suggested by the fact that the
number of radioactive substances is greater than the number of places at
our disposal in the periodic system. If, however, the assumption is right,
the fact that two apparently identical elements emit β-particles of different
velocities, shows that the β-rays as well as the α-rays have their origin in
the nucleus.
This view of the origin of α- and β-particles explains very simply the

way in which the change in the chemical properties of the radioactive sub-
stances is connected with the nature of the particles emitted. The results of
experiments are expressed in the two rules:–15

1. Whenever an α-particles is expelled the group in the periodic system
to which the resultant product belongs is two units less than that to which
the parent body belongs.
2. Whenever a β-particle is expelled the group of the resultant body is

1 unit greater than that of the parent.
As will be seen this is exactly what is to be expected according to the

considerations of § 4.
In escaping from the nucleus, the β-rays may be expected to collide with

the bound electrons in the inner rings. This will give rise to an emission
of a characteristic radiation of the same type as the characteristic Rönt-
gen radiation emitted from elements of lower atomic weight by impact of
cathode-rays. The assumption that the emission of γ-rays is due to colli-
sions of β-rays with bound electrons is proposed by Rutherford16 in order
to account for the numerous groups of homogeneous β-rays expelled from
certain radioactive substances.

In the present paper it has been attempted to show that the application
of Planck’s theory of radiation to Rutherford’s atom-model through the
introduction of the hypothesis of the universal constancy of the angular
momentum of the bound electrons, leads to results which seem to be in
agreement with experiments.
In a later paper the theory will be applied to systems containing more

than one nucleus.

15See A.S. Russell, Chem. News, CVII. p. 49 (1913); G.v. Hevesy, Phys. Zeitschr.
XIV. p. 49 (1913); K. Fajaus, Phys. Zeitschr. XIV. pp. 131 & 136 (1913); Verh. d.
deutsch. Phys. Ges. XV. p. 240 (1913); F. Soddy, Chem. News, CVII. p. 97 (1913).
16E. Rutherford, Phil. Mag. XXIV. pp. 453&893 (1912).
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