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Abstract— State estimation of a flexible industrial manip-
ulator is presented using experimental data. The problem
is formulated in a Bayesian framework where the extended
Kalman filter and particle filter are used. The filters use the
joint positions on the motor side of the gearboxes as well as the
acceleration at the end-effector as measurements and estimates
the corresponding joint angles on the arm side of the gearboxes.
The techniques are verified on a state of the art industrial
robot, and it is shown that the use of the acceleration at the
end-effector improves the estimates significantly.

I. INTRODUCTION

Modern industrial robot control is usually only based on
measurements from the motor angles of the manipulator.
However, the ultimate goal is to move the tool according to a
predefined path. In [9] a method for improving the absolute
accuracy of a standard industrial manipulator is described.
The improved accuracy is achieved through identification
of unknown or uncertain parameters in the robot system,
and applying the iterative learning control (ILC) method,
[2], [20], using additional sensors to measure the actual
tool position. The aim of this paper is to evaluate Bayesian
estimation techniques for sensor fusion and to improve the
estimate of the tool position from measurements of the
acceleration at the end-effector. The improved accuracy at
the end-effector is needed in for instance laser cutting, where
low cost sensors such as accelerometers are a feasible choice.
The configuration of the system with the accelerometer is
depicted in Fig 1.

Traditionally, many nonlinear Bayesian estimation prob-
lems are solved using the extended Kalman filter (EKF) [1],
[13]. In [11] an EKF is used to improve the trajectory tracking
for a rigid 2 degree-of-freedom (DOF) robot. The robot
dynamics and measurements are highly nonlinear and the
measurement noise is not always Gaussian. Hence, linearized
models may not always be a good approach. The particle
filter (PF) [7], [5] provides a general solution to many
problems where linearizations and Gaussian approximations
are intractable or would yield too low performance. The PF
method is also motivated since it provides the possibility
to design control laws and perform diagnosis in a much
more advanced way. Bayesian sensor fusion techniques using
particle filtering based on external sensors have so far been
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Fig. 1. The ABB IRB4600 robot with the accelerometer. The base
coordinate system, (xp,Yp, 2p), and the coordinate system for the sensor
(accelerometer), (xs,ys, s), are also shown.

applied to very few industrial robotic applications, [15],
[16], [21], focusing on evaluation and simulation. This paper
extends the idea to experimental data, from a state of the art
industrial robot, for evaluation of the EKF and the PF.

II. BAYESIAN ESTIMATION

Consider the discrete state-space model
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with state variables x; € R", input signal u; and measure-
ments Y; = {y;}{_,, with known probability density func-
tions (PDFs) for the process noise, p,, (w), and measurement
noise p.(e). The nonlinear prediction density p(z:4+1|Y:) and
filtering density p(x;|Y;) for the Bayesian inference [12] is
given by

p(xi41|Ye) = /P(ﬂftﬂ\xt)p(xﬂyt)dwm (2a)
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For the important special case of linear-Gaussian dynamics
and linear-Gaussian observations the Kalman filter [14] will
give the solution. For nonlinear and non-Gaussian systems,
the PDF can in general not be expressed with a finite
number of parameters. Instead approximative methods must
be used, for instance the extended Kalman filter (EKF) and
the particle filter (PF). The EKF will solve the problem
using a linearization of the system assuming Gaussian noise,

p(xt |Yt) (2b)



where the PF on the other hand will approximately solve
the Bayesian equations by stochastic integration. Hence, no
linearizations errors occur. The PF can also handle non-
Gaussian noise models and hard constraints on the state
variables.

A. The Extended Kalman Filter (EKF)

For many nonlinear problems the noise assumptions and
the nonlinearity are such that a linearized solution will be a
good approximation. This is the idea behind the EKF [1], [13]
where the model is linearized around the previous estimate.
Here the time update and measurement update for the EKF
are presented,
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where the linearized matrices are given as
Ft = vxf(xt,ut70)|mt:it\ta (43)
Gt = vwf($t7ut, wt)|xt=§:ﬂt7 (4b)
Ht = Vxh(xt”xt:it‘t_la (4’C)
and the noise covariances are given as
Qt = Cov (wt) s Rt = Cov (et) . (5)

Note that the process noise and measurement noise are
assumed zero mean processes.

B. The Particle Filter (PF)

The particle filter (PF), [7], [5], [22], provides an ap-
proximate solution to the discrete time Bayesian estimation
problem formulated in (2) by updating an approximate
description of the posterior filtering density. Let x; denote
the state of the observed system and Y, = {y;}!_, be the
set of observed measurements until present time. The PF ap-
proximates the density p(z;|Y;) by a large set of N samples
(particles), {J]EZ) N |, where each particle has an assigned
relative weight, %l), chosen such that all weights sum to
unity. The location and weight of each particle reflect the
value of the density in the region of the state space. The PF
updates the particle location and the corresponding weights
recursively with each new observed measurement. Using
the samples (particles) and the corresponding weights the
Bayesian equations can be solved approximately. To avoid
divergence a resampling step is introduced, [7]. The PF is
summarized in Algorithm 1, where the proposal distribution
prOP(a:§21 \my), Y++1) can be chosen arbitrary as long as it is
possible to draw samples from it.

The estimate for each time, ¢, is often chosen as the
minimum mean square estimate, i.e.,

N
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Algorithm 1 The Particle Filter

1: Generate N samples {xéi)}fil from p(x).
2: Compute

(@) () P(yt|$§l))19($§l)|$§l_)1)
Ve = Vel @, ()
PPOP (24 |7y 2y, yt)

, N N
'Yt(Z)/ZJ:fYt(J)v t =

and normalize, i.e., f_yt(i)
1,....N. 4
3: [Optional]. Generate a new set {x,g“)‘ N | by resampling
with replacement IV times from {xil)}fil, with proba-

bility % = Pr{z{"™ = 2{"1 and reset the weights to

1/N.
4: Generate predictions from the proposal distribution
2}y ~ PP (2™, o), i =1,...,N.

5: Increase ¢ and continue to step 2.

but other choices, such as the ML-estimate, might be of in-
terest. There exist theoretical limits [5] that the approximated
PDF converges to the true as the number of particles tends
to infinity.

III. DYNAMIC MODELS

In this section a continuous-time 2 DOF robot model is
discussed. The model is simplified and transformed into
discrete time, where it is used by the EKF and PF. The
measurements are in both cases angle measurements from the
motors, with acceleration information from the end-effector.

A. Robot Model

The robot model used in this work is a joint flexible two-
axes model, see Fig 2. The model corresponds to axis 2 and
3 for a serial 6 DOF industrial robot. A common assumption
of the dynamics of the robot is that the transmission can be
approximated by two or three masses connected by springs
and dampers. The coefficients in the resulting model can be
estimated from an identification experiment, see for instance
[17]. Here it will be assumed that the transmission can be
described by a two mass system and that the links are rigid.

The dynamic model can be described by a torque balance
for the motors and the arms. The equation describing the
torque balance for the motor becomes

Mmdm = fmqm - Tgk(rg%n - Qa)
- rgd(rg(jm - Qa) + 7, @)

where M, is the motor inertia matrix, g,, the motor angle,
¢, the arm angle, ry < 1 the gear ratio, f,, the motor friction,
k the spring constant and d the damping coefficient. Input to
the system is the motor torque, 7. The corresponding relation
for the arm becomes a nonlinear equation

M(L(Qa)da+C(Qa7 QG)q.a + g(Qa) =

I{/’(qum - Qa) + d(Tng - Qa)a (8)



X,

Fig. 2. A two degrees of freedom robot model. The links are assumed to
be rigid and the joints are described by a two mass system connected by a
spring damping pair.

where M,(-) is the arm inertia matrix, C'(-) the Coriolis-
and centrifugal terms and g(-) the gravitational torque. A
more detailed model of the robot should include nonlinear
friction such as Coulomb friction. An important extension
would also be to model the nonlinear spring characteristics
in the gear-boxes. In general the gear-box is less stiff for
torques close to zero and more stiff when high torques are
applied. An extended flexible joint model is proposed in [19,
Paper A] which improves the control accuracy. The extended
flexible joint model can also be used here.

B. Estimation Model

The estimation model has to reflect the dynamics of the
true system. A straight forward choice of estimation model
is the state space equivalent of (7) and (8), which gives
a nonlinear dynamic model with 8 states (motor- and arm
angular positions and velocities). Instead, the dynamics is
reformulated and used in the measurement relation (see
Section III-C) and we propose a linear state space model
for the dynamics with arm angles, arm velocities and arm
accelerations as state variables, together with bias terms
compensating for model errors and sensor drift. The state
vector is therefore given as

. . T
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where q,; = (¢4, 4q2,) contains the arm angles from
joint 2 and 3 in Fig 1, ¢, is the angular velocity, g, ; is

. T . .
the angular acceleration, b, ; = (b,lm5 bfnvt) is the bias
T .

term for the motor angles and bz, = (b}, b3,)" is the
bias term for the acceleration at time ¢. The bias terms are
used to handle model errors in the measurement equation
but also to handle drift in the measured signals, especially in
the acceleration signals. This yields the following state space
model in discrete time

Tip1 = Fixy + Gy + Gy 1 W,
yr = h(xe) + ey,

(10a)
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The input signal, u, is ideally a known signal entering the
model as described in (10). For the particular system it is not
available directly. Instead it is assumed to represent the arm
jerk reference, which is here given as the differentiated arm
angular acceleration reference signal. The process noise, w;
and measurement noise e; are considered Gaussian with zero
mean and covariances, ; and R; respectively. The sample
time is denoted 7" and Z and O are two by two unity and
null matrices. The observation relation, (10b), is described
in full detail in the next section.

C. Sensor Model
The observation relation is given by
qm,t + bm t
h(zy) = ),
() < pr+bst >

where ¢, is the motor angle and p; is the Cartesian
acceleration vector in the accelerometer frame {s}, see Fig 2.
With the simplified model described in Section III-A, the
motor angle ¢y, ; is computed from (8) according to

12)

dm,t :T;I <QCL,t + kil (Ma (Qa,t)ija,t + g(Qa,t)

+ O(Qa,ty Qa,t)Qa,t - d(rg(jm,t - Lja,t)))- (13)

Here, the motor angular velocity ¢,, can be seen as an
input signal to the sensor model. However, the damping term
d(rg¢m — o) is small compared to the other terms, and is
therefore neglected.

The approach is similar to the one suggested in [8], which
uses the relation given by (8) in a case when the system
is scalar and linear. However, the results presented here
are more general, since a multi-variable nonlinear system
is considered.

The acceleration in frame {s}, Fig 2, measured by the
accelerometer, is expressed as

pr = R2(qat) (ot +1nyg)

where RY(g,:) is the rotation matrix from {b} to {s},
ng=(0 0 g)T is the gravity vector and j, ; is the second
time derivative of the vector p;;, see Fig 2. The vector py ;
is described by the kinematics [23] which is a nonlinear
mapping from joint angles to Cartesian coordinates, i.e.,

XACC
Pb,t = (Zf;cc) - 7:\CC(Qa,t)u
t

(14)
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where and are the position of the accelerometer
expressed in frame {b}. Differentiation of p,; twice, with
respect to time, gives

ACC ACC
X Zi

2
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=1 a,t

(16)

Qa,h

where q((;?5 is the ith element of g, and J(gs:) is the

Jacobian of Tacc(¢a.t), i-e.,

J(qa) = vqa ﬂCC(Qa)

Remark: If the nonlinear dynamics (7) and (8), are used,
see Section III-A, the relation in (13) becomes linear since
gm, ¢ 1s a state variable. However, the relation in (16) becomes
more complex since g, ¢ is no longer a state, but has to be
computed using (8).
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IV. EXPERIMENTS ON AN ABB IRB4600 ROBOT

The experiments were performed on an ABB IRB4600,
like the one seen in Fig 1. The accelerometer used in
the experiments is a 3-axis accelerometer from Crossbow
Technology, with a range of +2 g, and a sensitivity of 1 V/g
[4]. In the next sections the experimental setup and results
are given.

A. Experimental Setup

The orientation and position of the accelerometer were
estimated using the method described in [3]. All measured
signals, i.e., acceleration, motor angles and arm angular
acceleration reference, are synchronous and sampled with a
rate of 2kHz. The accelerometer measurements are filtered
with a LP-filter before any estimation method is applied
to better reflect the tool movement. The path used in the
evaluation is illustrated in Fig 3 and it is programmed such
that only joint 2 and 3 are moved. Moreover, the wrist
is configured such that the couplings to joint 2 and 3 are
minimized. It is not possible to get measurements of the true
state variables z7RVF, as is the case for the simulation, instead,
the true trajectory of the end-effector, more precisely the tool
center point (TCP), X; ¥ and z{“*, is used for evaluation. The
true trajectory is measured using a laser tracking system from
Leica Geosystems. The tracking system has an accuracy of
0.01 mm per meter and a sample rate of 1 kHz [18]. However,
the measured tool position is not synchronized with the other
measured signals, i.e., a manual synchronization is therefore
needed, which can introduce small errors. Another source of
error is the accuracy of the programmed TCP in the control
system of the robot. The estimated data is therefore aligned
with the measured position to avoid any static errors. The
alignment is performed using a least square fit between the
estimated position and the measured position.

B. Experimental Results

The only measured quantity, to compare the estimates
with, is the measured Cartesian tool position, as was men-
tioned in Section IV-A. Therefore, the estimated arm angles
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Fig. 3. The path start at the lower left corner and is counterclockwise. A
laser tracking system from Leica Geosystems has been used to measure the
true tool position (solid) and tool position estimates using the EKF (dashed)
and Trce(gm,¢) (dash-dot).

are used to compute an estimate of the TCP using the
kinematic relation, i.e.,

)A(TCP
(2%@) = 7;'CP ((ja,t)y

t

(18)

where g, is the result from the EKF or the PF. Another
simple way to estimate the tool position is to use the forward
kinematic applied to the motor angles', i.e., Trce(gm,¢)- In
the evaluation study the estimates from the EKF, PF, and
Trcp(Gm,¢) are compared to measurements from the Leica
system.

EKF. Fig 3 shows that the estimated paths follow the
true path for the complete trajectory. The performance of the
estimates are better showed in Fig 4 and 5, where the four
sides are magnified. Notice that Trcp(gm, ¢) cannot estimate
the oscillations of the true path, which is not a surprise since
the oscillations originates from the flexibilities in the gear
boxes which are not taken care of in this straightforward way
to estimate the TCP. The EKF is much better on capturing
the dynamics and reducing the path error. Note however that
the EKF estimate goes past the corners somewhat before
it changes direction. The position root mean square error
(RMSE) is presented in Fig 6, where the EKF acceleration
method shows a significantly better performance. This is
based on the single experimental trajectory, but the result
is in accordance with previous simulation result as well as
theoretical calculations in [15], [16]. The MATLAB imple-
mentation of the EKF is almost real-time, and without losing
performance the measurements can be slightly decimated
(to approximately 200 Hz), yielding faster than real-time
calculations.

IThe motor angles are first transformed to the arm side of the gear box
via the gear ratio.
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Fig. 4. Horizontal sides for the true tool position (solid) and tool position
estimates using the EKF (dashed) and Trcp(gm,t) (dash-dot).
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Fig. 5. Vertical sides for the true tool position (solid) and tool position
estimates using the EKF (dashed) and Trcp(gm,¢) (dash-dot).

PF. The standard prior sampling proposal, pPP(.) =
p(Te41|2ze), that works well in simulation with no model
errors did not work sufficiently well on the experimental data.
Hence, it was necessary to use a better proposal. On could
in principle use an optimal proposal density, [6], [10], but
the problem is that it is difficult to sample from that. Instead
the proposal density is approximated using an EKF, [6], [10]

PP ey ) =
N (i) + K (e — a7, (ORI 4+ Q1))1),
19)
where T denotes the pseudo-inverse, and where the matrices
are assumed to be evaluated for each particle state.
The result of the PF compared to the EKF are found in

Fig 7 and Fig 8. The PF performs better in the corners, i.e.,
the estimated path does not go past the corners before it
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Fig. 6. Tool position RMSE for the EKF (dashed) and Trcp(gm,¢) (dash-
dot). The 2-norm of the RMSE-signals are 0.1239 and 0.1666 for the EKF
and ﬂcp(qm,t), respectively. The RMSE is based on the single experimental
trajectory, but the result is in accordance with previous simulation result as
well as theoretical calculations in [15], [16].
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Fig. 7. Horizontal sides for the true tool position (solid) and tool position
estimates using the EKF (dashed) and the PF (dash-dot).

changes. The PF estimate is also closer to the true path, at
least at the vertical sides. Fig 9 shows the RMSE for the PF
which is below the RMSE for the EKF most of the time. The
resulting 2-norm of the RMSE for the PF is 0.0827, which
is approximately 2/3 of the EKF and 1/2 of Trce(qm,i)-
The PF is in its current implementation far from real-time
and the bias states are needed to control the model errors.
Note however, if the method is intended for ILC, real-time
implementations might not be necessary.

V. CONCLUSIONS AND FUTURE WORK

A sensor fusion approach to estimate the tool position by
combining a 3-axes accelerometer at the end-effector and
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Fig. 9. Tool position RMSE for the EKF (dashed) and the PF (dash-dot).

The 2-norm of the RMSE-signals are 0.1239 and 0.0827 for the EKF and
the PF, respectively.

measurements from the motor angles of an industrial robot
is presented. The estimation is formulated as a Bayesian
problem and two solutions are proposed; extended Kalman
filter and particle filter respectively, both evaluated on experi-
mental data from an ABB robot. The dynamic performance is
significantly better using the proposed accelerometer method.

Since the intended use of the estimates is to improve tool
position control using an off-line method, like ILC, there are
no real-time issues using the computationally demanding par-
ticle filter algorithm, however the extended Kalman filter runs
in real-time in MATLAB. The estimation methods presented in
this paper are general and can be extended to higher degrees
of freedom robots and additional sensors, such as gyros and
camera systems.
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