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Abstract

A simulation model for a two degrees of freedom industrial manipulator

where an accelerometer is attached to the robot arm is presented. An

overview of the kinematic and dynamic models as well as a thorough de-

scription of the accelerometer model are given. The simulation model can

be run with di�erent types of properties, e.g. model errors and distur-

bances. Di�erent types of suggested simulation setups are also presented

in the paper.

Keywords: Industrial manipulator, kinematic models, dynamic models, ac-

celerometer
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Abstract

A simulation model for a two degrees of freedom industrial manipu-

lator where an accelerometer is attached to the robot arm is presented.

An overview of the kinematic and dynamic models as well as a thorough

description of the accelerometer model are given. The simulation model

can be run with di�erent types of properties, e.g. model errors and distur-

bances. Di�erent types of suggested simulation setups are also presented

in the paper.

1 Robot Model

This section describes the kinematic and dynamic models that are used. The
robot model corresponds to joint 2 and 3 for a serial 6 degrees of freedom (dof)
industrial robot.

Here, the forward kinematic equations and dynamic equations are given
without any derivations. Methods to derive these equations can be found in
e.g. [2] and [3]. The inverse kinematic model and the accelerometer model are
explained in more details.

1.1 Forward Kinematic Model

The forward kinematic model describes the geometrical relation between the
joint angles qa and the Cartesian coordinates of the tool center point (tcp)
on the robot. In this section, the forward kinematic model for the robot in
Figure 1.1 will be derived. The kinematic model can be expressed as

P =

(
x

z

)
= Γ(qa), (1.1)

where P is the Cartesian coordinates for tcp, expressed in the base coordinate
frame

(
xb zb

)T
, denoted by {b}, Γ is a nonlinear function and qa =

(
qa1 qa2

)T
are the joint angles. The forward kinematic has a unique solution for a serial
robot whereas there exist several solutions for a parallel arm robot such as ABB
IRB360. There are di�erent ways to derive the nonlinear function Γ. For this
model it is fairly easy to get the expressions by considering directly the geometry
in Figure 1.1. For more complex cases it is preferable to use homogeneous
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Figure 1.1: 2 dof robot model showing the kinematic properties of the struc-
ture.

transformations with or without the Denavit-Hartenberg convention, see e.g.
[2] and [3]. Using Figure 1.1 we can see that

P = Γ(qa) =

(
l1 sin qa1 + l2 sin

(
π
2 + qa1 + qa2

)
l1 cos qa1 + l2 cos

(
π
2 + qa1 + qa2

))
=

(
l1 sin qa1 + l2 cos (qa1 + qa2)
l1 cos qa1 − l2 sin (qa1 + qa2)

)
(1.2)

describes the relation between the joint angles qa and the Cartesian coordinates
x and z.

1.2 Inverse Kinematic Model

In practice, often the position P for tcp is given, and we are interested in the
corresponding joint angles. The joint angles are given by the inverse of (1.1),
i.e.,

qa = Γ−1(P ). (1.3)

This problem is more di�cult than the forward kinematic. The forward kine-
matic has a unique solution for a serial robot as was mentioned in Section 1.1,
however, the inverse kinematic has several solutions or no solution at all. The
joint angles qa can be computed either using an analytical expression or as a
result of a numerical solver. An analytical solution to the inverse problem for
the robot in Figure 1.1 can be derived using trigonometric identities. The solu-
tion is however not unique. Two di�erent sets of joint angles will give the same
position. These solutions are known as elbow-up and elbow-down.

The law of cosine gives

cos γ =
l21 + l2P − l22

2l1lP
, (1.4a)

cosβ =
l21 + l22 − l2P

2l1l2
= sin qa2, (1.4b)

where l2P = x2+z2. The joint angle qa2 can now be obtained directly from (1.4b).
However, the function atan21 will be used for numerical reasons. The angle for

1atan2 is a Matlab-function for the four quadrant arctangent
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joint two can therefore be calculated according to

qa2 = atan2

(
sin qa2,±

√
1− sin2 qa2

)
. (1.5)

The angle γ can be obtained in the same way,

γ = atan2
(
±
√

1− cos2 γ, cos γ
)
. (1.6)

The angle for joint one can now be calculated according to

qa1 =
π

2
− γ − α, (1.7)

where α = atan2(z, x). The elbow-up solution is obtained if the plus sign in (1.5)
and (1.6) is chosen, otherwise the solution will correspond to the elbow-down
solution.

1.3 Dynamic Model

The dynamic robot model is a joint �exible two-axes model from [1], see Fig-
ure 1.2. Each link is modeled as a rigid-body and described by mass mi, length
li, center of mass ξi and inertia ji with respect to the center of mass. The
joints are modeled as a spring damping pair with nonlinear spring torque τsi
and linear damping di. The de�ection in each joint is given by the arm angle
qai and the motor angle qmi. The motor characteristics are given by the inertia
jmi and a nonlinear friction torque fi. Let

q =
(
qa1 qa2 qm1/η1 qm2/η2

)T
, (1.8a)

u =
(
0 0 um1η1 um2η2

)T
, (1.8b)

where umi is the motor torque and ηi = qmi/qai > 1 is the gear ratio. The gear
ratio is used to transform the motor angles and motor torques from the motor
side of the gear box to the arm side. A dynamic model can be derived as

M(q)q̈ + C(q, q̇) +G(q) + T (q) +Dq̇ + F (q̇) = u. (1.9)

using Lagrange's equation [2]. Here M(q) is the inertia matrix, C(q, q̇) is the
Coriolis- and centrifugal terms, G(q) is the gravitational torque, T (q) is the
nonlinear sti�ness torque, Dq̇ is the linear damping torque and F (q̇) is the
nonlinear friction torque. The complete expressions for (1.9) can be found in
Appendix A.

2 Accelerometer Model

The accelerometer attached to the robot measures the acceleration due to the
motion the robot performs, the gravity component and in addition some mea-
surement noise is introduced. When modelling the accelerometer it is also im-
portant to include a drift term. The acceleration is measured in a frame {s}
�xed to the accelerometer relative an inertial frame. Note that {s} is also �xed
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Figure 1.2: Serial robot with two degrees of freedom. The joints are modeled
by nonlinear springs and linear dampers. Nonlinear friction torques are also
included.

to arm two. The inertial frame is here chosen to be the world �xed base frame
{b}. The acceleration in {s} can be expressed as

ρ̈s = Rbs (qa) (ρ̈b +Gb) + δs, (2.1)

where ρ̈b is the acceleration due to the motion and Gb =
(
0 −g

)T
models the

gravitation, both expressed in the base frame {b}. The drift term is denoted
by δs and is expressed in {s}. Rbs(qa) is a rotation matrix that represents
the rotation from frame {b} to frame {s}. The rotation matrix Rbs(qa) can be
obtained from Figure 2.1 according to

Rbs(qa) =

(
cos (qa1 + qa2) − sin (qa1 + qa2)
sin (qa1 + qa2) cos (qa1 + qa2)

)
. (2.2)

The vector ρ̈b can be calculated as the second derivative of ρb which is shown
in Figure 2.1. Note that the sensor is attached in tcp, hence

ρb = Γ(qa). (2.3)

Taking the derivative of (2.3) with respect to time twice gives

ρ̇b = Γ̇(qa) = J(qa)q̇a, (2.4a)

ρ̈b = Γ̈(qa) = J(qa)q̈a + J̇(qa)q̇a, (2.4b)

where J(qa) = ∂Γ
∂qa

is the Jacobian matrix. The Jacobian can be calculated as

J(qa) =

(
l1 cos qa1 − l2 sin(qa1 + qa2) −l2 sin(qa1 + qa2)
−l2 cos(qa1 + qa2)− l1 sin qa1 −l2 cos(qa1 + qa2)

)
, (2.5)

using (1.2). The time derivative of the Jacobian matrix is given by

J̇(qa) =

2∑
i=1

∂J(qa)

∂qai
q̇ai. (2.6)
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Figure 2.1: The vector ρb from the origin of frame {b} to the origin of frame
{s} is used to calculate the acceleration of the point P , i.e., the acceleration
measured by the accelerometer which originates from the motion.

The �nal expression for the acceleration given by the accelerometer can now be
written as

ρ̈Ms = Rbs(qa)

(
J(qa)q̈a +

(
2∑
i=1

∂J(qa)

∂qai
q̇ai

)
q̇a +Gb

)
+ δs, (2.7)

where Rbs(qa) and J(qa) are given by (2.2) and (2.5), respectively.

3 Overview of the Simulation Model

The simulation model is implemented inMatlab Simulink and a block diagram
of the model can be seen in Figure 3.1. The block Path Generator generates the
desired arm angles qrefa from a set of points in the joint space or in the Cartesian
space. It is also possible to use a prede�ned path for tcp. The desired arm
angles are then used for calculating the reference trajectory for tcp, i.e., P ref ,
using the Forward Kinematics in (1.2). The desired arm angles are also used to
calculate references for the motor angles qrefm and a feed forward torque τffwm .
This is done in the block Motor Reference and Feed Forward using an inverse
dynamical model. The feedback controller is a diagonal PID controller which
uses the measured motor position qMmi and the reference qrefmi to calculate a
torque for motor i. The feed forward torque τffwm is added to the calculated
torque from the PID controllers before it enters the robot. The block Robot only
simulates the robot models, described in Section 1, with or without disturbances
W . The output from the Robot block are the true position P of the tcp, true
motor angles qm and true position, velocity and acceleration for the arm angles,
i.e., Qa =

(
qTa q̇Ta q̈Ta

)T
. The block Accelerometer uses Qa to calculate the

acceleration of tcp according to (2.7).
Di�erent options, listed below, are available for adjusting the realism and

complexity of the simulation model.

Calibration Error The position and orientation of the accelerometer can be
set to deviate from the nominal values.

Accelerometer O�set The value of the parameter δs in (2.1).
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Figure 3.1: Overview of the simulation model.

Model complexity The complexity of the dynamic equation (1.9) can be
changed. It is possible to turn on or o� the gravity component G(q)
and the friction component F (q̇). It is also possible to choose between lin-
ear and nonlinear spring torque T (q). For the linear case is klowi = khighi

in (A.7).

Disturbances Two types of disturbances can be used. The �rst one is distur-
bances on the motor torques, which is modeled as a chirp signal. The dis-
turbance τmd is simply added to the applied torque τm, i.e., um = τm+τmd.
If no motor disturbance is present, then um = τm. The second type is a
force acting on tcp. The force is described by an amplitude and an angle
relative the base frame {b}.

Ripple Torque ripple τri can be added to the applied motor torque τmi, i.e.,
umi = τmi + τri. The torque ripple is dependent of the motor angle qmi
and the applied torque τmi. The model is given by

τri = Ac1 sin (C1qmi + φc1) τmi +

3∑
j=1

Atj sin (Tjqmi + φtj) . (3.1)

If no torque ripple is present, then um = τm. Ripple can also be added to
the resolvers measuring the motor angles, i.e., qMmi = qmi +Rri, where the
resolver ripple Rri is modeled as

Rri = Ar1 sin qmi +Ar2 sin (2qmi + φr2) . (3.2)

If no resolver ripple is present, then qMmi = qmi.

Model Errors The model parameters in (A.5), (A.7) and (A.9) and the masses
m1 and m2 can be given uncertainty values. In this case, the feed forward
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Name Description

Sim1 Without calibration errors, drift and model errors.
Sim2 With calibration errors (4mm in x-direction, -5mm in z-direction

and 2◦ in orientation), drift (δs = 0.1m/s2 in both directions)
and model errors (20% in sti�ness parameters and 50% in friction
parameters).

Sim3 With calibration errors (4mm in x-direction, -5mm in z-direction
and 2◦ in orientation), drift (δs = 0.1m/s2 in both directions) and
without model errors.

Sim4 With calibration errors (4mm in x-direction, -5mm in z-direction
and 2◦ in orientation), drift (δs = 0.2m/s2 in both directions) and
without model errors.

Table 4.1: Four di�erent simulation scenarios.

block in Figure 3.1 does not use the nominal values as is the case for the
robot model.

Path The path can be set either as interpolation in joint space between two
sets of arm angles, or linear interpolation in the Cartesian space. For more
complicated paths for the tcp it is possible to create them o�-line before
the simulation starts.

Measurement Noise Normal distributed white measurement noise with zero
mean and variance σ2

qm and σ2
ρ̈s

can be added to the motor angles and/or
the acceleration of tcp, respectively.

4 Suggested Simulation Setups

Here, four di�erent paths are suggested together with di�erent con�gurations
from the list in Section 3. These paths and con�gurations are used during later
work.

The suggested paths can be seen in Figure 4.1. The paths start at the star
and goes clockwise and the circle indicates tcp when qa =

(
0 0

)T
. These four

paths are generated using a standard ABB controller.
Four di�erent con�gurations of the simulation model according to Table 4.1

are suggested to cover model errors in the dynamical model parameters, as well
as drift and calibration errors for the accelerometer. All four con�gurations
use full model complexity, i.e., gravity, friction and nonlinear spring torque are
present. Motor torque ripple, resolver ripple and measurement noise on the
motor angles and the acceleration of tcp are also present, but no disturbances.
The model errors can be seen as the worst case and are chosen based on sugges-
tions from the authors of [1]. Note that the true trajectory for tcp will be the
same for all suggested con�gurations except for Sim2. The reason is that the
feed forward controller changes, i.e., the control performance is changed, when
model errors are present.
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Figure 4.1: Suggested paths for simulation. The path starts at the star and
goes clockwise. The circle indicates the tool position when qa = (0 0)

T .
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A Dynamic Model Equations

The expressions for the dynamic model (1.9) are given here. More information
about the model and numerical values for the parameters can be found in [1].

The inertia matrix M(q) is partitioned as

M(q) =


M11(q) M12(q) 0 0
M21(q) M22(q) 0 0

0 0 jm1η
2
1 0

0 0 0 jm2η
2
2

 , (A.1)
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where

M11(q) = j1 +m1ξ
2
1 + j2 +m2

(
l21 + ξ2

2 − 2l1ξ2 sin qa2

)
, (A.2a)

M12(q) = M21(q) = j2 +m2

(
ξ2
2 − l1ξ2 sin qa2

)
, (A.2b)

M22(q) = j2 +m2ξ
2
2 . (A.2c)

The Coriolis and centripetal terms are described by

C(q, q̇) =


−m2l1ξ2

(
2q̇a1q̇a2 + q̇2

a2

)
cos qa2

m2l1ξ2q̇
2
a1 cos qa2

0
0

 , (A.3)

the gravity component is

G(q) =


−g (m1ξ1 sin qa1 +m2 (l1 sin qa1 + ξ2 cos(qa1 + qa2)))

−m2ξ2g cos(qa1 + qa2)
0
0

 , (A.4)

and the linear damping matrix is given by

D =


d1 0 −d1 0
0 d2 0 −d2

−d1 0 d1 0
0 −d2 0 d2

 . (A.5)

The nonlinear spring torque is described by

T (q) =


τs1(∆q1)
τs2(∆q2)
τs1(−∆q1)
τs2(−∆q2)

 , (A.6)

where

∆qi = qai − qmi/ηi (A.7a)

τsi =

{
klowi ∆qi + ki3∆3

qi , |∆qi | ≤ ψi
sign(∆qi)

(
mi0 + khighi (|∆qi | − ψi)

)
, |∆qi | > ψi

(A.7b)

ki3 =
khighi − klowi

3ψ2
i

(A.7c)

mi0 = klowi ψi + ki3ψ
3
i (A.7d)

Finally, the nonlinear friction torque is given by

F (q̇) =


0
0

fm1(q̇)
fm2(q̇)

 , (A.8)

where

fmi(q̇) = ηi
(
fdiq̇mi + fci

(
µki + (1− µki) cosh−1(βiq̇mi)

)
tanh(αiq̇mi)

)
. (A.9)
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