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Abstract

One of the main tasks for an industrial robot is to move the end-effector in a
predefined path with a specified velocity and acceleration. Different applications
have different requirements of the performance. For some applications it is es-
sential that the tracking error is extremely small, whereas other applications re-
quire a time optimal tracking. Independent of the application, the controller is
a crucial part of the robot system. The most common controller configuration
uses only measurements of the motor angular positions and velocities, instead of
the position and velocity of the end-effector. The development of new cost op-
timised robots has introduced unwanted flexibilities in the joints and the links.
The consequence is that it is no longer possible to get the desired performance
and robustness by only measuring the motor angular positions.

This thesis investigates if it is possible to estimate the end-effector position us-
ing Bayesian estimation methods for state estimation, here represented by the
extended Kalman filter and the particle filter. The arm-side information is pro-
vided by an accelerometer mounted at the end-effector. The measurements con-
sist of the motor angular positions and the acceleration of the end-effector. In a
simulation study on a realistic flexible industrial robot, the angular position per-
formance is shown to be close to the fundamental Cramér-Rao lower bound. The
methods are also verified in experiments on an ABB IRB4600 robot, where the dy-
namic performance of the position for the end-effector is significantly improved.
There is no significant difference in performance between the different methods.
Instead, execution time, model complexities and implementation issues have to
be considered when choosing the method. The estimation performance depends
strongly on the tuning of the filters and the accuracy of the models that are used.
Therefore, a method for estimating the process noise covariance matrix is pro-
posed. Moreover, sampling methods are analysed and a low-complexity analyt-
ical solution for the continuous-time update in the Kalman filter, that does not
involve oversampling, is proposed.

The thesis also investigates two types of control problems. First, the norm-opti-
mal iterative learning control (ILC) algorithm for linear systems is extended to
an estimation-based norm-optimal ILC algorithm where the controlled variables
are not directly available as measurements. The algorithm can also be applied to
non-linear systems. The objective function in the optimisation problem is mod-
ified to incorporate not only the mean value of the estimated variable, but also
information about the uncertainty of the estimate. Second, H,, controllers are
designed and analysed on a linear four-mass flexible joint model. It is shown that
the control performance can be increased, without adding new measurements,
compared to previous controllers. Measuring the end-effector acceleration in-
creases the control performance even more. A non-linear model has to be used to
describe the behaviour of a real flexible joint. An H,-synthesis method for con-
trol of a flexible joint, with non-linear spring characteristic, is therefore proposed.






Popularvetenskaplig sammanfattning

En av de viktigaste uppgifterna for en industrirobot ar att forflytta verktyget i
en fordefinierad bana med en specificerad hastighet och acceleration. Exempel
pa anvandningsomraden for en industrirobot dr bland annat bagsvetsning eller
limning. For dessa typer av applikationer ar det viktigt att banfoljningsfelet ar
extremt litet, men dven hastighetsprofilen maste foljas sa att det till exempel in-
te appliceras for mycket eller for lite lim. Andra anvindningsomraden kan vara
punktsvetsning av bilkarosser och paketering av olika varor. For dess applikatio-
ner ar banfoljningen inte det viktiga, istallet kan till exempel en tidsoptimal ban-
foljning kravas eller att svingningarna vid en inbromsning minimeras. Oberoen-
de av applikationen ar regulatorn en avgorande del av robotsystemet. Den van-
ligaste regulatorkonfigurationen anvinder bara matningar av motorernas vinkel-
positioner och -hastigheter, istallet for positionen och hastigheten for verktyget,
som dr det man egentligen vill styra.

En del av utvecklingsarbetet for nya generationers robotar ar att reducera kost-
naden men samtidigt forbattra prestandan. Ett sdtt att minska kostnaden kan till
exempel vara att minska dimensionerna pa lankarna eller kopa in billigare vax-
ellador. Den har utvecklingen av kostnadsoptimerade robotar har infort oonska-
de vekheter i leder och ldnkar. Det dr darfor inte lingre mojligt att f& den 6nska-
de prestandan och robustheten genom att bara mata motorernas vinkelpositioner
och -hastigheter. Istdllet kravs det omfattande matematiska modeller som beskri-
ver dessa oonskade vekheter. Dessa modeller kraver mycket arbete att dels ta
fram men dven for att identifiera parametrarna. Det finns automatiska metoder
for att berdkna modellparametrarna men oftast krdvs det en manuell justering
for att fa bra prestanda.

Den hidr avhandlingen undersoker mojligheterna att berdkna verktygspositionen
med hjalp av bayesianska metoder for tillstandsskattning. De bayesianska skatt-
ningsmetoderna berdknar tillstanden for ett system iterativt. Med hjilp av en
matematisk modell dver systemet predikteras vad tillstandet ska vara vid nésta
tidpunkt. Efter att médtningar av systemet vid den nya tidpunkten har genomforts
justeras skattningen med hjalp av dessa matningar. De metoder som har anvants
i avhandlingen &r det sa kallade extended Kalman filtret samt partikelfiltret.

Informationen pd armsidan av vixelladan ges av en accelerometer som dr mont-
erad pa verktyget. Med hjélp av accelerationen for verktyget och motorernas vin-
kelpositioner kan en skattning av verktygspositionen berdknas. I en simulerings-
studie for en realistisk vek robot har det visats att skattningsprestandan ligger
nara den teoretiska undre gransen, kdnd som Cramér-Raos undre grins, samt att
infoérandet av en accelerometer forbattrar prestandan avsevart. Metoderna har
dven utvarderats pa experimentella métningar for en ABB IRB4600 robot. Ett av re-
sultaten i avhandlingen visar att prestandan mellan olika metoder inte skiljer sig
markant. Istidllet maste exekveringstid, modellkomplexitet och implementerings-
kostnader tas med i valet av metod. Vidare beror skattningsprestandan till stor
del pa hur filtren har trimmats. Trimningsparametrarna ar kopplade till process-
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viii Populdrvetenskaplig sammanfattning

och métstorningar som paverkar roboten. For att underlétta trimningen sa har en
metod for att skatta processbrusets kovariansmatris foreslagits. En annan viktig
del som paverkar prestandan dr modellerna som anvands i filtren. Modellerna for
en industrirobot ar vanligtvis framtagna i kontinuerlig tid medan filtren anvan-
der modeller i diskret tid. For att minska felen som uppkommer da de tidskon-
tinuerliga modellerna 6verfors till diskret tid har olika samplingsmetoder stude-
rats. Vanligtvis anvands enkla metoder for att diskretisera vilket innebar problem
med prestanda och stabilitet. For att hantera dessa problem infors 6versampling
vilket innebar att tidsuppdateringen sker med en mycket kortare sampeltid an
vad matuppdateringen gor. For att undvika 6versampling kan det motsvarande
tidskontinuerliga filtret anvdndas for att prediktera tillstanden vid nésta diskreta
tidpunkt. En analytisk 16sning med lag berakningskomplexitet till detta problem
har foreslagits.

Vidare innehaller avhandlingen tva typer av reglerproblem relaterade till indu-
strirobotar. For det forsta har den sa kallade norm-optimala iterative learning
control styrlagen utokats till att hantera fallet da en skattning av den 6nskade
reglerstorheten anvands istéllet for en méitning. Med hjdlp av skattningen av sy-
stemets tillstandsvektor kan metoden nu dven anvandas till olinjara system vilket
inte ar fallet med standardformuleringen. Den foreslagna metoden utokar mal-
funktionen i optimeringsproblemet till att innehalla inte bara vintevérdet av den
skattade reglerstorheten utan aven skattningsfelets kovariansmatris. Det innebar
att om skattningsfelet dr stort vid en viss tidpunkt ska den skattade reglerstorhe-
ten vid den tidpunkten inte paverka resultatet mycket eftersom det finns en stor
osakerhet i var den sanna reglerstorheten befinner sig.

For det andra har design och analys av H,-regulatorer for en linjar modell av en
vek robotled, som beskrivs med fyra massor, genomforts. Det visar sig att regler-
prestandan kan forbdttras, utan att lagga till fler matningar d&n motorns vinkelpo-
sition, jamfort med tidigare utvarderade regulatorer. Genom att mata verktygets
acceleration kan prestandan forbdttras annu mer. Modellen 6ver leden ar i sjdlva
verket olinjar. For att hantera detta har en H,-syntesmetod foreslagits som kan
hantera olinjariteten i modellen.
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Notation

EsTimaTION
Notation Meaning
Xp State vector at time k
uy Input vector at time k
W Process noise vector at time k
Yk Measurement vector at time k
Vi Measurement noise vector at time k
p(xly) Conditional density function for x given y
Yi:k Sequence of measurements from time 1 to time k
Rpkr Estimated state vector at time k given measurements
up to and including time k’
P Covariance of the estimated state vector at time k
given measurements up to and including time k’
XN Smoothed state vector at time k given measurements
up to time N > k
PiN Covariance of the smoothed stated vector at time k
given measurements up to time N > k
xﬁj) Particle i at time k
w;{’) Weight for particle i at time k
N(5pX) Gaussian distribution with mean p and covariance
Q/R Covariance matrix for the process/measurement noise

(7] Unknown parameter vector
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Rosortics
Notation Meaning
Qjsi» Rji Rotation matrix for system j with respect to system i
¥ Vector from origin in frame i to origin in frame j
Hj/; Homogeneous transformation matrix for system j wi-
th respect to system i
rf’ Homogeneous coordinate
= Position and orientation of the end-effector
E/E Linear and angular velocity/acceleration of the end-
effector
94/9./44 Arm angular positions/velocities/accelerations
D/ A/ Ao Motor angular positions/velocities/accelerations
qn/95./4%, Motor angular positions/velocities/accelerations ex-
pressed on the arm side of the gearbox
Ty (TH) Motor torque (expressed on the arm side of the gear-
box)
Y(:) Forward kinematic model
J() Jacobian matrix of the forward kinematic model
M(-) Inertia matrix
C(+) Coriolis- and centrifugal terms
G(-) Gravitational torque
F(+) Friction torque
T(-) Stiffness torque
D(-) Damping torque
n Gear ratio
CoNTROL
Notation Meaning
P(s) System from exogenous input signals and control sig-
nals to exogenous output signals and measurement
signals
K(s) Controller
Fi(-, ") Linear fractional transformation
Kp, Kp Parameters for the PD controller
I lloo Infinity-norm
o, L ILC algorithm matrices
WX/’[ W%A’/ We, Weighting functions for H,-control synthesis
Sy T»
Wy, W, Weighting functions for loop shaping synthesis
X(z,y,e,1,u) The vector x(t) (z(t), y(t), e(t), r(t), u(t)) stacked for
t=0,...,N
€ (€6°) (Output) Controllability matrix
2 Observability matrix
P Lyapunov matrix
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MISCELLANEOUS
Notation Meaning
I Identity matrix
0 Null matrix
f Pseudo inverse
T Transpose
T, h Sample time
tr Trace operator
rank Rank of a matrix
E[-] Expectation value
Cov (-) Covariance
g Gravity constant
X, Z (X, 2) (Estimated) Cartesian coordinates
Ox;Y;z; Cartesian coordinate frame named i
[ Acceleration due to the motion in the accelerometer
frame
b Bias vector
R/R,/R,, Real/Non-negative/Positive numbers
R" n-dimensional Euclidian space
R Space of real n x m matrices
St (ST) Set of symmetric positive definite (semi-definite) nx n
matrices
p(-) Spectral radius
() Maximal singular value
® Kronecker product
vec (vech) (Half) Vectorisation
u(t) Vector u at time t and ILC iteration k
ep,m(*) pth order Taylor expansion of the matrix exponential

dp(t)

with scaling of the argument with a factor m
Vector of Wiener processes
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Abbreviation Meaning
CDLE Continuous-time differential Lyapunov equation
CRLB Cramér-Rao lower bound
DDLE Discrete-time difference Lyapunov equation
DH Denavit-Hartenberg
DOF Degrees of freedom
EM Expectation maximisation
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Introduction

N THIS THESIS, state estimation and control for industrial manipulators are
studied. First, estimation of the unknown joint angles of the robot using mo-
tor angular position measurements together with acceleration measurements of
the tool, is considered. Second, control of the manipulator using the estimated
states, and the use of the acceleration measurement of the tool directly in the
feedback loop, are investigated.

The background and motivation of the work are presented in Section 1.1. The
contributions of the thesis are listed in Section 1.2 and the outline of the thesis is
presented in Section 1.3.

1.1 Background and Motivation

The first industrial robots were big and heavy with rigid links and joints. The de-
velopment of new robot models has been focused on increasing the performance
along with cost reduction, safety improvement and introduction of new function-
alities as described in Brogardh [2007]. One way to reduce the cost is to lower the
weight of the robot which leads to lower mechanical stiffness in the links. Also,
the components of the robot are changed such that the cost is reduced, which
can infer larger individual variations and unwanted non-linearities. The most
crucial component, when it comes to flexibilities, is the gearbox. The gearbox
has changed more and more to a flexible component described by non-linear re-
lations, which cannot be neglected in the motion control loop. The friction in
the gearbox is also an increasing problem that is described by non-linear rela-
tions. The available measurements for control are the motor angular positions,
but since the end-effector, which is the desired control object, is on the other
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side of the gearbox it cannot be controlled in a satisfactory way. Instead, exten-
sive use of mathematical models describing the non-linear flexibilities are needed
in order to control the weight optimised robot [Moberg, 2010]. In practice, the
static volumetric accuracy is approximately 2-15mm due to the gravity deflec-
tion which is caused by the flexibilities. One solution to reduce the error is to
create an extended kinematic model and an elasto-static model by conducting an
off-line identification procedure. The static error can, in this way, be reduced to
0.5mm. For the dynamic accuracy a new model-based motion control scheme is
presented in Bjorkman et al. [2008], where the maximum path error is one-fifth
of the maximum path error from a typical controller. However, reducing the
material cost leads to more complex mathematical models that can explain the
behaviour of the manipulator. Therefore, there is a demand for new approaches
of motion control schemes, where new types of measurements are introduced
and less complex models can be sufficient.

One solution can be to estimate the position and orientation of the end-effector
along the path and then use the estimated position and orientation in the feed-
back loop of the motion controller. The simplest observer is to use the measured
motor angular positions in the forward kinematic model to get the position and
orientation of the end-effector. In Figure 1.1a it is shown that the estimated posi-
tion of the end-effector does not track the true measured position very well. The
reason for the poor result is that the oscillations on the arm side do not influ-
ence the motor side of the gearbox due to the flexibilities. The flexibilities can
also distort the oscillations on the arm side, which means that the estimated path
oscillates in a different way than the true path. The kinematic model can conse-
quently not track the true position and another observer is therefore needed. The
observer requires a dynamic model of the robot in order to capture the oscilla-
tions on the arm side of the gearbox and possibly also more measurements than
only the motor angular positions. Figure 1.1b shows one of the experimental re-
sults in this thesis, presented in Papers A and B, where a particle filter has been
used. The true position of the end-effector can, for evaluation purposes, be mea-
sured by an external laser tracking system from Leica Geosystems [2014], which
tracks a crystal attached to the robot. The tracking system is very expensive and
it requires line of sight and is therefore not an option to use for feedback control
in practice. Note that measurements of the orientation of the end-effector cannot
be obtained using this type of tracking system.

Different types of observers for flexible joint robots have been proposed in the lit-
erature. In Jankovic [1995] a high gain observer is proposed using only the motor
angular positions and velocities as measurements. In Nicosia et al. [1988]; Tomei
[1990], and Nicosia and Tomei [1992] different observers are proposed where it
is assumed that the arm angular positions and/or the arm angular velocities are
measured. The drawback is that this is not the case for a commercial robot. The
solution is obviously to install rotational encoders on the arm side of the gearbox
and use them in the forward kinematic model. However, perfect measurements
from the encoders on the arm side and the desired angles will differ. Take the
first joint of the robot in Figure 2.2 as an example. The system from the motor



1.1 Background and Motivation

0.804
0.802 -
g 08|
= |
0.798 |-
0.796 - i
1.15 1.2 1.25 1.3 1.35
X [m]

(a) Estimated position using the forward kinematic model with the
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Figure 1.1: True path (grey) and estimated path (black) of the end-effector
using (a) the forward kinematic model with the measured motor angular po-
sitions, and (b) a particle filter using the motor angular positions and the ac-
celeration of the end-effector as measurements. The dynamical performance
of the estimated path in (a) is insufficient due to the flexible gearboxes be-
tween the measured motor angular positions and the end-effector. The esti-
mated path from a particle filter in (b) is much better.
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side of the gearbox to the end-effector can be seen as a three-mass system, or
more, and not a two-mass system. The motor encoder measures the position of
the first mass and the arm encoder measures the position of the second mass. The
flexibility between the second and third mass is due to flexibilities in joints two
and three. These flexibilities are in the same direction as joint one and cannot be
measured with encoders in joints two and three. Hence, there is still a need for
estimating the end-effector path. One way to obtain information about the oscil-
lations on the arm side can be to attach an accelerometer to the robot, e.g. at the
end-effector, which is the approach used in this thesis. The accelerometer that
has been used is a triaxial accelerometer from Crossbow Technology [Crossbow
Technology, 2004].

A natural question is, how to estimate the arm angular positions from the mea-
sured acceleration as well as the measured motor angular positions. A common
solution for this kind of problems is to apply sensor fusion methods for state
estimation. The acceleration of the end-effector as well as the measured motor
angular positions can be used as measurements in e.g. an extended Kalman filter
(EKF) or particle filter (PF). In Karlsson and Norrléf [2004, 2005], and Rigatos
[2009] the EKF and PF are evaluated on a flexible joint model using simulated
data only. The estimates from the EKF and PF are also compared with the theo-
retical Cramér-Rao lower bound in Karlsson and Norrl6f [2005] to see how good
the filters are. An evaluation of the EKF using experimental data is presented
in Henriksson et al. [2009], and in Jassemi-Zargani and Necsulescu [2002] with
different types of estimation models. A method using the measured acceleration
of the end-effector as input instead of using it as measurements is described in
De Luca et al. [2007]. The observer in this case is a linear dynamic observer us-
ing pole placement, which has been evaluated on experimental data. Estimating
the joint angles using a combination of measurements from accelerometers, gy-
roscopes and vision is presented in Jeon et al. [2009]. The so called kinematic
Kalman filter (KKF), which basically is a Kalman filter applied to a kinematic
model, is used for estimation and the results are verified on a planar two-link
robot. In Chen and Tomizuka [2014] the estimates are obtained using a two-step
procedure. First, rough estimates of the joint angles are obtained using the dy-
namical model and numerical differentiation. Second, the rough estimates are
used to decouple the complete system into smaller systems where the KKF is ap-
plied to improve the estimates. The method is verified experimentally on a six
degrees-of-freedom (DOF) manipulator. In Lertpiriyasuwat et al. [2000], and Li
and Chen [2001] the case with flexible link models, where the acceleration or the
position of the end-effector are measured, is presented.

From an on-line control perspective, it is important that the estimation method
performs in real-time. The sample time for industrial manipulators is usually on
the time scale of milliseconds, hence the real time requirements are very high,
and e.g. the PF can have difficulties to achieve real-time performance. However,
the estimated position of the end-effector can still be used in an off-line applica-
tion, such as iterative learning control (ILC), if the estimation method performs
slower than real-time. In Wallén et al. [2008] it is shown that motor side learn-
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ing is insufficient if the mechanical resonances are excited by the robot trajectory.
Instead estimation-based ILC has to be considered, as presented in Wallén et al.
[2009], to improve the performance even more. Other applications that can im-
prove if the estimated position of the end-effector is available, not necessarily on-
line, are system identification, supervision, diagnosis, and automatic controller
tuning.

Although the estimation method performs slower than real-time, it is interesting
to investigate the direct use of an accelerometer, attached to the end-effector, in
the feedback loop together with more accurate models. Model-based controllers
for flexible joints, modelled as a two-mass model with linear flexibility, have been
considered for many years [Sage et al., 1999; De Luca and Book, 2008]. Section 2.3
presents an overview of common controllers for industrial manipulators. As pre-
viously stated, a two mass model with linear flexibility does not represent the
actual robot structure sufficiently well, hence more complex models are needed
for control. Moberg et al. [2009] presents a benchmark model for a single joint
intended to be used for evaluation of new controllers. The joint is modelled as
a four mass model, where the first flexibility is given by a non-linear function,
and the only available measurement is the motor position. Four model based so-
lutions are presented. An interesting thing from Moberg et al. [2009] is that one
of the best controllers can be realised as a parallel PID controller. To improve
the control performance significantly, more measurements must be included. An
encoder measuring the arm angular position will of course improve the perfor-
mance. However, the position of all masses cannot be measured, hence all os-
cillations cannot be taken care of. Instead sensors attached to the end-effector,
such as an accelerometer, must be used to give more information. Feedback of
the end-effector acceleration has been considered in e.g. Kosuge et al. [1989] and
Xu and Han [2000], where a rigid joint model has been used. In Kosuge et al.
[1989] the non-linear robot model is linearised using feedback linearisation. For
controller synthesis the H,, methodology can be used. Song et al. [1992] and
Stout and Sawan [1992] uses a rigid joint model which is first linearised using
feedback linearisation. Second, the linearised model is used for design of an H,,
controller. A similar approach is used in Sage et al. [1997] where the model is
a linear flexible joint model and the motor positions are measured. Non-linear
H., methods applied to rigid joint manipulators are considered in Yim and Park
[1999]; Taveira et al. [2006]; Miyasato [2008] and Miyasato [2009]. For flexible
joint models the non-linear H,, approach is presented in Yeon and Park [2008]
and Lee et al. [2007].

1.2 Contributions

The main contributions in this thesis are i) how to estimate the position of the
end-effector using an accelerometer, and ii) control strategies using either the
estimated position or the accelerometer measurement directly.
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1.2.1 Included Publications

Paper A: Bayesian State Estimation of a Flexible Industrial Robot

A sensor fusion method for state estimation of a flexible industrial robot is pre-
sented in

Patrik Axelsson, Rickard Karlsson, and Mikael Norrlof. Bayesian state
estimation of a flexible industrial robot. Control Engineering Practice,
20(11):1220-1228, November 2012b.

By measuring the acceleration at the end-effector, the accuracy of the estimated
arm angular position, as well as the estimated position of the end-effector are
improved using the extended Kalman filter and the particle filter. In a simulation
study the influence of the accelerometer is investigated and the two filters are
compared to each other. The angular position performance is increased when the
accelerometer is used and the performance for the two filters is shown to be close
to the fundamental Cramér-Rao lower bound. The technique is also verified in
experiments on an ABB IRB4600 robot. The experimental results have also been
published in

Patrik Axelsson, Rickard Karlsson, and Mikael Norrlof. Tool position
estimation of a flexible industrial robot using recursive Bayesian meth-
ods. In Proceedings of the IEEE International Conference on Robotics
and Automation, pages 5234-5239, St. Paul, MN, USA, May 201 2a.

Paper B: Evaluation of Six Different Sensor Fusion Methods for an Industrial
Robot Using Experimental Data

Experimental evaluations for path estimation on an ABB IRB4600 robot are pre-
sented in

Patrik Axelsson. Evaluation of six different sensor fusion methods
for an industrial robot using experimental data. In Proceedings of
the 10th International IFAC Symposium on Robot Control, pages 126—
132, Dubrovnik, Croatia, September 2012.

Different observers using Bayesian techniques with different estimation models
are investigated. It is shown that there is no significant difference in performance
between the best observers. Instead, execution time, model complexities and
implementation issues have to be considered when choosing the method.

Paper C: Discrete-time Solutions to the Continuous-time Differential Lyapunov
Equation with Applications to Kalman Filtering

Over-sampling strategies for filtering of continuous-time stochastic processes are
analysed in

Patrik Axelsson and Fredrik Gustafsson. Discrete-time solutions to
the continuous-time differential Lyapunov equation with applications
to Kalman filtering. Submitted to IEEE Transactions on Automatic
Control, 2012,
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where a novel low-complexity analytical solution to the continuous-time differen-
tial Lyapunov equation (CDLE), that does not involve oversampling, is proposed.
The results are illustrated on Kalman filtering problems in both linear and non-
linear systems. Another approach to the discretisation problem is presented in
the related publication

Niklas Wahlstrom, Patrik Axelsson, and Fredrik Gustafsson. Discretiz-
ing stochastic dynamical systems using Lyapunov equations. Accep-
ted to the 19th IFAC World Congress, Cape Town, South Africa, 2014.

A method to calculate the covariance matrix for the discretised noise is proposed,
instead of solving the CDLE. The covariance matrix is given as the solution to
an algebraic Lyapunov equation. The same Lyapunov equation is a part of the
solution to the CDLE, which is presented in this thesis.

Paper D: ML Estimation of Process Noise Variance in Dynamic Systems

Parameter identification using the expectation maximisation algorithm, which
iteratively estimates the unobserved state sequence and the process noise covari-
ance matrix based on the observations of the process, is presented in

Patrik Axelsson, Umut Orguner, Fredrik Gustafsson, and Mikael Norr-
lof. ML estimation of process noise variance in dynamic systems. In
Proceedings of the 18th IFAC World Congress, pages 5609-5614, Mi-
lano, Italy, August/September 2011.

The extended Kalman smoother is the instrument to find the unobserved state
sequence, and the proposed method is compared to two alternative methods on
a simulated robot model.

Paper E: H_,-Controller Design Methods Applied to one Joint of a Flexible
Industrial Manipulator

Control of a flexible joint of an industrial manipulator using H,-design methods
is presented in

Patrik Axelsson, Anders Helmersson, and Mikael Norrlof. H, -con-
troller design methods applied to one joint of a flexible industrial ma-
nipulator. Accepted to the 19th IFAC World Congress, Cape Town,
South Africa, 2014b.

The considered design methods are i) mixed-H,, design, and ii) H,, loop shaping
design. Two different controller configurations are examined: one uses only the
actuator position, while the other uses the actuator position and the acceleration
of the end-effector. The four resulting controllers are compared to a standard PID
controller where only the actuator position is measured. Model order reduction
of the controllers is also briefly discussed.

Paper F: H_ -Synthesis Method for Control of Non-linear Flexible Joint Models

An H,-synthesis method for control of a flexible joint, with non-linear spring
characteristic, is proposed in



10 1 Introduction

Patrik Axelsson, Goele Pipeleers, Anders Helmersson, and Mikael No-
rrlof.  H,-synthesis method for control of non-linear flexible joint
models. Accepted to the 19th IFAC World Congress, Cape Town,
South Africa, 2014d.

The method is motivated by the assumption that the joint operates in a specific
stiffness region of the non-linear spring most of the time, hence, the performance
requirements are only valid in that region. However, the controller must stabilise
the system in all stiffness regions. The method is validated in simulations on a
two mass non-linear flexible joint model.

Paper G: Estimation-based Norm-optimal Iterative Learning Control

The norm-optimal iterative learning control (ILC) algorithm for linear systems is
in
Patrik Axelsson, Rickard Karlsson, and Mikael Norrlof. Estimation-

based norm-optimal iterative learning control. Submitted to Systems
& Control Letters, 2014c

extended to an estimation-based norm-optimal ILC algorithm, where the con-
trolled variables are not directly available as measurements. For linear time-
invariant systems with a stationary Kalman filter it is shown that the ILC design
is independent of the design of the Kalman filter. The algorithm is also extended
to non-linear state space models using linearisation techniques. Finally, stability
and convergence properties are derived.

Paper H: Controllability Aspects for Iterative Learning Control

The aspects of controllability in the iteration domain, for systems that are con-
trolled using ILC, are discussed in

Patrik Axelsson, Daniel Axehill, Torkel Glad, and Mikael Norrlof. Con-
trollability aspects for iterative learning control. Submitted to Inter-
national Journal of Control, 2014a.

A state space model in the iteration domain is proposed to support the discussion.
It is shown that it is more suitable to investigate if a system can follow a trajectory
instead of the ability to control the system to an arbitrary point in the state space.
This is known as target path controllability. A simulation study is also performed
to show how the ILC algorithm can be designed using the LQ-method. It is shown
that the control error can be reduced significantly using the LQ-method compared
to the norm-optimal approach.

1.2.2 Additional Publications

Related articles, which are not included in this thesis, are presented here with a
short description of the contributions.

Simulation results for the estimation problem are presented in the following two
publications
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Patrik Axelsson, Mikael Norrlof, Erik Wernholt, and Fredrik Gustafs-
son. Extended Kalman filter applied to industrial manipulators. In
Proceedings of Reglermotet, Lund, Sweden, June 2010,

Patrik Axelsson. A simulation study on the arm estimation of a joint
flexible 2 DOF robot arm. Technical Report LiTH-ISY-R-2926, Depart-
ment of Electrical Enginering, Linkdping University, SE-581 83 Lin-
koping, Sweden, December 2009,

where performance in case of uncertain dynamical model parameters as well as
uncertainties in the position and orientation of the accelerometer are studied. A
detailed description of the simulation model that has been used is given in

Patrik Axelsson. Simulation model of a 2 degrees of freedom indus-
trial manipulator. Technical Report LiTH-ISY-R-3020, Department
of Electrical Enginering, Linkdping University, SE-581 83 Linkoping,
Sweden, June 2011a.

Parts of the material in this thesis have previously been published in

Patrik Axelsson. On Sensor Fusion Applied to Industrial Manipula-
tors. Linkoping Studies in Science and Technology. Licentiate Thesis
No. 1511, Linkoping University, SE-581 83 Linkoping, Sweden, De-
cember 2011b.

Method to Estimate the Position and Orientation of a Triaxial Accelerometer
Mounted to an Industrial Robot

A method, used in Papers A and B, to find the orientation and position of a triaxial
accelerometer mounted on a six DOF industrial robot is proposed in

Patrik Axelsson and Mikael Norrlof. Method to estimate the position
and orientation of a triaxial accelerometer mounted to an industrial
manipulator. In Proceedings of the 10th International IFAC Sympo-
sium on Robot Control, pages 283-288, Dubrovnik, Croatia, Septem-
ber 2012.

Assume that the accelerometer is mounted on the robot according to Figure 1.2a.
The problem is to find:

(i) The internal sensor parameters and the orientation of the sensor.

(ii) The position of the accelerometer with respect to the robot end-effector co-
ordinate system.

The method consists of two consecutive steps, where the first is to estimate the
orientation of the accelerometer from static experiments. In the second step the
accelerometer position relative to the robot base is identified using accelerometer
readings. Identification of the orientation can be seen as finding a transforma-
tion from the actual coordinate system Ox,y,z, to a desired coordinate system
Ox,Ysz;, which can be seen in Figure 1.2b. The relation between Ox,y,z, and
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(a) The accelerometer and its actual (b) The accelerometer and the desired
coordinate system OX,y,Z,. coordinate system OXsYsZs.

Figure 1.2: The accelerometer mounted on the robot. The yellow rectangle
represents the tool or a weight and the black square on the yellow rectangle
is the accelerometer. The base coordinate system OXxyy; 2, of the robot is also
shown.

Ox,Y;z; is given by,
Ps = KRu/Spa + Py (11)

where p, is a vector in Ox,y,z,, p, is a vector in Ox;y,;z;, R/, is the rotation
matrix from Ox,y,z, to OX;y;z;, « is the accelerometer sensitivity and p, the
bias. When the unknown parameters in (1.1) have been found the position of
the accelerometer, expressed relative to the end-effector coordinate system, can
be identified. The position is identified using accelerometer readings when the
accelerometer moves in a circular path and where the accelerometer orientation
is kept constant in a path fixed coordinate system.

Estimation-based ILC using Particle Filter with Application to Industrial
Manipulators

In

Patrik Axelsson, Rickard Karlsson, and Mikael Norrlof. Estimation-
based ILC using particle filter with application to industrial manip-
ulators. In Proceedings of the IEEE/RS] International Conference
on Intelligent Robots and Systems, pages 1740-1745, Tokyo, Japan,
November 2013,

an estimation-based ILC algorithm is applied to a realistic industrial manipula-
tor model. By measuring the acceleration of the end-effector, the arm angular
position accuracy is improved when the measurements are fused with the motor
angular position observations using the extended Kalman filter, the unscented
Kalman filter, and the particle filter. In an extensive Monte Carlo simulation
study it is shown that the particle filter outperforms the other methods, see Fig-
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Figure 1.3: Results for estimation-based ILC using Bayesian state estimation.

ure 1.3a, and that the control error is substantially improved using the particle
filter estimate in the ILC algorithm, see Figure 1.3b.

Identification of Wear in a Robot Joint

The effects of wear to friction based on constant-speed friction data are studied
in the two papers

André Carvalho Bittencourt and Patrik Axelsson. Modeling and exper-
iment design for identification of wear in a robot joint under load and
temperature uncertainties based on friction data. IEEE/ASME Trans-
actions on Mechatronics, 2013. DOI: 10.1109/TMECH.2013.2293001,

André Carvalho Bittencourt, Patrik Axelsson, Ylva Jung, and Torgny
Brogardh. Modeling and identification of wear in a robot joint under
temperature uncertainties. In Proceedings of the 18th IFAC World
Congress, pages 10293-10299, Milano, Italy, August/September 2011.

It is shown how the effects of temperature and load uncertainties, see Figure 1.4a,
produce larger changes to friction than those caused by wear. Based on empirical
observations, an extended friction model is proposed to describe the effects of
speed, load, temperature and wear. A maximum likelihood wear estimator is pro-
posed, where it is assumed that an extended friction model and constant-speed
friction data are available. The distribution of the load uncertainties can be esti-
mated, hence the load can be marginalised away. The wear and temperature can
then be jointly estimated. The proposed method is evaluated in both extensive
simulations, see Figure 1.4b, and on experimental data. It is shown that reliable
wear estimates can be achieved even under load and temperature uncertainties.
Also, experiment design is considered in terms of an optimal selection of speed
points, where the friction data should be collected.
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Figure 1.4: Friction model dependent of temperature and load used for iden-
tification of wear in (a), and the results of the identification method based on
Monte Carlo simulations in (b).
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1.3 Thesis Outline

The thesis is divided into two parts. The first part contains background and
motivation of the thesis as well as a theoretical background. Chapter 1 presents
the problem and lists all included publications. Chapter 2 contains background
material for industrial manipulators, both modelling and control. The general
non-linear estimation problem is presented in Chapter 3 and several algorithms
for state and parameter estimation are presented. Chapter 4 introduces different
control strategies that have been used in the thesis. Finally, Chapter 5 concludes
the work in the thesis and gives suggestions for future work. The second part of
the thesis contains eight edited versions of selected papers.






Industrial Robots

NDUSTRIAL MANIPULATORS are used in tasks where high precision and/or high
speed are needed, such as spot welding, arc welding and laser cutting. Indus-
trial manipulators are also important for tasks where the environment is harmful
for humans, e.g. painting of car bodies. The robot needs therefore to be service-
able, have high precision, operate at high speeds and be robust to disturbances.
Good models and controllers are necessary for all of these requirements. There
are three types of robot structures for industrial robots. The most common is the
serial arm robot in Figure 2.1a, whereas the other two robot structures have par-
allel arms, see Figure 2.1b and parallel links, see Figure 2.1c. In this thesis, the
focus is on serial arm robots.

The chapter starts with an introduction to the concept of industrial robots in
Section 2.1. Section 2.2 presents a short overview of the kinematic and dynamic
models needed for control, and Section 2.3 discusses the control problem and
what types of control structures that are commonly used.

2.1 Introduction

In 1954, the American inventor George C. Devol applied for the first patents for
industrial robots, called the Programmed Article Transfer. Seven years later, in
1961, the patents were granted. Devol and Joseph Engelberger started the first
robot manufacturing company Unimation Inc. in 1956. The first operating in-
dustrial robot Unimate was launched in 1959 and the first robot installation was
performed in 1961 at General Motors plant in Trenton, New Jersey. Europe had
to wait until 1967 to get the first robot installation, which was carried out in
Sweden. In 1973, the Swedish company ASEA (current ABB) launched the first

17
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(a) The serial arm robot (b) The parallel arm (c) The parallel linkage
ABB IRB4600. robot ABB IRB360. robot ABB IRB660.

Figure 2.1: Three types of robots from ABB [ABB Robotics, 2014].

micro-processor controlled electrical robot called IRB6. [Nof, 1999; Westerlund,
2000] Since then, ABB has evolved to one of the largest manufactures of indus-
trial robots and robot systems. ABB has over 200,000 robots installed world wide
and the company was the first with over 100,000 sold robots. ABB introduced
the first paint robot in 1969 and in 1998 the fastest pick and place robot Flex-
Picker, IRB360 in Figure 2.1b, was launched [ABB Robotics, 2014]. Other big man-
ufactures are the German company KUKA, FANUC Robotics with over 200,000
installed robots [FANUC Robotics, 2014], and Motoman owned by the Japanese
company Yaskawa. KUKA built the first welding line with robots for Daimler-
Benz in 1971 and launched the first industrial robot with six electro mechanically
driven axes in 1973 [KUKA, 2014]. Motoman launched the first robot controller
where it was possible to control two robots in 1994, and a 13 axis dual arm robot
in 2006. Today Motoman has over 270,000 installed robots world wide and pro-
duces 20,000 robots per year [Motoman, 2014].

2.1.1 The Complete Robot System — An Overview

A general robot system includes the manipulator, computers and control electron-
ics. The desired motion of the robot is given in the user program. The program is
composed by motion commands, such as a linear or circular trajectory between
two points for the end-effector! in three dimensional space. Also the three di-
mensional orientation of the end-effector can be affected. In particular, the tool
centre point (TCP), defined somewhere on the end-effector, is of interest. For ex-
ample, in arc welding applications the TCP is defined as the tip of the welding
gun. The position and orientation, also known as the pose, are thus described in
a six dimensional space. The robot needs therefore at least six degrees of free-
dom (DOF) to be able to manoeuvre the end-effector to a desired position and
orientation. The pose is said to be defined in the task space whereas the joint

IThe end-effector is an equipment mounted at the end of the robot arm to interact with the envi-
ronment.
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Figure 2.2: The six DOF serial arm robot ABB IRB6600 where the arrows in-
dicate the joints [ABB Robotics, 2014].

angles are said to be in the joint space. The total volume the robot end-effector
can reach is called the workspace. The workspace is divided in the reachable
and the dexterous workspace. The reachable workspace includes all points the
end-effector can reach with some orientation. Whereas the dexterous workspace
includes all points the end-effector can reach with an arbitrary orientation. The
dexterous workspace is of course a subset of the reachable workspace. The mo-
tion can also be defined in the joint space, where each joint corresponds to one
DOF. That means that the robot moves between two sets of joint angles where
the path of the end-effector is implicit, meanwhile the velocity and acceleration
are considered. A serial robot is said to have n DOF if it has n joints. Figure 2.2
shows how the six joints for a six DOF robot can be defined. A desired velocity
and acceleration of the end-effector or the joints can also be specified in the user
program. It is also possible to manoeuvre the robot using a joystick, either the
position or orientation of the end-effector are controlled or the joint angles.

The control system, depicted in Figure 2.3, can be divided up into three main
parts; path planning, trajectory generation, and motion control. The three parts
will be discussed briefly. A more thorough description of the motion controller
will be addressed in Section 2.3.

The path planner defines, based on the user specifications, a geometrical path in
the task space, which is then converted to a geometrical path in the joint space
using the inverse kinematic model discussed in Section 2.2.1. If the user speci-
fications are expressed for the joints then a geometrical path is directly defined
in the joint space. Obstacle avoidance is also taken care of in the path planner.
Note that the path only includes geometrical properties and nothing about time
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specifications
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Figure 2.3: Block diagram of the robot control system.

dependencies such as velocity and acceleration.

The trajectory generator takes the geometrical path, which is defined in the path
planner, and the time dependencies. The time dependencies are defined by the
velocities and accelerations, which are specified by the user, but also limitations
on the actuators, such as the joint torques, for the particular robot are used. To
get a time dependent trajectory, that does not run into the physical limitations of
the robot, requires a dynamical model of the manipulator. The dynamical model
is discussed in Section 2.2.2. The problem to get the trajectory over time given
the limitations can be formulated as an optimisation problem, see e.g. Verscheure
et al. [2009] and Ardeshiri et al. [2011]. The output from the trajectory generator
is position, velocity and acceleration of the robot joints as a function of time,
which corresponds to the desired motion of the end-effector in the task space.

The motion controller uses the trajectories generated in the trajectory generator
for control of the actuators, which often are electrical motors. Different types of
control structures have been proposed in the literature. The most common ones
are independent joint control, feed-forward control, and feedback linearisation.
These control methods will be discussed in Section 2.3. The output from the
controller is the desired actuator torque for each actuator. Actually, the control
signals to the actuators are electrical currents. A torque controller is therefore
needed which takes the actuator torque from the controller and calculates the cor-
responding current. The torque controller is usually assumed to be significantly
faster than the robot dynamic and can therefore be omitted without influencing
the control performance.

The path planner, trajectory generator, and motion controller make an extensive
use of models. The models can be divided into kinematic and dynamic models,
where the kinematic models describe the relation between the pose of the end-
effector and the joint angles, see Section 2.2.1 for details. The dynamic models
describe the motion of the robot given the forces and torques acting on the robot,
see Section 2.2.2.

The remaining of this chapter presents modelling and control for industrial ma-
nipulators and the main references are Spong et al. [2006]; Sciavicco and Siciliano
[2000]; Siciliano and Khatib [2008]; Craig [1989], and Koztowski [1998].
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2.2 Modelling

2.2.1 Kinematic Models

The kinematics describe the motion of bodies relative to each other. The position,
velocity, acceleration and higher order time derivatives of the pose are studied
regardless the forces and torques acting upon the bodies. The kinematic rela-
tions contain therefore only the geometrical properties of the motion over time.
The kinematic relations can be derived from simple coordinate transformations
between different coordinate systems.

The kinematics for an industrial robot can be divided into two different parts.
The first consists of the relations between the known joint positions and the un-
known pose of the end-effector. The second is the opposite, consisting of the re-
lations between the known pose of the end-effector and unknown joint positions.
These are called forward and inverse kinematics, respectively.

Coordinate Transformation

Let the vector r; be fixed in frame j. The transformation to frame i can be written
as

r =1j+ Qjitj, (2.1)
where rj/; is the vector from the origin in frame i to the origin in frame j and
Qi is the rotation matrix representing the orientation of frame j with respect
to frame i. The rotation can be described using the so called Euler angles, which
are intuitive but can cause singularities. Instead, unit quaternions, which do not

suffer from singularities, can be used. They are however not as intuitive as Euler
angles. Another representation of a rotation is the axis/angle representation.

A serial industrial robot with n DOF consists of #n + 1 rigid links (bodies) attached
to each other in series. Let the links be numbered 0 to n, where link 7 is the
end-effector and link 0 is the world, and let coordinate frame i be fixed in link
i — 1. The pose of frame i relative to frame i — 1 is assumed to be known, i.e.,
risi_1 and Q;/;_1 are known. The transformation between two connected links
can therefore be written as

Y =i+ Qijicati (2.2)

using (2.1). Iterating (2.2) over all links will give a relation of the pose of link n
expressed in frame 0, which can be seen as the pose of the end-effector expressed
in the world frame, for a robot application. Equation (2.2) is described by a sum
and a matrix multiplication which can be rewritten as one matrix multiplication
if homogeneous coordinates are introduced according to

rh = (rll) (2.3)
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Equation (2.2) can now be reformulated as

Qiiy Tii
i =( 1(/)1 . rf = Hyji ). (2.4)

The advantage with this representation is that the relation of the pose of link n
expressed in link 0 can be written as only matrix multiplications according to

Q r
I_[Hz/zl h ( 61/0 n/0

h h
r, = 1 )rn =H,,r, (2.5
where r,/ represents the position and @,y the orientation of the end-effector
frame with respect to frame 0, r! is an arbitrary vector expressed in the end-
effector frame, and H;/;_; is given by (2.4).

h
rOZHl/O'H n/n 11'

Forward Kinematics

The forward kinematics for a n DOF industrial robot is the problem of determin-
ing the position and orientation of the end-effector frame relative to the world

frame given the joint angles q, = (q,ﬂ .. qun)T. Here the subscript a is used to
emphasis that the joint angles are described at the arm side of the gearbox, which
will be convenient when flexible models are introduced later in this chapter. The
world frame is a user defined frame where the robot is located, e.g. the industrial
floor. The position p € R3 is given in Cartesian coordinates and the orientation
¢ € R® is given in Euler angles, or quaternions if desirable. The forward kine-
matics has a unique solution for a serial robot, e.g. ABB IRB4600 in Figure 2.1a,
whereas there exist several solutions for a parallel arm robot such as ABB IRB360
in Figure 2.1b.

The kinematic relations can be written as a non-linear mapping according to

z - (g) - (q,) (26

where Y(q,) : R" — R is a non-linear function given by the homogeneous trans-
formation matrix

Q r
H,0 Z( 8/0 ri/o (2.7)

in (2.5), where the dependency of q, has been omitted. The position of the end-
effector frame, i.e., the first three rows in Y(q,), is given by r,/9 and the orienta-
tion of the end-effector frame, i.e., the last three rows in Y(q,), is given by Q9.
The construction of H,, i.e., determination of all the H;,;_; matrices in (2.4),
can be difficult for complex robot structures. A systematic way to assign coordi-
nate frames to simplify the derivation of H,,/, is the so-called Denavit-Hartenberg
(DH) convention [Denavit and Hartenberg, 1955].

Taking the derivative of (2.6) with respect to time gives a relation between the
joint velocities q,, the linear velocity v, and angular velocity w of the end-effector
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according to

= p v Y (qq) . .
z-(®)=(v)- = 3(a2)da (2.8
(¢) (w) 7q, o770 )
where J(q,) is the Jacobian matrix of Y(q,). The linear acceleration a and angular
acceleration 1 of the end-effector are given by the second time derivative of (2.6)
according to

[x]:

v a ) d .
= (w)= (1/)) =J(qa)qa+(ml(qa))qm (2.9)
where q, and ¢, are the joint velocities and accelerations, respectively. The time
derivative of the Jacobian can be written as

d v 9. .

El(qa) = W%zﬂ (2.10)

i=1

The Jacobian matrix is fundamental in robotics. Besides being useful for the cal-
culation of velocities and accelerations, it can also be used for

* identification of singular configurations,
* trajectory planning,

* transformation of forces and torques acting on the end-effector to the corre-
sponding joint torques.

The Jacobian in (2.8) is known as the analytical Jacobian. Another Jacobian is the
geometrical Jacobian. The difference between the analytical and geometrical Jaco-
bian affects only the angular velocity and acceleration. The geometrical Jacobian
is not considered in this work.

Inverse Kinematics

In practice, often the position p and orientation ¢ of the end-effector are given
by the operating program and the corresponding joint angles q, are required for
the control loop. An inverse kinematic model is needed in order to get the corre-
sponding joint angles. For a serial robot, the inverse kinematics is a substantially
harder problem which can have several solutions or no solutions at all, as op-
posed to the forward kinematics. For a parallel arm robot the inverse kinematics
is much easier and gives a unique solution. In principle, the non-linear system of
equations in (2.6) must be inverted, i.e.,

q. =Y (E) (2.11)

If an analytical solution does not exist, a numerical solver must be used in every
time step.

Given the joint angles q,, the linear velocity v and angular velocity w, i.e., &, then
the angular velocities q, can be calculated from (2.8) according to

40 =1 Hq)E, (2.12)
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if the Jacobian is square and non-singular. The Jacobian is a square matrix when
n = 6 since Y(q,) has six rows, three for the position and three for the orientation.
The singularity depends on the joint angles q,. The Jacobian is singular if the
robot is at the boundary of the work space, i.e., outstretched or retracted, or if
one or more axes are aligned. The intuitive explanation is that the robot has lost
one or more degrees of freedom when the Jacobian is singular. It is then not
possible to move the end-effector in all directions regardless of how large torques
the controller applies.

If the robot has less than six joints, i.e., the Jacobian has less than six columns,
then the inverse velocity kinematics has a solution if and only if

rank J(q,) = rank (](qa) E), (2.13)

that is, & lies in the range space of the Jacobian. If instead the robot has more
than six joints, then the inverse velocity kinematics is given by

40 =11(@)Z + (1-77(q0))(q0)) b, (2.14)

where J¥(q,) is the pseudo inverse [Mitra and Rao, 1971] of J(q,) and b € R" is an
arbitrary vector. See Spong et al. [2006] for more details.

The angular acceleration ¢, can be calculated in a similar way from (2.9), when
E, q,, and q, are known and if the Jacobian is invertible, according to

. d
da =77 () (: -= <J(qa))qa). (2.15)

2.2.2 Dynamic Models

The dynamics describes the motion of a body considering the forces and torques
causing the motion. The dynamic equations can be derived from the Newton-
Euler formulation or Lagrange’s equation, see e.g. Goldstein et al. [2002]. The
methods may differ in computational efficiency and structure but the outcome is
the same. Here, only Lagrange’s equation will be covered.

Rigid Link Model

For Lagrange’s equation the Lagrangian L(q, q) is defined as the difference be-
tween the kinetic and potential energies. The argument q to the Lagrangian is a
set of generalised coordinates. A system with n DOF can be described by n gen-

T
eralised coordinates q = (ql qn) , e.g. position, velocity, angle or angular
velocity that describe the system. The dynamic equations are given by Lagrange’s
equation

doUgq) Ilad) __

dt g, 9q; Y
where the Lagrangian L(q, q) = K(q, q)— P(q) is the difference between the kinetic
and potential energies, and 7; is the generalised force associated with g;. For an

industrial robot, the generalised coordinates are the joint angles q,, and the gen-

(2.16)
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eralised forces are the corresponding motor torques. The dynamical equations
for an industrial manipulator, given by Lagrange’s equation, can be summarised

by
M(qa)§s + C(qa 9a) + G(qa) = T(rln' (2.17)
where M(q,) is the inertia matrix, C(q,, q,) is the Coriolis- and centrifugal terms,

T
G(q,) is the gravitational torque and %, = (’cfjﬂ . T,‘;m) . Note that the equa-
tion is expressed on the arm side of the gearbox, that is, the applied motor torque
T,,; must be converted from the motor side to the arm side of the gearbox. This

is done by multiplication by the gear ratio #; > 1, according to
Tfni = Tmiti- (218)

Each link in the rigid body dynamics in (2.17) is described by a mass, three
lengths describing the geometry, three lengths describing the centre of mass and
six inertia parameters. The centre of gravity and the inertia are described in the
local coordinate system. Each link is thus described by 13 parameters that have
to be determined, see e.g. Koztowski [1998].

The model can also be extended with a friction torque F(4;) for each joint. A
classical model is

F(q4i) = fvidi + fei sign(q;), (2.19)
where f,; is the viscous friction and f; is the Coulomb friction for joint i. More
advanced models are the LuGre model [Astrom and Canudas de Wit, 2008] and
the Dahl model, see Dupont et al. [2002] for an overview. In this work, a smooth
static friction model, suggested in Feeny and Moon [1994], given by

F(d;) = foidi + fei (i + (1= pi) cosh™ (B4;)) tanh(azg),  (2.20)

is used. Here, the friction is only dependent on the velocity of the generalised
coordinates. In practice, the measured friction curve on a real robot shows a
dependency on the temperature and the dynamical load of the end-effector, as
described in Carvalho Bittencourt et al. [2010]; Carvalho Bittencourt and Gun-
narsson [2012].

Flexible Joint Model

In practice, the joints, specially the gearboxes, are flexible. These flexibilities are
distributed in nature but this can be simplified by considering a finite number
of flexible modes. With a reasonable accuracy, it is possible to model each joint
as a torsional spring and damper pair between the motor and arm side of the
gearbox, see Figure 2.4. The system now has 2n DOF and can be described by the
simplified flexible joint model

Ma(qa)qa + C(qw qa) + G(qa) = T(q% - qa) + D(qfn - qa)l (2-213-)

a

Mmq?n + F(q%) =Tm— T(q% - qa) - D(qﬁl - qﬂ)’ (2'21b)

where q, € R" are the arm angles, q%, € R" are the motor angles. The superscript
a indicates that the motor angles are expressed on the arm side of the gearbox,



26 2 Industrial Robots

Figure 2.4: Flexible joint model where the arm angular position q, is related
to the motor angular position q,, and motor torque t,, via the gear ratio y
and the spring-damper pair modelled by T(-) and D( -). The motor friction
is modelled by F( -).

i.e., g5, = qmi/n; where q,,; is the motor angle on the motor side of the gearbox
for joint i. The same applies for the motor torque 7%, according to (2.18). Further-
more, M,(q,) is the inertia matrix for the arms, M,,, is the inertia for the motors,
C(qu, q,) is the Coriolis- and centrifugal terms, G(q,) is the gravitational torque
and F(qj,) is the friction torque. Moreover, T(q% — q,) is the stiffness torque
and D(q%, — q,) is the damping torque. Both the stiffness and damping torque
can be modelled as linear or non-linear. The simplified flexible joint model as-
sumes that the couplings between the arms and motors are neglected, which is
valid if the gear ratio is high [Spong, 1987]. In the complete flexible joint model
the term S(q,)§¢% is added to (2.21a) and the term S'(q,)q, as well as a Coriolis-
and centrifugal term are added to (2.21b), where S(q,) is a strictly upper triangu-
lar matrix. A complete description of the simplified and complete flexible joint
model can be found in De Luca and Book [2008].

The flexible joint model described above assumes that the spring and damper
pairs are in the rotational direction. Another extension is to introduce multidi-
mensional spring and damper pairs in the joints to deal with flexibilities in other
directions than the rotational direction, where each dimension of the spring and
damper pairs corresponds to two DOF. If the links are flexible, then it can be mod-
elled by dividing each flexible link into several parts connected by multidimen-
sional spring and damper pairs. This leads to extra non-actuated joints, hence
more DOFs. This is known as the extended flexible joint model and a thorough
description can be found in Moberg et al. [2014].

2.3 Motion Control

Control of industrial manipulators is a challenging task. The robot is a strongly
coupled multivariate flexible system with non-linear dynamics which changes all
over the work space. In addition, other non-linearities such as hysteresis, back-
lash, friction, and joint flexibilities have to be taken care of. Furthermore, the
controlled variable is not measured directly and available sensors only provide
parts of the information important for control, e.g. the measured motor angu-
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Table 2.1: Performance for an ABB IRB6640 with a payload of 235kg and a
reach of 2.55m at 1.6 m/s according to ISO 9283 [ABB Robotics, 2013].

Pose accuracy 0.15mm
Pose repeatability 0.05mm
Settling time (within 0.4mm) | 0.19s

Path accuracy 2.17 mm
Path repeatability 0.66 mm

lar positions do not contain information about the oscillation of the end-effector,
hence good control of the TCP is difficult. The available measurements are also
affected by uncertainties such as quantisation errors and measurement noise, as
well as deterministic disturbances such as resolver ripple.

The requirements for controllers in modern industrial manipulators are that they
should provide high performance, despite the flexible and non-linear mechani-
cal structure, and at the same time, robustness to model uncertainties. Typical
requirements for the motion controller are presented in Table 2.1. In the typical
standard control configuration the actuator positions are the only measurements
used in the higher level control loop. At a lower level, in the drive system, the cur-
rents and voltages in the motors are measured to provide torque control for the
motors. In this thesis it is assumed that the lower level control loop is ideal, i.e.,
the control loop is significantly faster than the remaining system and the control
performance is sufficiently good not to affect the performance of the higher level
control loop. Adding extra sensors such as encoders measuring the joint angles
and/or accelerometers measuring the acceleration of the end-effector are possi-
ble extensions to the control problem. The use of an accelerometer for a single
flexible joint model, using H,-control methods, is investigated in Paper E.

In the literature, the three control structures i) independent joint control, ii) feed-
forward control, and iii) feedback linearisation are common and they will be sum-
marised in this section. Also, how the model complexity affects the control struc-
ture will be discussed. The survey Sage et al. [1999] and the references therein
describe how various models and control structures are combined for robust con-
trol. The survey includes both rigid and flexible joint models with or without
the actuator dynamics. The control structures are, among others, feedback lin-
earisation, PID controllers, linear and non-linear H,, methods, passivity based
controllers, and sliding mode controllers.

2.3.1 Independent Joint Control

In this control structure, each joint is, as the name suggests, controlled indepen-
dently from the other joints using PID controllers. The influence from the other
joints can be seen as disturbances. Usually the motor positions are measured and
used in the feedback loop to calculate the motor torque for the corresponding



28 2 Industrial Robots

joint. A common controller presented in the literature is the PD controller

u=Kp- (qd,m - qm) +Kp- (qd,m - qm): (2'22)

where Kp and Kp are diagonal matrices. Due to flexible joints, presented in
Section 2.2.2, other sensors such as encoders, measuring the arm angles, can be
used to improve the performance of the robot. However, using measurements
from the arm side of the gearbox to control the motor torque on the motor side
result in so called non-collocated control [Franklin et al., 2002]. Non-collocated
control problems are difficult to stabilise as Example 2.1 shows.

—— Example 2.1: Non-collocated control

For a single flexible joint in a horizontal plane, i.e., no gravity, it is fairly simple
to show that the motor velocity has to be present in the feedback loop in order
to stabilise the system [De Luca and Book, 2008]. For simplicity, no damping
and friction are present, which corresponds to the worst case. Let the dynamical
model be described by

Maqa -K- (qm - qa)
Mmq.m +K- (QW - Qa)

Using Laplace transformation, gives the two transfer functions

0, (2.23a)
7. (2.23b)

K

QE(S) B ]\/Ia]\/lm54 + (Ma + Mm)K52 T(S)’ (2243)
2

Qu(s) = WQAS)- (2.24b)

Four feedback loops will be analysed using different combinations of the arm
position and velocity and the motor position and velocity as measurements. It
will be assumed, without loss of generality, that both the arm and motor velocity
references are equal to zero. The controllers are:

1. feedback from arm position and arm velocity,

T =Kp (a4 — 9a) — Kp4a (2.25a)

2. feedback from arm position and motor velocity,

T =Kp (94,0 = 9a) = Kpgm (2.25b)

3. feedback from motor position and arm velocity,

T = Kp(qma — 9m) — Kpda (2.25¢)

4. feedback from motor position and motor velocity,

T =Kp(9m,a — 9m) — KpGm (2.25d)

The corresponding closed-loop transfer functions from Q, 4(s) to Q,(s) become
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1.
KK
P (2.26a)
M,M,,s*+ (M, + M,,)Ks?2 + KKps + KKp
2.
KK
P (2.26b)
M,M,,s* + KpM,s3 + (M, + M,,)Ks2 + KKps + KKp
3.
KK
- P (2.26¢)
M M, s*+ (M, + M,,,)K + KpM,)s?2 + KKps + KKp
4.
KK
P (2.26d)

M M,,s* + KpM,s® + (M, + M,,)K + KpM,)s? + KKps + KKp

Using Routh’s algorithm [Franklin et al., 2002] makes it possible to analyse the
stability conditions for the four controllers. Routh’s algorithm says that a system
is stable if and only if all the elements in the first column of the Routh array are
positive, see Franklin et al. [2002] for definition of the Routh array. The Routh
arrays for the four controllers show that

1. feedback from arm position and arm velocity is unstable independent of
the parameters Kp and Kp.

2. feedback from arm position and motor velocity is stable if Kp > 0 and 0 <
Kp < K.

3. feedback from motor position and arm velocity is unstable independent of
the parameters Kp and Kp.

4. feedback from motor position and motor velocity is stable for all Kp, Kp >
0.

It means that if sensors on the arm side of the gearbox are introduced, it is still
necessary to have the motor velocity included in the feedback loop in order to get
a stable system. If damping and friction are introduced, then the system can be
stabilised without need of the motor velocity but the stability margin can be very

low.
L

For a robot with more than one joint it is more complicated to prove stability. To
do so, Lyapunov stability and LaSalle’s theorem [Khalil, 2002] have to be used.
It can be shown that a rigid joint manipulator affected by gravity is stabilised
by a PD controller. However, in order to have the joint angles to converge to
the desired joint angles a gravity compensating term must be included in the
controller, see Chung et al. [2008] for details. Similar proofs for flexible joint
manipulators exist in e.g. De Luca and Book [2008].
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In Tomei [1991] it is shown that a flexible joint robot can be robustly stabilised
by a decentralised PD controller with motor positions as measurement. Robust-
ness with respect to model parameters is also discussed. Moreover, Rocco [1996]
presents stability results, including explicit stability regions, for a rigid joint ma-
nipulator using PID controllers.

2.3.2 Feed-forward Control

Independent joint control is insufficient for trajectory tracking. When the robot
should follow a desired trajectory, restrictions on the path are required not to
excite the flexibilities and a model-based controller is necessary. Introducing a
feed-forward controller that takes the dynamics of the robot into account makes
it possible to follow the desired trajectory without exciting the flexibilities. The
feed-forward controller, for a rigid joint manipulator, takes the form

ugs = M(qq)da + C(q4, 44) + G(qa), (2.27)

where M, a and G are the models used in the control system. Note that the feed-
forward controller requires that the reference signal q, is twice differentiable
with respect to time. If the model is exact and no disturbances are present, then
the feed-forward controller achieves perfect trajectory tracking. Model errors
and disturbances require that independent joint control also has to be present,
giving the total control signal as

u = M(qa)ds + C(qu 4a) + G(qa) +Kp - (s —q) + Kp - (44 — q) - (2.28)

feed-forward feedback

The feed-forward controller design is a more difficult problem for flexible joint
models. It depends on the complexity of the model, if for example the extended
flexible joint model is used, then a high-index differential algebraic equation
(DAE) has to be solved [Moberg and Hanssen, 2009].

2.3.3 Feedback Linearisation

Feedback linearisation [Khalil, 2002], also known as exact linearisation in the
control literature, is a control method similar to feed-forward. Instead of having
the dynamical model in feed-forward it is used in a static feedback loop to cancel
the non-linear terms. For a rigid joint manipulator, the feedback is given by

u = M(q)v+Clg,4)+ Gla) (229)
where q and q are the measured joint positions and velocities, and v is a signal
to chose. In case of no model mismatch, the feedback signal (2.29) gives the
decoupled system ¢ = v. The signal v can be obtained as the output from e.g. a
PD controller, i.e., independent joint control, according to

v=§4s+Kp-(qs —q)+Kp-(qs —9). (2.30)

The drawback is that it is computational demanding to calculate the inverse dy-
namical model in the feedback loop as well as the need of the full state trajec-
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tory. Robustness properties for the controller are discussed in Bascetta and Rocco
[2010].

For flexible joint models, the problem gets more involved, as was the case for the
feed-forward controller. In Spong [1987] it is shown that a static feedback loop
can linearise and decouple the model in (2.21) when the friction and damping
terms are excluded. The complete flexible joint model, i.e., when the matrix S(q,)
is included in (2.21), with the friction and damping terms excluded is proved to
be linearisable using a dynamic non-linear feedback law in De Luca and Lanari
[1995]. So far the damping and friction terms have been neglected. In De Luca
et al. [2005] it is shown that it is possible to achieve input-output linearisation
with a static or dynamic non-linear feedback loop. Input-output linearisation
does not eliminate all the non-linearities, instead the so called zero-dynamics
remains. However, the flexible joint model gives stable zero-dynamics, hence
input-output linearisation can be used for the model.






Estimation Theory

IFFERENT TECHNIQUES for non-linear estimation are presented in this chap-
ter. The estimation problem for the discrete time non-linear state space
model

Xpi1 = f(Xp, ug, wi; 6), (3.1a)
Yk = h(xg, ug, vi; 0), (3.1b)

is to find the state vector x; € R"x at time k and the unknown model parameters
6 given the measurements y; € R for i = 1,...,1. Here, I can be smaller, larger
or equal to k depending on the method that is used. In this work the focus is
on non-linear models with additive process noise wy; and measurement noise vy
given by

Xie1 = f (X ug; 0) + g(xx; O)wy, (3.2a)
Yk = h(xg, ug; 0) + vy, (3.2b)

where the probability density functions (PDFs) for the process noise p,(w; 8), and
measurement noise py(v; 8), are known except for some unknown parameters.

The estimation problem can be divided into the filtering problem where only
previous measurements up to the present time are available, i.e., I = k, see Sec-
tion 3.1 and the smoothing problem where both previous and future measure-
ments are available, i.e., I > k, see Section 3.2. For the case with estimation of the
unknown parameters 6, the expectation maximisation algorithm can be used as
described in Section 3.3.

33
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3.1 The Filtering Problem

The filtering problem can be seen as calculation/approximation of the posterior
density p(xklyi.x) using all measurements up to time k, where

Yik =1y -, Yib (3.3)
and the known conditional densities for the state transition and measurements,
i.e.,

Xpi1 ~ P(Xgs1 /%K), (3.4a)

Y ~ p(yr/xk), (3.4b)
which are given by the model (3.2). Using Bayes’ law,
[x)p(x
p(xly) = PYPPX)
p(y)
and the Markov property for the state space model,

, (3.5)

p(Xn|X1,...Xn_1) = P(Xn|xn—1): (3.6)

repeatedly, the optimal solution for the Bayesian inference [Jazwinski, 1970] can
be obtained according to
_ P(YkPi)p(xklyi:k-1)

p(xkly1:x) = POy (3.7a)

Pt lyi) = f Pk b )P (xely 1) dx, (3.7b)
Rx
where k=1,2,...,N and

p(Ykly1:k-1) = j p(yrlxi)p(Xkly1:k-1) dx. (3.7¢)
R"x

The solution to (3.7) can in most cases not be given by an analytical expression.
For the special case of linear dynamics, linear measurements and additive Gaus-
sian noise the Bayesian recursions in (3.7) have an analytical solution, which is
known as the Kalman filter (KF) [Kalman, 1960]. For non-linear and non-Gauss-
ian systems, the posterior density cannot in general be expressed with a finite
number of parameters. Instead approximative methods must be used. Here, two
approximative solutions are considered; the extended Kalman filter and the par-
ticle filter. Another approximative solution not considered here is the unscented
Kalman filter (UKF) [Julier et al., 1995].

3.1.1 The Extended Kalman Filter

The extended Kalman filter (EKF) [Anderson and Moore, 1979; Kailath et al.,
2000] solves the Bayesian recursions in (3.7) using a first order Taylor expansion
of the non-linear system equations around the previous estimate. The approxi-
mation is acceptable if the non-linearity is almost linear or if the signal to noise
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ratio (SNR) is high. The Taylor expansion requires derivatives of the non-linear
system equations, which can be obtained by symbolic or numeric differentiation.

The process noise w; and measurement noise vy are assumed to be Gaussian with
zero means and covariance matrices Qy and Ry, respectively. The time update,
Xijk-1 and Pyx_;, and the measurement update, Xjx and Py, for the EKF with the
non-linear model (3.2) can be derived relatively easy using the first order Taylor
approximation and the KF equations. The time and measurement updates are
presented in Algorithm 1, where the notation Xyx, Pyx, Xkjx—1 and Py_; denotes
estimates of the state vector x and covariance matrix P at time k using measure-
ments up to time k and k — 1, respectively. It is also possible to use a second order
Taylor approximation when the EKF equations are derived [Gustafsson, 2010].

Algorithm 1 The Extended Kalman Filter (EKF)

Initialisation
)20|0 =Xy (38&)
Poo = Py (3.8b)
Time update
Rifk-1 = f Rr—1jk-1, Ux=1) (3.9a)
Prio1 = B Pt Fl + G Qi 1Gl (3.9b)
If (x,up_q)
Fj_; = % (3.9¢)
X=R—1[k-1
Gr1 = §(Rp-1jk-1) (3.9d)
Measurement update
-1
Ky = Py Hy (HP g Hy + Ry (3.10a)
Xk = X1 + Ki (Yk = h(Xyjk-1, uk)) (3.10b)
Pi = (I = KgHy) Py (3.10¢)
Jh(x,
H, = % (3.10d)
X X=R|k-1

3.1.2 The Particle Filter

The particle filter (PF) [Doucet et al., 2001; Gordon et al., 1993; Arulampalam
et al., 2002] solves the Bayesian recursions using stochastic integration. The PF

approximates the posterior density p(xkly;. k) by a large set of N particles {xk )}f\] 10

where each particle has a relative weight wk , chosen such that ZNI wl(c) = 1. The
position and weight of each particle approximate the posterior density in such a
way that a high weight corresponds to a high probability at the point given by
the particle. The PF updates the particle location and the corresponding weights
recursively with each new observed measurement. The particle method for solv-
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ing the Bayesian recursion in (3.7) has been known for long but the particle filter
has in practice been inapplicable due to degeneracy of the particles. The problem
was solved in Gordon et al. [1993] by introducing a resampling step.

Compared to the EKF, the PF does not suffer from linearisation errors and can han-
dle non-Gaussian noise models. Hard constraints on the state variables can also
be incorporated into the estimation problem. Theoretical results show that the
approximated posterior density converges to the true density when the number
of particles tends to infinity, see e.g. Doucet et al. [2001]. The PF is summarised

in Algorithm 2, where the proposal density ppmp(xgcilllxgj),ykﬂ) can be chosen
arbitrary as long as it is possible to draw samples from it. For small SNR the

conditional prior of the state vector, i.e., p(xgjlllxg) ), is a good choice [Gordon
et al.,, 1993]. Using the conditional prior, the weight update can be written as
w;{l) = w;;_)lp(yk|x§:)). The optimal proposal should be to use the conditional den-
sity p(xk|x§21, yx) [Doucet et al., 2000]. The problem is that it is difficult to sample
from it and also to calculate the weights. In Paper A the optimal proposal den-
sity, approximated by an EKF [Doucet et al., 2000; Gustafsson, 2010}, is used for
experimental data. The approximated proposal density can be written as

()T

. . . . . t
PP el yi) N (xk; Fo )+ k¢ -y, (1) R + Q) )

where T denotes the pseudo-inverse, and where

. . : / -1
K| = Q1" (HECZ)Qk—ng)'T + Rk) , (3.11a)
i Jh
H - (xk) o (3.11b)
Xk y=pd )
)A,gcl) — h(f(xgz—)l)) (3.11¢)

The matrices in (3.11) are evaluated for each particle. The approximated optimal
proposal density gives a weight update according to

wi’ = w? plyed”), (3.12a)

| e
pyebe ) = N (v g B Qe H)T 4 Ry). (3.12b)

The state estimate for each sample k is often chosen as the minimum mean square
estimate

% = arg min E [(k = x¢)" (%6 = xp) ly1] (3.13)
Xk

which has the solution

N . .
Xie = B [xlyrx] = J xip (xXkly1:x) dxg ~ ng)ng)- (3.14)
B i-1
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Algorithm 2 The Particle Filter (PF)

1: Generate N samples {xg)}f\il from p(xg).

2: Compute
oo Py ped )
Yk T e D ()
PP OP(x;"Ix, 1, Vi)
and normalise, i.e., w;{ = /Z] 1wk)' i=1,...,N.

3: [Optional]. Generate a new set {x§< I | by resampling with replacement N

(i)}N with probability wk) = Pr{xﬁ( ) xgc } and let w =1/N,

times from {x; '};_,,
i=1,...,N.
4 Generate predictions from the proposal density

ch) "’ppmp(xkﬂlxk 'Yk+1) i=1,...,N.

5: Increase k and continue to step 2.

3.2 The Smoothing Problem

The smoothing problem is essentially the same as the filtering problem except
that future measurements are used instead of only measurements up to present
time k. In other words the smoothing problem can be seen as computation/ap-
proximation of the density p(xxly;.;), where I > k. The smoothing problem solves
the same equations as the filter problem except that future measurements are
available. Approximative solutions must be used here as well when the prob-
lem is non-linear and non-Gaussian. Different types of smoothing problems
are possible, e.g. fixed-lag, fixed-point and fixed-interval smoothing [Gustafsson,
2010]. In this thesis, the fixed-interval smoothing problem is considered and the
extended Kalman smoother (EKS) [Yu et al., 2004] is used. The fixed-interval
smoothing problem is an off-line method that uses all available measurements
y1.n.- The EKS, using the Rauch-Tung-Striebel formulas, is presented in Algo-
rithm 3.

3.3 The Expectation Maximisation Algorithm

The maximum likelihood (ML) method [Fisher, 1912, 1922] is a well known tool
for estimating unknown model parameters. The idea with the ML method is
to find the unknown parameters 6 such that the measurements y.5 become as
likely as possible. In other words,

A

6" = argmax pg(y1.n), (3.17)
0ecO

where pg(y1.n) is the PDF of the observations, i.e., the likelihood, parametrised
with the parameter 6. Usually, the logarithm of the likelihood PDF,

Lo(y1.n) = log pe(y1.n), (3.18)
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Algorithm 3 The Extended Kalman Smoother (EKS)

1: Run the EKF and store the time and measurement updates, Xii-1, Xk,
Pk|k,1and Pklk-
2: Initiate the backward time recursion,

K = XN (3.15a)
Py = P (3.15b)
3: Apply the backward time recursion for k =N -1,...,1,
Ky = Rk + PreBrPL (R — Reee) (3.16a)
Piin = Pagi + PiFLPL (P — Proate) Pty FiPiges (3.16D)
Fp = w ) (3.16¢)
X=Xk

is used and then the problem is to find the parameter 6 that maximises (3.18).
These two problems are equivalent since the logarithm is a monotonic function.
The solution can still be hard to find which has lead to the development of the
expectation maximisation (EM) algorithm [Dempster et al., 1977]. The EM algo-
rithm is an ML estimator for models with latent variables. Let all of the the latent
variables be denoted by Z.

Take now the joint log-likelihood function

Lo(y1:n, Z) =log pe(y1:n, Z) (3.19)
of the observed variables y;.5 and the latent variables Z. The latent variables are
unknown, hence the joint log-likelihood function cannot be calculated. Instead,
the expected value of (3.19) given y;.y has to be derived. The expected value is
given by

['(6;0)) = Eg, [log pe(y1:n, Z)ly1:N], (3.20)

where Eg,[-|-] is the conditional mean with respect to a PDF defined by the pa-
rameter 0;, and pg(-) means that the PDF is parametrised by 8. The sought pa-
rameter 6 is now given iteratively by

0,1 = argmax I'(0; ;). (3.21)
6O

The connection to the likelihood estimate 8" comes from the fact that [Dempster
etal., 1977] any 6, such that

F(9, 9[) > 1"(61;9,), (322)
implies that

Lo(yi:n) > Lo, (y1:N)- (3.23)
Hence, maximising I'(6; ;) provides a sequence 6, | = 1,2,..., which approxi-
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mates 8" better and better for every iteration. The EM algorithm is summarised
in Algorithm 4 and it can be stopped when

Lo, (y1:n) = Lo, (yi:n)| < €1, (3.24)
or when
10141 — 611 < €p. (3.25)

Example 3.1 shows how the EM algorithm can be used for identification of param-
eters in state space models.

Algorithm 4 The Expectation Maximisation (EM) Algorithm

1: Select an initial value 6 and set I = 0.
2: Expectation Step (E-step): Calculate

I'(6;0,) = Eg, [log pa(y1:N, Z)ly1:N]-

3: Maximisation Step (M-step): Compute
0,1 =argmax I'(6;6)).
6cO

4: If converged, stop. If not, set I =/ + 1 and go to step 2.

—— Example 3.1: The EM Algorithm for System Identification |
System identification is about to determine the unknown model parameters 6
given observations y;.y. Here the EM algorithm will be used, where all details
can be found in Gibson and Ninness [2005]. Consider the discrete-time state
space model

Xpy1 = AXg + Wi, (3.26a)
Vk = CXj + Vg, (3.26b)
where the process noise wy ~ N(0,0.1), the measurement noise w; ~ N (0,0.1)

and the unknown parameters are 6 = (a C)T. Following Algorithm 4 the first
is to choose the latent variables Z and then derive pg(y;.n, Z). The latent vari-
ables are simply chosen as Z = xy.5,1, and Bayes’ rule together with the Markov
property of the state space model (3.26) give

N
Po(yin: ¥1n1) = po(x1) | | Polesn, vilxi), (3.27)
k=1
where
0.1 O
patedn) ~ N (om0, £c= (%) m= (G 0 s

Using the definition of the normal distribution gives

N

N
_ 1 _
log pe(v1.n, X1.n41) o tr IT7! { E Ekxk]eT - Etrl'l 19[ g x,f
k=1 k=1

o', (3.29)

~——
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Table 3.1: Estimated model parameters d and ¢ in Example 3.1 averaged over
1000 mc simulations for different number of data points.

N | 50 100 500 1000 1500 5000 10000
0.2190 0.2479 0.2923 0.2874 0.2954 0.3002 0.3004

o D

0.5608 0.5788 0.5963 0.5965 0.5990 0.5980 0.6002

where all terms independent of 6 are omitted and tr is the trace operator. To
obtain I'(0; 8)) the expected value of log pg(v1.n, X1.n41) is calculated giving

o

N N
_ 1 _
[(6;0)) o« trIT 1[ZE91 [ékkam]]eT— Sl 16[ZE91 [x1p1n]
k=1 k=1

Here, the terms involving the expected values can be calculated using a Kalman
smoother, see Gibson and Ninness [2005] for details. Next step is to maximise
I(6;0).I1f

iEez [<ilvin] >0, (3.30)
k=1

then the Hessian of I'(0; 0;) is negative definite and the maximising argument
can be obtained by taking the derivative of I'(6; 0;), with respect to 0, equal to
zero. Derivative rules for the trace operator can be found in Litkepohl [1996].
The maximising argument is finally given by

N
0111 = Eg, [Z Ex Xk /Ee,
k=1

Identification of a and ¢ has been performed for a simulated system, with the
true values a* = 0.3 and ¢* = 0.6, for different values of the number of samples N

T
and 6, = (0.25 0.5) . Table 3.1 shows the estimates 4 and ¢ averaged over 1000

MC simulations, where it can be seen that the estimates approach the true val-
ues when the number of samples increases. Figure 3.1 shows how the estimates
converge for 10 MC simulations using N = 5000.

Y1:N

2
)

YI:Nl- (3.31)
k=1

0.7
N N
0.5 - -1
0.4 - -
K =

0.2 | | | |

EM iteration

Figure 3.1: The estimate  during 100 iterations for 10 MC simulations.




Control Theory

HREE DIFFERENT types of control methods, which are used in this thesis, will

be introduced in this chapter. First, the general H,-control method and

the loop shaping method, which are feedback controllers, are presented in Sec-

tions 4.1 and 4.2, respectively. Second, the idea of iterative learning control is
explained in Section 4.3, with focus on the norm-optimal design method.

41 H_ Control

For design of H,, controllers the system

z) _(Pii(s) Plz(S)) (W) (W)
= = P(s 4.1
(Y) (le(s) Py (s)/\u QM (4.1)
is considered, where w are the exogenous input signals (disturbances and refer-
ences), u is the control signal, y are the measurements and z are the exogenous

output signals. Using a controller u = K(s)y, see Figure 4.1, the system from w to
z can be written as

2= (Pia(s) + Pra(9)K ()L = Poa(9)K () Par (s)) w = Fy(P, K)w,  (4.2)

where F;(P, K) denotes the lower linear fractional transformation (LFT) [Skoges-
tad and Postletwaite, 2005]. The H,, controller is the controller that minimises

IF1(P, K)llo, = max & (Fy(P, K)(iw)), (4.3)

where () denotes the maximal singular value. It is not always necessary and
sometimes not even possible to find the optimal H,, controller. Instead, a subop-

41
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VJE P(s)[> ;
K(s)<——|

Figure 4.1: The system P(s) in connection with the controller K(s) symbolis-
ing the LFT F(P, K).

timal controller is derived such that
IF1(P, K)llo < 7, (4.4)

where y can be reduced iteratively until a satisfactory controller is obtained. The
aim is to get ¥ ~ 1, meaning that the disturbances are not magnified. A stabilis-
ing proper controller exists if a number of assumptions are fulfilled as discussed
in Skogestad and Postletwaite [2005]. Furthermore, efficient iterative algorithms
to find K(s), such that (4.4) is fulfilled, exist [Skogestad and Postletwaite, 2005;
Zhou et al., 1996]. Note that the resulting H,, controller has the same state di-
mension as P.

A common design method is to construct P(s) by augmenting the original system
y = G(s)u with the weighting functions Wy(s), Ws(s), and Wr(s), see Figure 4.2,
such that the system F;(P, K) can be written as

( )Gwuls )
Fi(P,K) = | =Wr(s)T(s (4.5)
Ws(s)S(s)

where S(s) = (I + G(s)K(s))™! is the sensitivity function, T(s) = I — S(s) is the
complementary sensitivity function, and Gyyu(s) = —K(s)(I + G(s)K(s))~! is the

transfer function from w to u. Equations (4.4) and (4 5) give
¢ (Wy(iw)Gyuliw)) <y, Vo, (4.6a)
6 (Wr(iw)T(iw)) < ¥, Vo, (4.6b)
6 (Ws(iw)S(iw)) < p, Vw. (4.6¢)

The transfers functions Gyy(s), S(s), and T(s) can now be shaped to satisfy the
requirements by choosing the weighting functions Wy(s), Ws(s), and Wr(s). The
aim is to get a value of y close to 1, which in general is hard to achieve and it
requires good insight in the design method as well as the system dynamics. Note
that the design process is a trade-off between the requirements of S(s) and T(s)
since S(s) + T(s) = I. For example, both S(s) and T(s) cannot be small at the same
frequency range. For more details about the design method, see e.g. Skogestad
and Postletwaite [2005]; Zhou et al. [1996].

4.1.1 Mixed-H_, Control

The mixed-H,, controller design [Pipeleers and Swevers, 2013; Zavari et al., 2012]
is a modification of the standard H,,-design method. Instead of choosing the
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Y
5
“

N
)

u > G(s) >? > Ws(s) —E> z3
K(s) | v y P(s)

Figure 4.2: The original system G(s) augmented with the weighting func-
tions Wy(s), Ws(s), and Wr(s), giving the system P(s). Moreover, the system
P(s) is in connection with the controller K(s).

weighting functions in (4.5) such that the H,-norm of all weighted transfer func-
tions satisfies (4.6), the modified method divides the problem into design con-
straints and design objectives. The controller can now be found as the solution
to

mi111<i(rr)1ise V4 (4.7a)
subject to  ||Wp(s)S(s)|l, < ¥ (4.7b)
IMs(5)S(s)lloe <1 (4.7¢)
[Wa(5)Gwu(s)lle <1 (4.7d)
IWr(s)T(s)llo < 1 (4.7¢)

where y not necessarily has to be close to 1. Here, the weighting function Wg(s)
has been replaced with Mg(s) and Wp(s) to separate the design constraints and
the design objectives. The method can be generalised to other control structures
and in its general form formulated as a multi-objective optimisation problem.
More details about the general form and how to solve the optimisation problem
are presented in Pipeleers and Swevers [2013]; Zavari et al. [2012].

4.2 Loop Shaping

The loop shaping method was first presented in McFarlane and Glover [1992]
and is based on robust stabilisation of a normalised coprime factorisation of the
system as described in Glover and McFarlane [1989]. Robust stabilisation of a
normalised coprime factorisation proceeds as follows. Let the system G(s) be
described by its left coprime factorisation G(s) = M(s)"' N(s), where M(s) and
N(s) are stable transfer functions. The set of perturbed plants

Gpls) = {(M(5) + Ana(s) (N9 + (s s [(An(s) Au)|_ <ef. (48

where Ays(s), and Ay (s) are stable unknown transfer functions representing the
uncertainties and € is the stability margin, is robustly stabilised by the controller
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K(s) if and only if the nominal feedback system is stable and

| (Kf)) (I- G(s)K(s))*M(s) Y| < é (4.9)

Given the state space model
x(t) = Ax(t) + Bu(t), (4.10a)
y(t) = Cx(t) + Du(t), (4.10Db)

then the maximal stability margin is given by

= 1+ p(XY) £ Vimin, (4.11)

where p(-) is the spectral radius. For a strictly proper model, i.e., D = 0, the two
matrices X and Y are the unique and positive definite solutions to the algebraic
Riccati equations

emax

AY +YAT - YC'CY +BB" = 0, (4.12a)
XA+A'X-XBB'X+C'C=0. (4.12b)

The two Riccati equations have a unique solution if the state space realisation
in (4.10) is minimal. A non-proper model, i.e., D # 0, also has an explicit solu-
tion but the corresponding Riccati equations are more extensive [Skogestad and
Postletwaite, 2005].

Given ¥ > ¥min, then a controller in closed form is given by

A-BBTX+)’LTYCTC | y?LTYCT
K(s) = T
B'X o

L=(1-y>)I+XY. (4.13b)

’ (4.13a)

From the definition of y,;, in (4.11) it holds that L becomes singular if y =
¥min, hence the controller K(s) cannot be obtained. Implementing the solution in
software is not difficult, however the MATLAB function ncfsyn, included in the
Robust Control Toolbox , is a good alternative to use.

In practice a value p < 4 is to aim for, otherwise the robustness properties become
too poor. Having y < 4 corresponds to € > 0.25 which means that a coprime
uncertainty of at least 25 % is achieved. For a SISO system, the stability margin
€ = 0.25 corresponds to 4.4 dB gain margin and 29° phase margin.

For loop shaping [McFarlane and Glover, 1992], the system G(s) is first pre- and
post-multiplied with weighting functions Wi (s) and W,(s), see Figure 4.3, such
that the shaped system G;(s) = W,(s)G(s)W;(s) has desired properties. The de-
sired properties are usually requirements on the cut-off frequency, the low fre-
quency gain, and the phase margin. The controller K (s) is then obtained us-
ing (4.13) applied on the system G;(s). The final controller K(s) is given by

K(s) = Wi(s)Ks(s)Wa(s). (4.14)
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Figure 4.3: Block diagram of the loop shaping procedure. The system G(s) is
pre- and post-multiplied with the weighting functions W (s) and W,(s). The
controller K(s) is obtained from (4.13) using the shaped system G;(s).

Note that the structure in Figure 4.3 for loop shaping can be rewritten as a stan-
dard H,, problem according to Figure 4.1, see Zhou et al. [1996] for details, and
the methods in Section 4.1 can be used for controller synthesis.

Loop shaping is a simple to use method which does not require any problem de-
pendent uncertainty model. Instead, the normalised coprime factorisation and
the perturbed plant in (4.8) give a quite general uncertainty description. Com-
pared to the H,, method described in Section 4.1, the solution does not require
any p iterations. The choice of the weighting functions Wj(s) and W,(s) re-
quires good understanding of the system to be controlled. The following working
progress can be useful

1. Scale G(s) in order to improve conditioning of the system. Also, reordering
the inputs and outputs such that the system is as diagonal as possible is to
prefer. How to do the reordering can be obtained using the relative gain
array (RGA) [Skogestad and Postletwaite, 2005].

2. Choose Wj(s) and W;(s). In Skogestad and Postletwaite [2005] a detailed de-
scription of how to chose the weighting functions is presented where W (s)
is composed as the product of several matrices which does different work,
such as shape of the singular values, alignment of the singular values at the
desired bandwidth, and control over the actuator usage.

3. Calculate K (s) using (4.13). Modify the weighting functions Wj(s) and
Wy (s) until y < 4.

4. Calculate the controller K(s) using (4.14), and test the performance. Modify
the weighting functions until the desired performance is achieved.

More details about the robust stabilisation of the normalised coprime factorisa-
tion, as well as the loop shaping synthesis can be found in e.g. Skogestad and
Postletwaite [2005]; Zhou et al. [1996].

—— Example 4.1: Loop shaping for a SISO system
Let the nominal SISO system be given by

100
G(s) = . 415
()= 371257+ 305 7 100 (4.15)
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(a) The Bode diagrams for the loop gain K(s)G(s), the shaped system
Gg(s), and the original system G(s).
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(b) Step response for the open loop system and the closed loop sys-
tem.

Figure 4.4: Results for Example 4.1.

Design a controller using loop shaping that attenuates the oscillations without
changing the cut-off frequency.

G(s) is a SISO system, hence it is possible to let W,(s) = 1 and only focus on Wy (s).
Integral action, i.e., a pole in the origin for W(s), is added to get an improvement
of the low frequency performance. Moreover, to improve the phase margin, a zero
in s = -5 is added to achieve a slope of -1, instead of -2, at the cut-off frequency
for the loop gain. The desired cut-off frequency is then achieved by multiplying
with 0.8. The weighting functions are finally given as

wl(s):o.85:5, Wy(s) = 1. (4.16)

The resulting controller, using ncfsyn, gives ¥ = 2.38, hence a stability margin
of 42 % is achieved. This corresponds to 7.8 dB gain margin and 50° phase mar-
gin. The Bode diagrams of the shaped system G,(s), the loop gain G(s)K(s), and
the original system G(s) are shown in Figure 4.4a. Step responses of the open
loop system and the closed loop system are presented in Figure 4.4b. It can be
seen that the controller attenuates the oscillations and keeps the time constant of
the open loop system.
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4.3 lterative Learning Control

Iterative learning control (ILC) is a way to improve the performance of systems
that perform the same task repeatedly. An industrial manipulator performing arc
welding or laser cutting is a good example of such a system. The performance of
the system is improved by adding a correction signal, calculated off-line, to the
system. At each iteration the correction signal is updated using the correction
signal and the control error, both from previous iteration. The ILC concept has
been used, to some extent, from the beginning of the 1970s. However, it was not
until 1984, when the three articles Arimoto et al. [1984a], Casalino and Bartolini
[1984] and Craig [1984] were published, independently from each other, that ILC
became a widespread idea. The name iterative learning control originates from
the article Arimoto et al. [1984b]. The following six assumptions are essential for
the concept of ILC [Arimoto, 1990]

1. Every iteration consists of a fixed number of samples.
2. A desired output r(t) is given a priori.

3. The system is initialised at the beginning of each iteration with the same
settings, i.e., x;(0) = x( for all k.

4. The system dynamics are invariant in the iteration domain.
5. The controlled variable z(¢) can be measured and used in the ILC algorithm.

6. The system dynamics are invertible, i.e., the desired output r(¢) corresponds
to a unique input u,(t).

In practice, it is not possible to initialise the system at the beginning of each
iteration with exact same settings. The system is, most probably, also affected
with input disturbances, induced during the iterations, and measurement noise.
Therefore, assumptions 3, 4, and 5 are relaxed and replaced with [Arimoto, 1998]

3’. The system is initialised at the beginning of each iteration in a neighbour-
hood of xg, i.e., ||xx(0) — x¢|| < €; for all k.

4’. The norm of the input disturbances, induced during the iterations, is bound-
ed.

5’. The controlled variable z;(t) can be measured with bounded noise and used
in the ILC algorithm.

Assumption 5 can be relaxed even more to the case where the controlled variable
zy(t) is not directly measured. Instead, the measurements yi(t) are used in an
estimation algorithm in order to estimate the controlled variable, which can be
used in the ILC algorithm. The idea of estimation-based ILC has been investigated
in Wallén et al. [2009], Wallén et al. [2011a], and Wallén et al. [2011b]. Paper G
deals with estimation-based ILC in combination with norm-optimal ILC.

Over the years, several surveys of the field of ILC have been published, e.g. Moore
[1998]; Ahn et al. [2007]; Bristow et al. [2006]. Moore [1998] covers the published
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literature up to 1998 and Ahn et al. [2007] continues from 1998 to 2004, with
more than 500 references.

4.3.1 System Description

Before discussing different ILC algorithms, as well as convergence and stability
properties, it is of interest to introduce a description of the system. The batch
formulations of the system dynamics and the ILC algorithm are very useful for
the ILC concept. Especially, the stability and convergence properties are simple
to show using the batch formulation. Design of ILC algorithms, such as the norm-
optimal ILC method, can also be performed using the batch formulation. Here,
only the time domain description, including the batch formulation, is presented
but frequency domain descriptions are sometimes used as well [Norrl6f and Gun-
narsson, 2002].

A general system is shown in Figure 4.5 with reference r(t), ILC signal uy(f), pro-
cess disturbance wy(t), and measurement disturbance vi(t) as inputs. There are
two types of output signals from the system, z(t) denotes the controlled variable
and y(t) the measured variable. All signals are at ILC iteration k and time f.
The system is not restricted to open loop systems. It is possible to design an ILC
algorithm for systems with an existing feedback loop. For example, this is impor-
tant for industrial manipulators, since it is not desirable to remove the feedback
loops which are stabilising the manipulator and have good disturbance rejection.
Instead, the ILC signal should only catch the small variations in the error to im-
prove the performance. The system is commonly described in discrete time by

zi(t) = Se(q)r(f) + Su(q)ur(t) + Sw(q)wi(t), (4.17a)
Yi(t) = zg(t) + Sy(q)vi(t), (4.17b)
where S.(9), Su(q), Sv(q), and S,,(q) are discrete-time transfer functions relating
the input signals to the output signals. The assumption here is that the controlled

signal is measured with noise. An extension to this assumption would be to have
dynamical couplings between z;(t) and y(t), which is a more realistic model.

For the batch formulation, also known as lifted system representation, let

r(0) u,(0)
r= ; eRN™, w = : e RN™, (4.18a)
r(N-1) u (N -1)
v (0) w(0)
Vi = : eRN™, W, = : e RN™, (4.18b)
vi(N -1) wi(N-1)
z4(0) ¥« (0)
7k = : eRV", ¥, = : e RN™, (4.18c¢)
zx(N - 1) yi(N —1)
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r(t) —>
up(t) —> s —> yk(t)
Vi (t) —> —> zy (1)
W (t) —>

Figure 4.5: System S with reference r(t), ILC input u(t), process distur-
bance w(t), measurement disturbance vy (t), measured variable yi(t) and
controlled variable z;(t) at ILC iteration k and time t.

which are known as super-vectors. The system (4.17) can then be written as
Zp = Srf + Suﬁk + Ska, (419a)
Y =Zk + Sy, (4.19Db)

where the matrices S;, Sy, Sy, and S, are Toeplitz matrices formed from the
impulse response coefficients for the corresponding transfer functions.

4.3.2 ILC Algorithms

A first order ILC algorithm can be formulated as
werr (1) = F (fue (i ter(DIYG'), £=0,...,N -1, (4.20)

where F () is a function that can be either linear or non-linear, and ey(t) = r(t) -
yk(t) is the tracking error, where r(t) is the reference and y(t) is the measured
signal. The main objective of ILC is to determine the function F(-) such that the
tracking error converges to zero, i.e.,

klim llex(t)ll, =0, t=0,...,N—-1, (4.21)

in as few iterations as possible. Since information from previous iterations, at all
time instances, is used, it is possible to use non-causal filtering. In practice, it
is not possible to make the error vanish completely for some systems. In litera-
ture, the reasons are mostly said to be due to disturbances, and if a model based
ILC algorithm has been used, also model errors affect the result. However, it can
also be a fundamental problem with the ILC concept that the error cannot vanish
completely. In Paper H the aspect of controllability, along the iterations, is con-
sidered and analysed. Convergence and stability of the ILC algorithm (4.20) are
important properties to be able to guarantee that the sequence of signals u(t),
k=0,1,... converges to a bounded correction signal, giving as low control error
as possible. Convergence and stability properties for the update of the correction
signal are presented in Section 4.3.3.

An update of the correction signal uy(t) according to (4.20) is known as a first
order ILC algorithm. Higher orders of ILC algorithms in the form

et (8 = F (el fu D ek e (DN o), (4.22)

for t = 0,...,N — 1 can also be possible to use. See for example Bien and Huh
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[1989]; Moore and YangQuan [2002]; Gunnarsson and Norrlof [2006].

A widely used ILC algorithm, here shown for SISO systems, is
ure1 (t) = Q(q) (i (t) + L(q)er (1)), (4.23)

where g is the time-shift operator, t is time and k is the ILC iteration index. The
filters O(q) and L(g) are linear, possible non-causal, filters. Letting Q(g) = 1 and
taking £(q) as the inverse of the system, makes the error converge to zero in one
iteration. Inverting a system can, if possible, be very complicated. Even for lin-
ear systems there exist difficulties. There are in principal three cases for linear
systems where an inverse does not exist or it has undesirable properties. First, if
the system has more poles than zeros, i.e., the system is strictly proper, then the
inverse cannot be realised. Second, a non-minimum phase system results in an
unstable inverse. Finally, systems with time delays are not possible to invert. In-
stead of inverting the system it is common to choose £(q) = 4%, where 0 < y < 1
and 0 a positive integer, are the design variables. The parameters y and ¢ are
chosen such that the stability criteria, see Section 4.3.3, is satisfied. Usually, o
is chosen as the time delay of the system. The filter Q(q) is introduced in order
to restrict the high frequency influence from the error. However, including O(q)
makes the ILC algorithm converging slower and to a non zero error. It is usually
enough to choose Q(g) as a simple low-pass filter of low order. The cut-off fre-
quency is chosen such that the bandwidth of the ILC algorithm is large enough
without letting through too much noise. In the design of the filters, there is a
trade-off between convergence speed, error reduction and plant knowledge used
in the design process.

Using the ILC algorithm (4.23) together with the system (4.17), where the distur-
bances are omitted, gives the ILC system

e (B) = Q(q)(1 = L(@)Su(@))ue(t) + Q(9)L(q)(1 = S,(q))r(b). (4.24)
The batch form of the ILC algorithm (4.23) is given by
Uy = Quy + L&), (4.25)
where
ex(0)
e =r-Yy; = . (4.26)
exr(N-1)

The matrices @ and £ in (4.25) can be formed from the impulse response coeffi-
cients of the filters in (4.23), or be the design variables directly. Together with the
system (4.19), where the disturbances are omitted, gives the ILC system in batch
form as

Upy = QI - LSy)uy + QL(I-S,)r. (4.27)

Other choices of ILC algorithms, such as the PD- and PI-type, among others, can
be found in e.g. Arimoto [1990]; Moore [1993]; Bien and Xu [1998]; Bristow et al.
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[2006]. In this thesis, the norm-optimal ILC algorithm [Amann et al., 1996a,b;
Gunnarsson and Norrl6f, 2001] is considered in Paper G. A short introduction to
norm-optimal ILC is given below.

Norm-optimal ILC

In this section, the norm-optimal ILC algorithm [Amann et al., 1996a,b; Gunnars-
son and Norrlof, 2001] for the case y(t) = zx(t), i.e., with the noise term in (4.17)
omitted, will be explained. Norm-optimal ILC using an estimate of the controlled
variable is considered in Paper G. The method solves

N-1
. 1
minimise > llexe1 (DI, + Mt (8)lly,
k+1(° _
t=0 (4.28)
1 N-1
subjectto — ) [lugsr(t) —we(Dl” < o,

—~
(==}

where ey, (t) = r(t) — zx,1 (t) is the error, W, € S7%, and W, € S7% are weight
matrices for the error and the ILC control signal, respectively. Let the Lagrangian
function [Nocedal and Wright, 2006] be defined by

N-1

1 !

Bluga (0, 1) £ 2 ) [lert (D, + gt (Dl + Alluges (1) = wr(DIF] = A6,
t=0

where A € R, is the Lagrange multiplier. The first-order sufficient conditions
for optimality are given by the Karush-Kuhn-Tucker (KKT) conditions [Nocedal
and Wright, 2006]. The solution can now be found using the KKT conditions for
a fixed value of o giving u}_,(¢) and A*. However, there is no predetermined
value of 0, hence 6 will be a tuning parameter. The solution procedure can be
simplified if it is assumed that A is a tuning parameter instead of 6. The solution
becomes simpler to obtain since there is no need to calculate an optimal value for
A. The KKT conditions implies now that the constraint in (4.28) will always be
satisfied with equality and where the value of 6 depends indirectly of the value
of A. Moreover, the value of 6 will decrease when number of iterations increase.
Finally, the optimum is obtained where the gradient of the Lagrangian function
with respect to uy, () equals zero. The second-order sufficient condition for
optimality is that the Hessian of the Lagrangian function with respect to ug,(t)
is greater than zero.

Using the super-vectors Uy, zy, and T from (4.18) gives

£ = 5 (el Weekor + 0L, Waiko + Ak~ 0) (@er ~50)], (429)
where €;,1 =T —7Z,; and

We =Iy ® W, € SN/, (4.30a)

W, = Iy @ W, e SN/ (4.30b)

Here, Iy is the N x N identity matrix and ® denotes the Kronecker product.
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In (4.29), the term including A6 is omitted since it does not depend on uy, ;.

The objective function (4.29) using the batch model in (4.19), without the noise
terms, and €, =T — Zy,; becomes

1_ _ _ T\ —
L= Eu{H (SIWeSu + Wy + Al)Tkyy — ((T-8)E)T WS, + AT} ) gy, (4.31)
where all terms independent of uy,; are omitted.

As mentioned before, the minimum is obtained when the gradient of [ equals
zero. The second-order sufficient condition is fulfilled, since the Hessian matrix
SIWeSy + Wy + Al is positive definite when W, € S,,, Wy, € S,,, and A €
R,. By solving the gradient with respect to uy,; equal to zero, and using (4.19)
together with €; = T —Z; to eliminate the terms involving T and x, gives

Uy =Q(ug + Ley), (4.32a)
Q =(SI WSy + Wy + AI)HAL + SIW,S,), (4.32b)
L=(A+S!W.Ss,)'sIw,, (4.32¢)

which is in the same form as (4.25). The matrices Q and £ should not be confused
with the filters Q(g) and L(g) in (4.23).

4.3.3 Convergence and Stability Properties

An important property for an ILC algorithm is that (4.20) is stable, i.e., ug, given
by (4.24) or (4.27), should converge to a bounded signal. The convergence and sta-
bility properties are, for simplicity, analysed using the batch formulation in (4.27)
of the ILC system. The ILC system is in fact a discrete-time linear system with the
iterations index as the time. It is therefore possible to use standard stability re-
sults from linear system theory, see e.g. Rugh [1996]. Two main results about
stability and convergence from Norrléf and Gunnarsson [2002] are stated in The-
orems 4.1 and 4.2. The reader is referred to Norrl6f and Gunnarsson [2002] for
the details and more results, e.g. for the frequency domain.

Theorem 4.1 (Stability [Norrl6f and Gunnarsson, 2002, Corollary 3]). The
system (4.27) is stable if and only if

p(QI - LSy)) < 1. (4.33)

Theorem 4.2 (Monotone convergence [Norrlof and Gunnarsson, 2002, Theo-
rem 9]). If the system (4.27) satisfies

a(Q(I-LSy)) <1, (4.34)
then the system is stable and
oo = Telly < T ey ol , (4.35)
with0 < C <1 and
U, = (I- QI —LS,) ' QL(I-S,)F. (4.36)
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Nothing can unfortunately be said about monotonicity for the control error. How-
ever, it is still possible to calculate what the stationary error becomes as stated in
Corollary 4.1.

Corollary 4.1. The stationary control error e, =T -y, is given by
oo = (I-Su(I- Q- £8,)) QL) (I-8,)r. (4.37)
Proof: The result follows from (4.36) and (4.19), without the noise terms. O

It should actually be the true systems S3(q) and S?(g) that are used in the ILC
algorithm (4.24) and (4.27) instead of S(g) and S;(q) when convergence and sta-
bility are investigated. However, the models must of course be used for obvious
reasons.

Norm-optimal ILC

For norm-optimal ILC the ILC system (4.27) is stable independent of the system
used. This special result is given in Theorem 4.3.

Theorem 4.3. (Stability and monotonic convergence for norm-optimal ILC):
The ILC system (4.27) is stable and monotonically convergent for all system de-
scriptions in (4.19) using Q and L from (4.32).

Proof: From Theorem 4.2 it holds that the iterative system (4.27) is stable and

converges monotonically if & (Q(I — LS,)) < 1. Using Q and L from (4.32) gives
-1

5(Q(I-LS,)) = & ((slwesu W, + A1) /\) <1 (4.38)

independent of the system description S, since W, € S,,, W, € S,,,and A €

R,. O

From Theorem 4.2 and Corollary 4.1 it holds that the asymptotic control signal
and error becomes

oo = (SIWeSu + Wy) SIW,(I-S,)E, (4.39)

€. = (1 Sy (SIWeS, + W) slwe) (1—S,)F. (4.40)
If W, =0and S, invertible then

T = (STWeSu) STWL(I-S,)E = . (1 - S,F, (4.41)

8. = (1 Sy (STWesy) slwe) (I-S,)F = 0. (4.42)

It means that the norm-optimal ILC algorithm coincide with inversion of the sys-
temin (4.19). The assumption about S, invertible is for most cases not applicable,
e.g. the number of inputs and outputs to S, must be equal. If S, is not invertible
but still W, = 0, then the norm-optimal ILC algorithm gives a weighted least
square solution of the inverse of the system with the weighting matrix W,. How-
ever, in general W, = 0 is used in order to handle model errors. Example 4.2
shows how the performance changes for different values of the weight matrices.
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—— Example 4.2: Norm-optimal ILC )
The performance of the norm-optimal ILC algorithm for different values of the
tuning parameters is analysed on a flexible joint model. The model in continuous-

T
time, using the state vector x = (qa da 9% q‘jﬂ) , is given by

0 1 0 0 0
I K

X = 0 a 0 a 0“ 1“ X + 0 T, (443)
k d __k _f+d ke
M, M, M,y M,y M,

with k = 8, d = 0.0924, M, = 0.0997, M,,, = 0.0525, f = 1.7825 k; = 0.61. A
discrete-time model is obtained using zero order hold sampling with a sample
time T, = 0.01s. The model is stabilised with a P-controller with gain 1, and
the output is chosen as q,. No process noise and measurement noise are present.
The reference signal is a step filtered four times through an FIR filter of length
n = 100 with all coefficients equal to 1/n. Five different configurations of the
norm-optimal ILC algorithm, shown in Table 4.1, are used with W, = 10% for all
five tests. The performance is evaluated using the relative reduction of the RMSE
in percent with respect to the error when no ILC signal is applied, i.e.,

1 & 1 &
pr =100 NZek(t)Z/ NZeo(t)z. (4.44)

t=1 t=1

The relative reduction of the RMSE is shown in Figure 4.6. It can be seen that the
convergence speed depends on A and that the absolute error depends on W,,.

Table 4.1: Parameters for the norm-optimal ILC algorithm in Example 4.2.
Test | 1 2 3 4 5
W, |01 001 1 01 0.1
A 1 1 1 01 10

i} T T I : . ‘ E
j: — Test 1 Test 2 | |
1 N Test 3 Test 4 | |
o\? 1 H --- Test5 |
[ PN Tttt emmm e |
100 1 l 1 l
0 20 40 60 80 100

ILC iteration k

Figure 4.6: Result for Example 4.2. Performance for norm-optimal ILC for
different settings of the parameters W, and A.




Concluding Remarks

HIS CHAPTER concludes the work in the thesis and gives a brief summary of
the included publications in Part II. Possible directions for future work are
also discussed.

5.1 Summary

New lightweight robot structures require more advanced controllers than be-
fore. Nowadays, the controllers are divided into a feedback controller and a
feed-forward controller. The feedback controller usually consists of a single PID
controller for each joint, and the feed-forward controller requires complex mod-
els of the robot structure. The more complex models, the more difficult will it
be to derive and succeed in implementing the controller in an industrial envi-
ronment, since a high-index DAE may have to be solved in real time. Instead,
other control structures are needed. This thesis presents some ideas in this topic,
based on sensor fusion methods for estimating the end-effector position. The
thesis also presents more advanced control methods to be used in the feedback
loop. The idea is not to remove the feed-forward controller completely since it
is needed for trajectory tracking. Instead, the intention is to improve the feed-
back controller such that less complex models may be used in the feed-forward
controller.

The estimation of the end-effector position is performed by combining a triaxial
accelerometer at the end-effector and the motor angular positions. The estima-
tion problem is formulated in a Bayesian setting, where the extended Kalman
filter (EKF) and the particle filter (PF) have been used (Papers A and B). Ex-
perimental data for a two degrees-of-freedom (DOF) manipulator has been used

55
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to evaluate the estimation performance. Different types of estimators are used,
where both the estimation model and the filter differ. The three observers with
the best performance are

a) an EKF using a non-linear dynamic model,
b) a particle filter using a linear dynamic model,

¢) an EKF with a non-linear model, where the acceleration of the end-effector
is used as an input instead of a measurement.

The performance of these three observers is very similar when considering the
path error. The execution time for a) was just above the real-time limit, for c) just
below the limit, and for b) in the order of hours. The time required for modelling
and implementation is also different for the three different observers. For b), most
of the time was spent on implementing the filter and get it to work, whereas most
of the time for a) was spent on modelling the dynamics. The estimation methods
in this thesis are general and can be extended to higher degrees of freedom robots
and additional sensors, such as gyroscopes and camera systems. The main effect
is more complex state space descriptions, a more problematic filter tuning, and
longer computation time.

In order to have good performance it is essential to have good models and good
knowledge of the measurement and process noise. The models are often given in
continuous time and the filters operate in discrete time. The problem with dis-
cretisation of the continuous-time models has been investigated (Paper C). More-
over, a method to estimate the process noise covariance matrix has been proposed
using the EM algorithm (Paper D). A great advantage with the EM method, com-
pared to other methods that have been suggested in the literature, is that the true
position of the end-effector is not needed.

Although most of the observers in this thesis, which have been implemented in
MATLAB, are not running in real-time it is possible to use the estimates in off-line
methods such as iterative learning control (ILC), system identification, and diag-
nosis. Clearly, the computation time can be decreased by optimising the MAT-
LAB code or by using another programming language, e.g. C++. The estimation-
based ILC framework, in particular for the norm-optimal ILC algorithm, has been
considered in the thesis (Paper G). The algorithm has been extended to incor-
porate the full probability density function of the estimated control quantity.
The estimation-based ILC has also made it possible to directly extend the norm-
optimal ILC algorithm to non-linear systems using linearisation. Moreover, out-
put controllability in the iteration domain, or target path controllability in the
time domain, for systems that are controlled using ILC, are important to investi-
gate (Paper H), to be able to draw conclusions about how the control error will
converge.

The direct use of the accelerometer measurements in the feedback loop has also
been considered with H,, methods (Paper E). It is shown that the performance
can be significantly increased using H,, controllers without the extra accelerome-
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ter measurements. However, the manipulator is usually described by non-linear
models, which makes it difficult to achieve a robust controller in the whole range
of operation. A method to handle the non-linear flexibility is proposed, where
robust stability is achieved for the whole range of operation, whereas robust per-
formance is only ensured for a specific linearisation point (Paper F). Adding more
sensors such as accelerometers at the end-effector increases the performance even
more, though the tuning of the controllers becomes more difficult.

5.2 Future Work

A natural continuation is to extend the estimation problem to cover the complete
six DOF robot. The sensor system could be extended with a gyroscope to get mea-
surements of the rotation of the end-effector and not only the translation. It may
not be possible to achieve good estimation performance if only one inertial mea-
surement unit (IMU) is mounted at the end-effector. Instead, several IMUs should
be mounted on well-chosen positions of the manipulator. Positioning of the IMUs
is a complicated problem in itself. The ideal solution would be to formulate an
optimisation problem to find the most informative positions of the IMUs to be
used for state estimation. Another measurement to consider is the arm angular
position, i.e., a measurement on the arm side of the gearbox.

A sensitivity analysis should also be considered to be able to find out how the
observers behave. It is interesting to see if the parameters that are crucial for the
performance can be adapted at the same time as the states are estimated. One
way could be to use the EM algorithm to estimate both the parameters and the
states. The EM algorithm is in its general form an off-line method, however on-
line solutions exist for special model structures.

It is also interesting to investigate the tuning of the noise covariance matrices in
more details, for example, by having time varying matrices that increase when
the path changes drastically. This can be done in several ways, e.g. find out when
the path changes using the measured data, or using the programmed path. An-
other solution could be to use the interacting multiple model (IMM) filter.

The H,-control methods should of course also be extended to multi-DOF manip-
ulators and experimental evaluations should be performed. Except for handling
non-linearities it becomes even more difficult for the user to choose the weights
compared to the single joint system considered in this thesis. To manage this in-
creased complexity for the user it can be interesting to formulate an optimisation
problem giving, in some sense, optimal weights that are used in the H,-synthesis
method.
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Abstract

A sensor fusion method for state estimation of a flexible industrial
robot is developed. By measuring the acceleration at the end-effector,
the accuracy of the arm angular position, as well as the estimated po-
sition of the end-effector are improved. The problem is formulated
in a Bayesian estimation framework and two solutions are proposed;
the extended Kalman filter and the particle filter. In a simulation
study on a realistic flexible industrial robot, the angular position per-
formance is shown to be close to the fundamental Cramér-Rao lower
bound. The technique is also verified in experiments on an ABB robot,
where the dynamic performance of the position for the end-effector is
significantly improved.

1 Introduction

Modern industrial robot control is usually based only on measurements from the
motor angles of the manipulator. However, the ultimate goal is to move the tool
according to a predefined path. In Gunnarsson et al. [2001] a method for im-
proving the absolute accuracy of a standard industrial manipulator is described,
where improved accuracy is achieved through identification of unknown or un-
certain parameters in the robot system, and applying the iterative learning con-
trol (ILC) method [Arimoto et al., 1984; Moore, 1993], using additional sensors
to measure the actual tool position. The aim of this paper is to evaluate Bayesian
estimation techniques for sensor fusion and to improve the estimate of the tool po-
sition from measurements of the acceleration at the end-effector. The improved
accuracy at the end-effector is needed in demanding applications such as laser
cutting, where low cost sensors such as accelerometers are a feasible choice.

Two Bayesian state estimation techniques, the extended Kalman filter (EKF) and
the particle filter (PF), are applied to a standard industrial manipulator and the
result is evaluated with respect to the tracking performance in terms of position
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Figure 1: The ABB IRB4600 robot with the accelerometer. The base coordi-
nate system, (Xy, i, Zy), and the coordinate system for the sensor (accelerom-
eter), (Xs, ¥s, Zs), are also shown.

accuracy of the tool. The main contribution in this paper compared to previous
papers in the field is the combination of: i) the evaluation of estimation results in
relation to the Cramér-Rao lower bound (CRLB); ii) the utilisation of motor angle
measurement and accelerometer measurement in the filters; iii) the experimental
evaluation on a commercial industrial robot, see Figure 1; iv) the extensive com-
parison of EKF and PF, and finally; v) the use of a manipulator model including a
complete model of the manipulator’s flexible modes. In addition, the utilisation
of the calibration of the accelerometer sensor from Axelsson and Norrlof [2012]
and the proposal density for the PF using an EKF [Doucet et al., 2000; Gustafsson,
2010] are non standard.

Traditionally, many non-linear Bayesian estimation problems are solved using the
EKF [Anderson and Moore, 1979; Kailath et al., 2000]. When the dynamic models
and measurements are highly non-linear and the measurement noise is not Gaus-
sian, linearised methods may not always be a good approach. The PF [Gordon
et al., 1993; Doucet et al., 2001] provides a general solution to many problems
where linearisation and Gaussian approximations are intractable or would yield
too low performance.

Bayesian techniques have traditionally been applied in mobile robot applications,
see e.g. Kwok et al. [2004]; Jensfelt [2001], and Doucet et al. [2001, Ch. 19]. In
the industrial robotics research area one example is Jassemi-Zargani and Nec-
sulescu [2002] where an EKF is used to improve the trajectory tracking for a rigid
2-degrees-of-freedom (DOF) robot using arm angle measurements and tool accel-
eration measurements. The extension to several DOF is presented in Quigley et al.
[2010], where the EKF is used on a robot manipulator with seven DOF and three
accelerometers. A method for accelerometer calibration with respect to orienta-
tion is also presented. The idea of combining a vision sensor, accelerometers,
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and gyros when estimating the tool position is explored in Jeon et al. [2009] for
a 2-DOF manipulator, using a kinematic Kalman filter. Another way is to use
the acceleration of the tool as an input instead of a measurement as described
in De Luca et al. [2007], where it is assumed that the friction is neglected, the
damping and spring are assumed linear. As a result, the estimation can be done
using a linear time invariant observer with dynamics based upon pole placement.
For flexible link robots the Kalman filter has been investigated in Li and Chen
[2001] for a single link, where the joint angle and the acceleration of the tool are
used as measurements. Moreover, in Lertpiriyasuwat et al. [2000] the extended
Kalman filter has been used for a two link manipulator using the joint angles and
the tool position as measurements. In both cases, the manipulator is operating
in a plane perpendicular to the gravity field. Sensor fusion techniques using par-
ticle filters have so far been applied to very few industrial robotic applications
[Rigatos, 2009; Karlsson and Norrl6f, 2004, 2005], and only using simulated data.
The PF method is also motivated since it provides the possibility to design control
laws and perform diagnosis in a much more advanced way, making use of the full
posterior probability density function (PDF). The PF also enables incorporation
of hard constraints on the system parameters, and it provides a benchmark for
simpler solutions, such as given by the EKF.

This paper extends the simulation studies introduced in Karlsson and Norrlof
[2004, 2005] with experimental results. A performance evaluation in a realistic
simulation environment for both the EKF and the PF is presented and it is anal-
ysed using the Cramér-Rao lower bound (CRLB) [Bergman, 1999; Kay, 1993]. In
addition to Karlsson and Norrlof [2004, 2005], experimental data, from a state
of the art industrial robot, is used for evaluation of the proposed methods. A
detailed description of the experimental setup is given and also modifications of
the PF for experimental data are presented.

The paper is organised as follows. In Section 2, the Bayesian theory estimation
is introduced and the concept of the CRLB is presented. The robot, estimation,
and sensor models, are presented in Section 3. The performance of the EKF and
of the PF are compared to the Cramér-Rao lower bound limit for simulated data
in Section 4. In Section 5 the experimental setup and performance are presented.
Finally, Section 6 contains conclusive remarks and future work.

2 Bayesian Estimation

Consider the discrete state-space model

Xk+1 = f(Xg, g, W), (1a)
Yk = h(xk) + i, (1b)
with state variables x; € R”, input signal u; and measurements y.; = {yi}i-‘zl,

with known probability density functions (PDFs) for the process noise, py (W),
and measurement noise py(v). The non-linear posterior prediction density p(xy,|
y1.x) and filtering density p(xk|y1.x) for the Bayesian inference [Jazwinski, 1970]
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are given by

P(Xpstlyre) = fp(xk+1|xk>p(xk|y1:k>dxk, (2a)
Rix
Py p(Xkly1:k-1)
X ) = . 2b
plxklyrix) p(Ykly1:k-1) (2b)

For the important special case of linear-Gaussian dynamics and linear-Gaussian
observations, the Kalman filter [Kalman, 1960] provides the solution. For non-
linear and non-Gaussian systems, the PDF cannot, in general, be expressed with
a finite number of parameters. Instead approximative methods are used. This
is usually done in two ways; either by approximating the system or by approxi-
mating the posterior PDF, see for instance, Sorenson [1988]; Arulampalam et al.
[2002]. Here, two different approaches of solving the Bayesian equations are con-
sidered; extended Kalman filter (EKF) , and particle filter (PF). The EKF will
solve the problem using a linearisation of the system and assuming Gaussian
noise. The PF on the other hand will approximately solve the Bayesian equations
by stochastic integration. Hence, no linearisation errors occur. The PF can also
handle non-Gaussian noise models where the PDFs are known only up to a nor-
malisation constant. Also, hard constraints on the state variables can easily be
incorporated in the estimation problem.

2.1 The Extended Kalman Filter (EKF)

For the special case of linear dynamics, linear measurements and additive Gaus-
sian noise, the Bayesian recursions in (2) have an analytical solution given by
the Kalman filter. For many non-linear problems, the noise assumptions and the
non-linearity are such that a linearised solution will be a good approximation.
This is the idea behind the EKF [Anderson and Moore, 1979; Kailath et al., 2000]
where the model is linearised around the previous estimate. The time update and
measurement update for the EKF are

TU- {xklkl = f(Rk-1jk-1, Uk-1, 0), (3)

Pyt = B Peopo1 Bl + Gro1 Qi1 Gy,
-1
Ky = Py Hf (HkPklk—lHZ + Rk) ,
MU: (&g = X1 + Kie (Yk - h(ﬁk|k—1)), (3b)
P = (I - KeHy) Pyge—1,

where the linearised matrices are given as

Fk—l = fo(x’ Up_1, 0)|X:)A(k_1‘k_1’ (43)
Gi-1 = Vi f (% w1, Wl (4b)
Hy = Veh(hesy, - (40)

In (3), Pgjx and Py;_; denote the covariance matrices for the estimation errors at
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time k given measurements up to time k and k — 1, and the noise covariances are
given as

Q. = Cov (wy), Ri = Cov (vy), (5)

where the process noise and measurement noise are assumed zero mean pro-
cesses.

2.2 The Particle Filter (PF)

The PF from Doucet et al. [2001]; Gordon et al. [1993]; Ristic et al. [2004] provides
an approximate solution to the discrete time Bayesian estimation problem formu-
lated in (2), by updating an approximate description of the posterior filtering
density. Let x; denote the state of the observed system and y;.x = {yi}f:1 be the
set of observed measurements until present time. The PF approximates the den-
sity p(xly1.x) by a large set of N samples (particles), {x;!)}f\il, where each particle

has an assigned relative weight, w;{l), chosen such that all weights sum to unity.

The location and weight of each particle reflect the value of the density in the
region of the state space. The PF updates the particle location in the state space
and the corresponding weights recursively with each new observed measurement.
Using the samples (particles) and the corresponding weights, the Bayesian equa-
tions can be approximately solved. To avoid divergence, a resampling step is
introduced [Gordon et al., 1993]. The PF is summarised in Algorithm 1, where

the proposal distribution pprOP(xglllxﬁf),ka) can be chosen arbitrary as long as
it is possible to draw samples from it.

The estimate for each time, k, is often chosen as the minimum mean square esti-
mate, i.e.,

N . .
Xk = E[x¢] = J Xk p(Xkly1:x) dxg ~ Zwy)xg), (6)
Rx i=1

but other choices, such as the ML-estimate, might be of interest. There exist
theoretical limits [Doucet et al., 2001] that the approximated PDF converges to
the true as the number of particles tends to infinity.

2.3 Cramér-Rao Lower Bound

When different estimators are used, it is fundamental to know the best possible
achievable performance. As mentioned previously, the PF will approach the true
PDF asymptotically. In practice only approximations are possible since the num-
ber of particles are finite. For other estimators, such as the EKF, it is important
to know how much the linearisation or model structure used, will affect the per-
formance. The Cramér-Rao lower bound (CRLB) is such a characteristic for the
second order moment [Kay, 1993; Cramér, 1946]. Here, only state-space models
with additive Gaussian noise are considered. The theoretical posterior CRLB for a
general dynamic system was derived in Van Trees [1968]; Tichavsky et al. [1998];
Bergman [1999]; Doucet et al. [2001]. Here a continuous-time system is consid-
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Algorithm 1 The Particle Filter (PF)

1: Generate N samples {xg)}fil from p(xg).

2: Compute ' o
w;(i) _ w(i_)1 P(Yklxgcl)()g(l(g))|xg<l)1)
Ppr"p( IXy_1, Yk)
and normalise, i.e., w; = /Z - wk ,i=1,...,N.

3: [Optional]. Generate a new set {xgc }f\il by resampling with replacement N

times from {Xy)}f‘\ip with probability u'/](:) = Pr{xgj*) = xgc } and let w =1/N,
i=1,...,N.
4 Generate predictions from the proposal density

ch) ~ pprop(xk+llxk ;yk+1), 1 = 1 N

5: Increase k and continue to step 2.

ered. By first linearising and then discretising the system, the fundamental limit
can in practice be calculated as the stationary solution for every k, P = P(x;*"F)
of the Riccati recursions in the EKF, where the linearisations are around the true
state trajectory, x,""*. Note that the approximation is fairly accurate for the in-
dustrial robot application due to a high sample rate and a small process noise.
The predicted value of the stationary covariance for each time ¢, i.e., for each

point in the state-space, x;""¥, is denoted P, and given as the solution to

’

P, = F(P, - KAP,)F" + GQG. (7)

where the linearised matrices F, G and H are evaluated around the true trajectory,

xiRUE, and
K =P,H"(HP,H' +R)". (8)
The CRLB limit can now be calculated as
P= f’p - I_(HI_’p, (9)

for each point along the true state-trajectory.

3 Dynamic Models

In this section a continuous-time 2-DOF robot model is discussed. The model is
simplified and transformed into discrete time, to be used by the EKF and PF. The
measurements are in both cases angle measurements from the motors, with or
without acceleration information from the end-effector.
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Figure 2: A 2-DOF robot model. The links are assumed to be rigid and the
joints are described by a two mass system connected by a spring damping
pair.

3.1 Robot Model

The robot model used in this work is a joint flexible two-axes model, see Figure 2.
The model corresponds to axes two and three of a serial 6-DOF industrial robot
like the one in Figure 1. A common assumption of the dynamics of the robot is
that the transmission can be approximated by two or three masses connected by
springs and dampers. The coefficients in the resulting model can be estimated
from an identification experiment, see for instance Koztowski [1998]. Here, it
will be assumed that the transmission can be modelled as a two mass system and
that the links are rigid.

The dynamic model can be described by a torque balance for the motors and the
arms. A common way to obtain the dynamic model in industrial robotics is to use
Lagrange’s equation as described in Sciavicco and Siciliano [2000]. The equation
describing the torque balance for the motor becomes

Mmqfn = _qufn _K'(q% _qa>_D'(qfn —qq) + Tfnr (10)
T
where M,, is the motor inertia matrix, q%, = (q}n/ql ‘1%1/’72) the motor angles

on the arm side of the gear box, q, = (q}l q2 )T the arm angles, 7; the gear ratio,
F,, the viscous friction at the motor, K the spring constant and D the damping
coefficient. No couplings between motor one and two implies that M,, is a di-
agonal matrix. The parameters F,,, K, and D are two by two diagonal matrices,
where the diagonal element ii corresponds to joint i. The inputs to the system

T . .
are the motor torques, 74, = (T}nm 7,31171) . The corresponding relation for the
arm becomes a non-linear equation

Mu(qa)qa + C(‘la; qu)qa + G(qu) =K- (qfn - qa) +D- (q?n - qa)r (11)

where M,(-) is the arm inertia matrix, C(-) the Coriolis- and centrifugal terms
and G(-) the gravitational torque. Here, it is assumed that there are no couplings
between the arms and motors, which is valid if the gear ratio is high [Spong,
1987]. A more detailed model of the robot should include non-linear friction
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such as Coulomb friction. An important extension would also be to model the
non-linear spring characteristics in the gearboxes. In general, the gearbox is less
stiff for torques close to zero and more stiff when high torques are applied. The ex-
tended flexible joint model proposed in Moberg [2010, Paper A], which improves
the control accuracy, can also be used.

3.2 Estimation Model

The estimation model has to reflect the dynamics in the true system. A straight
forward choice of estimation model is the state space equivalent of (10) and (11),
which gives a non-linear dynamic model with eight states (motor and arm an-
gular positions and velocities). This gives both a non-linear state space model
and a non-linear measurement model. Instead, a linear state space model is sug-
gested with arm angles, velocities and accelerations as state variables, in order
to simplify the time update for the PF. Note that the measurement model is still
non-linear in this case. Bias states compensating for measurement and model
errors have shown to improve the accuracy and are therefore also included. The
state vector is now given as

T AT &T T T\
xk:(qa,k Qi Gor Puk bp‘,k) , (12)

-
where q,; = (q;k qik) contains the arm angles from joint two and three in
Figure 1, q, is the angular velocity, ¢, is the angular acceleration, b, ; =

(b}n,k bi‘k)T contains the bias terms for the motor angles, and b = (bfl-j’k bé’k )T
contains the bias terms for the acceleration at time k. The bias states are used to
handle model errors in the measurement equation but also to handle drifts in the
measured signals, especially in the acceleration signals. The first three states are
given by a constant acceleration model discretised with zero order hold, and the
bias states are modelled as random walk. This yields the following state space
model in discrete time

Xiy1 = Fxp + Guug + Gy wy, (13a)
Yi = h(x) + vi, (13b)
where
2 T
I T,I T%21|0 o Ly
0 I TI |0 o 12
F=|0 0 1 |0 0] G,= =| 71 (14)
0 0 0 |I 0 o
0 0 0 |0 I 0

The input, ug, is the arm jerk reference, i.e., the differentiated arm angular acceler-
ation reference. The process noise, wy and measurement noise vy are considered
Gaussian with zero mean and covariances, Q; and Ry respectively. The sample
time is denoted T; and I and 0 are two by two identity and null matrices. The
sensor model (13b) is described in full detail in the next section.
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3.3 Sensor Model

The available measurements are motor angular positions from resolvers and the
acceleration of the end-effector from the accelerometer. The sensor model is thus
given by

quk""bmk)
h =" ~, 15
(x) ( Ny (15)

where qj, = (‘1,1”,1/’71 qfn’k/qz)T are the motor angles and p, = (pz pi)T is
the Cartesian acceleration vector in the accelerometer frame Ox,z,, see Figure 2.
With the simplified model described in Section 3.1, the motor angles q,, ; are
computed from (11) according to

q;lk =qgk Tt K_l : (Mu(qa,k)qa,k + G(qa,k) + C(qa,k’ qa,k)qa,k -D- (qfn,k - qa,k))-
(16)

Here, the motor angular velocity %, can be seen as an input signal to the sensor
model. The damping term D - (4%, — q,) is small compared to the other terms and
is therefore neglected.

The approach is similar to the one suggested in Gunnarsson and Norrl6f [2004],
which uses the relation given by (11) in the case when the system is scalar and
linear. The results presented here are more general, since a multi-variable non-
linear system is considered.

The acceleration in frame Ox,z;, in Figure 2, measured by the accelerometer, can
be expressed as

Pok = Rom(dar) (Py(qar) +80), (17)

where R/;(q, ) is the rotation matrix from Ox;zj, to Ox,z;, g, = (O g)T is the
gravity vector and p, ,(q,) is the second time derivative of the vector Ppx(dak)
see Figure 2. The vector p; ,(q,) is described by the forward kinematics [Sci-
avicco and Siciliano, 2000] which is a non-linear mapping from joint angles to
Cartesian coordinates, i.e.,

ACC
Pb,k(qa,k) = |acc| = Yacc(Qak) (18)
where xA¢C and zA°C are the position of the accelerometer expressed in frame

Oxyz;. Differentiation of p, , twice, with respect to time, gives

29
pb,k<qa,k>:JAcc(qa,k)qa,w[Z e aus (19)
9ok

i=1

where qiﬁ( is the ith element of q,; and Jacc(q,x) is the Jacobian of Yycc(qg k),
i.e.,

Jacc(da) = unTAcc(qa)~ (20)
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Both the position model (16) for the motors and the acceleration model (19) are
now a function of the state variables q, t, 4,k and G -

Remark 1. If the non-linear dynamics (10) and (11), are used, see Section 3.1, the relation
in (16) becomes linear since qfn « is a state variable. However, the relation in (19) becomes

more complex since ¢, x is no longer a state, but has to be computed using (11).

4 Analysis

4.1 Simulation Model

In order to perform Cramér-Rao lower bound (CRLB) analysis, the true robot tra-
jectory must be known. Hence, in practice this must be conducted in a simulation
environment since not all state variables are available as measurements. In the
sequel, the simulation model described in Karlsson and Norrlof [2005] is used,
where the CRLB analysis is compared to Monte Carlo simulations of the EKF and
PF.

4.2 Cramér-Rao Lower Bound Analysis of the Robot

In Section 2.3, the posterior Cramér-Rao lower bound (CRLB) was defined for
a general non-linear system with additive Gaussian noise. In this section the
focus is on the CRLB expression for the industrial robot presented in Section 3.1.
Solving for the acceleration in (11) yields

N - . . s
®(qa, 4a) = G = M,(qa) 1(K ’ (q% -q,)+D- (q?n - qq) - G(q,) — C(qy, qa)qa)-
Here, the motor angular velocity, q,,, is considered as an input signal, hence not

T . .
part of the state-vector, x(t) = (qI qr ql) . The system can be written in state
space form as

d [9a da
s =2 a|=rm=| a |, (21a)
4a A(9q 4 Ga)
d
A(Qe Qo o) = EK(qal qq) (21b)

The differentiation of « is performed symbolically, using the MATLAB symbolic
toolbox. According to Section 2.3 the CRLB is defined as the stationary Riccati
solution of the EKF around the true trajectory, x;""*. This is formulated for a
discrete-time system. Hence, the continuous-time robot model from (21) must be
discretised. This can be done by first linearising the system and then discretising
it [Gustafsson, 2010]. The differentiation is done numerically around the true

trajectory, to avoid the very complex symbolic gradient, and the result becomes,

0 I 0
A€ =V, fOX)|yyrrue = 0 0 I . 22
S g IA@4d)  IMA4d)  IA9GH) 22

Jq Jq Jq
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The desired discrete-time system matrix is now given as
F=eAT (23)

where T; is the sample time. The CRLB is presented in Figure 3.

4.3 Estimation Performance

The performance of the EKF and of the PF are compared against the Cramér-Rao
lower bound (CRLB) calculated in Section 4.2, using simulated data. The model
is implemented and simulated using the Robotics Toolbox [Corke, 1996] in MAT-
LAB Simulink. The robot is stabilised using a single PID-controller. The estima-
tion model and sensor model will not use the bias states described in Section 3.2
because no model errors or drift are included in the simulation. This means that
only the upper left corner of the matrices in (14) are used.

The simulation study is based mainly around the EKF approach, since it is a fast
method well suited for large Monte Carlo simulations. The PF is much slower,
therefore, a smaller Monte Carlo study is performed. The Monte Carlo simu-
lations use the following covariance matrices for the process and measurement
noise

0 10741 (24)

Q=4-10"°1, R= (10 °-1 0 )
The measurement covariance is basically given by the motor angle and accelerom-
eter uncertainty, and the process noise covariance is considered as a filter design
parameter. The system is simulated around the nominal trajectory and produces
different independent noise realisations for the measurement noise in each sim-
ulation. The continuous-time Simulink model of the robot is sampled in 1 kHz.

The data is then decimated to 100 Hz before any estimation method is applied.

The estimation performance is evaluated using the root mean square error (RMSE)
which is defined as

L N )\
RMSE(k) = | Z||x{RUE—$c;<])||§ , (25)
MC -
j=1

where N, is the number of Monte Carlo simulations, x;*"® is the true state vec-

tor and )22] ' is the estimated state vector in Monte Carlo simulation j. Here, the
state vector is divided up into states corresponding to angular position, angular
velocity, and angular acceleration, before (25) is used.

EKF In Figure 3 the root mean square error (RMSE) from 500 Monte Carlo sim-
ulations is compared to the CRLB limit, both with and without acceleration mea-
surements. The CRLB is computed as the square root of the trace for the covari-
ance matrix part corresponding to the angular states. As seen, the RMSE is close
the fundamental limit. The discrepancy is due to model errors, i.e., neglected
damping term and the fact that the estimator uses a simplified system matrix con-
sisting of integrators only. Also note that the accelerometer measurements reduce
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Table 1: The RMSE for arm-side angular position (q,), angular velocity (q,)
and angular acceleration (¢,), with and without the accelerometer, using
500 Monte Carlo simulations.

Accelerometer No accelerometer

RMSE q, 1.25-1075 2.18-107
RMSE q, 7.57-107 4.08-107
RMSE 4, 1.23-1073 3.91-1073

the estimation uncertainty. The results in Figure 3 are of course for the chosen
trajectory, but the acceleration values are not that large, so greater differences will
occur for larger accelerations. The RMSE, ignoring the initial transient is given in
Table 1 for both angular position, velocity and acceleration. The improvements
are substantial in angular position, but for control, the improvements in angular
velocity and acceleration are important.

PF The proposal density pPrOP(xgci+)1|x§:),yk+1) in Algorithm 1 is chosen as the

conditional prior of the state vector, i.e., p(xﬁ{’illxg)), and resampling is selected
every time, which gives

w = plye), =1, N. (26)
The particle filter is rather slow compared to the EKF for this model structure.
Hence, the given MATLAB implementation of the system is not well suited for
large Monte Carlo simulations. Instead, a small Monte Carlo study over a short
part of the trajectory used for the EKF case is considered. The PF and the EKF
are compared, and a small improvement in performance is noted. The result is
given in Figure 4. One explanation for the similar results between the EKF and
PF is that the non-linearities may not give a multi modal distribution, hence the
point estimates are quite similar. The advantage with the PF is that it can utilise
hard constraints on the state variables and it can also be used for control and
diagnosis where the full posterior PDF is available. Even though the PF is slow, it
gives more insight in the selection of simulation parameters than the EKF, where
the filter performance is more dependent on the ratio between the process and
measurement noise.

5 Experiments on an ABB IRB4600 Robot

The experiments were performed on an ABB IRB4600 industrial robot, like the
one seen in Figure 1. To illuminate the tracking capacity of the filters, the servo
tuning of the robot was not optimal, which introduces more oscillations in the
path. The accelerometer used in the experiments is the triaxial accelerometer
CXLO02LF3 from Crossbow Technology, which has a range of +2 g, and a sensitiv-
ity of 1 V/g [Crossbow Technology, 2004]. In the next sections the experimental
setup and results are given.
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Figure 3: Angular position RMSE from 500 Monte Carlo simulations using
the EKF with and without accelerometer sensor are compared to the CRLB
limit for every time, i.e., the square root of the trace of the angular position
from the time-varying CRLB covariance.
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Figure 4: EKF and PF angular position RMSE with external accelerometer
signal from 20 Monte Carlo simulations.
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Figure 5: The path start at the lower left corner and is counter-clockwise. A
laser tracking system from Leica Geosystems has been used to measure the
true tool position (solid). The estimated tool position using the EKF (dashed)
and YTCP(qfn’k) (dash-dot) are also shown.

5.1 Experimental Setup

The orientation and position of the accelerometer were estimated using the meth-
od described in Axelsson and Norrlof [2012]. All measured signals, i.e., accel-
eration, motor angles and arm angular acceleration reference, are synchronous
and sampled with a rate of 2kHz. The accelerometer measurements are filtered
with a low pass filter before any estimation method is applied to better reflect
the tool movement. The path used in the evaluation is illustrated in Figure 5,
and it is programmed such that only joints two and three are moved. Moreover,
the wrist is configured such that the couplings to joint two and three are min-
imised. It is not possible to get measurements of the true state variables x; "%, as
is the case for the simulation, instead, the true trajectory of the end-effector, more
precisely the tool centre point (TCP), x;“" and z;, is used for evaluation. The
true trajectory is measured using a laser tracking system from Leica Geosystems.
The tracking system has an accuracy of 0.0l mm/m and a sample rate of 1kHz
[Leica Geosystems, 2008]. The measured tool position is however not synchro-
nised with the other measured signals, i.e., a manual synchronisation is therefore
needed, which can introduce small errors. Another source of error is the accuracy
of the programmed TCP in the control system of the robot. The estimated data
is therefore aligned with the measured position to avoid any static errors. The
alignment is performed using a least square fit between the estimated position
and the measured position.



5 Experiments on an ABB IRB4600 Robot 89

5.2 Experimental Results

The only measured quantity to compare the estimates with is the measured tool
position, as was mentioned in Section 5.1. Therefore, the estimated arm angles
are used to compute an estimate of the TCP using the kinematic relation, i.e.,

{TCP
(2TCP) = TTCP(Qa,k)’ (27)

where q, ; is the result from the EKF or the PF. Another simple way to estimate
the tool position is to use the forward kinematic applied to the motor angles !, i.e.,
Yrcp(qy, ;). In the evaluation study the estimates from the EKF, PF, and Yrcp(qy, ;)
are compared to measurements from the Leica system. When computing the 2-
norm of the RMSE the first 0.125 seconds are disregarded in order to evaluate the
tracking performance only, and not include filter transients.

In the evaluation of the experiment, the focus is on position error only since the
Leica laser reference system measures position only. However, the estimation
technique presented is general, so the velocity estimates will be improved as well,
which is important for many control applications. In simulations this has been
verified, see Section 4.3 and Table 1. Since the position is based on integrating the
velocity model, this will in general be true when applied to experimental data as
well. However, the current measurement system cannot be used to verify this.

EKF Figure 5 shows that the estimated paths follow the true path. The perfor-
mance of the estimates is better shown in Figures 6 and 7, where the four sides are
magnified. At first, it can be noticed that TTCP(‘IZ,,k) cannot estimate the oscilla-
tions of the true path. This is not a surprise since the oscillations originates from
the flexibilities in the gear boxes which are not taken care of in this straightfor-
ward way to estimate the TCP. However, as seen the accelerometer based sensor
fusion method performs very well. It can also be noticed that the EKF estimate
goes somewhat past the corners before it changes direction. An explanation to
this phenomena can be that the jerk reference is used as an input to the estima-
tion model. The jerk reference does not coincide with the actual jerk as a result
of model errors and control performance. The initial transient for the EKF, due
to incorrect initialisation of the filter, rapidly approaches the true path. In this
case TTCP(qfﬂ’k) starts near the true path, but TTCP(QZ,,k) can start further away for
another path. The position RMSE is presented in Figure 8, where the EKF with ac-
celeration measurements shows a significantly improve in the performance. The
2-norm of the RMSE? for the EKF is reduced by 25 % compared to Yrce(qy, ;). This
is based on the single experimental trajectory, but the result is in accordance with
the simulation result and the theoretical calculations. Figure 8 also shows that the
EKF converges fast. The MATLAB implementation of the EKF is almost real-time,
and without losing performance the measurements can be slightly decimated (to
approximately 200 Hz), yielding faster than real-time calculations.

IThe motor angles are first transformed to the arm side of the gear box via the gear ratio.
2The RMSE is computed without considering the first 0.125 seconds where the EKF has a transient
behavior.
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Figure 6: The top side (upper diagram) and bottom side (lower diagram) of
the square path in Figure 5 for the true tool position (solid) and tool position
estimates using the EKF (dashed) and TTCP(q}“ﬂ’k) (dash-dot).
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Figure 7: The left side (left diagram) and right side (right diagram) of the
square path in Figure 5 for the true tool position (solid) and tool position
estimates using the EKF (dashed) and YTCP(qfn’k) (dash-dot).
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Figure 8: Tool position RMSE for the EKF (dashed) and TTCP(q;’k) (dash-dot).
The 2-norm of the RMSE-signals, without the first 0.125 seconds, are 0.1246
and 0.1655 for the EKF and TTCP(qfn’k), respectively.

PF The proposal density used during the simulation did not work properly for
the experimental data due to a high signal to noise ratio (SNR) and also model
errors. One could use an optimal proposal density [Doucet et al., 2000; Gustafs-
son, 2010] but the problem is that it is difficult to sample from that. Instead, the
proposal density is approximated using an EKF, [Doucet et al., 2000; Gustafsson,
2010]

pPoP(xlx\” Ly = M (F )+ Ky 90, @aVRIEY Q)N (28)

where 1 denotes the pseudo-inverse, and where the matrices are assumed to be
evaluated for each particle state.

The result of the PF compared to the EKF can be found in Figure 9 and Figure 10.
The PF performs better in the corners, i.e., the estimated path does not go past
the corners before it changes. The motive that the PF can handle the problem
with the jerk input better than the EKF can be that the particle cloud covers a
larger area of the state space. The PF estimate is also closer to the true path, at
least at the vertical sides. Figure 11 shows the RMSE for the PF which is below the
RMSE for the EKF most of the time. The resulting 2-norm of the RMSE for the PF
is 0.0818, which is approximately 66 % of the EKF and 49 % of Yrcp(q,, ;). Note
that the transients are not included, i.e., the first 0.125 seconds are removed. The
PF converges much faster than the EKF as can be seen clearly in Figure 11. The
PF in the proposed implementation is far from real-time and the bias states are
needed to control the model errors.
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Figure 9: The top side (upper diagram) and bottom side (lower diagram) of
the square path in Figure 5 for the true tool position (solid) and tool position
estimates using the EKF (dashed) and the PF (dash-dot).
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Figure 11: Tool position RMSE for the EKF (dashed) and the PF (dash-dot).
The 2-norm of the RMSE-signals, without the first 0.125 seconds, are 0.1246
and 0.0818 for the EKF and the PF, respectively.

6 Conclusions and Future Work

A sensor fusion approach to find estimates of the tool position, velocity, and accel-
eration by combining a triaxial accelerometer at the end-effector and the measure-
ments from the motor angles of an industrial robot is presented. The estimation is
formulated as a Bayesian problem and two solutions are proposed; the extended
Kalman filter and the particle filter. The algorithms were tested on simulated
data from a realistic robot model as well as on experimental data.

Sufficiently accurate estimates are produced for simulated data, where the per-
formance both with and without accelerometer measurements are close to the
fundamental Cramér-Rao lower bound limit in Monte Carlo simulations. The
dynamic performance for experimental data is also significantly better using the
accelerometer method. The velocity estimates are also proven to be much more

accurate when the filter uses information from the accelerometer. This is impor-
tant for control design in order to give a well damped response at the robot arm.

Since the intended use of the estimates is to improve position control using an
off-line method, like iterative learning control, there are no real-time issues us-
ing the computational demanding particle filter algorithm, however the extended
Kalman filter runs in real-time in MATLAB. The estimation methods presented in
this paper are general and can be extended to higher degrees of freedom robots
and additional sensors, such as gyros and camera systems. The main effect is
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a larger state space model giving more time-consuming calculations and also a
more complex measurement equation. The most time-consuming step in the EKF
is the matrix multiplications FkPk|kFZ- The two matrix multiplications require in
total 4n3 flops. For example, going from two to six DOF increases the computa-
tional cost with a factor of 27. For the PF it is not as easy to give a description of
the increased computational complexity.
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Abstract

Experimental evaluations for path estimation are performed on an
ABB IRB4600 robot. Different observers using Bayesian techniques
with different estimation models are proposed. The estimated paths
are compared to the true path measured by a laser tracking system.
There is no significant difference in performance between the six ob-
servers. Instead, execution time, model complexities and implemen-
tation issues have to be considered when choosing the method.

1 Introduction

The first industrial robots were big and heavy with rigid links and joints. The
development of new robot models has been focused on increasing the perfor-
mance along with cost reduction, safety improvement and introduction of new
functionalities as described in Brogdrdh [2007]. One way to reduce the cost is
to lower the weight of the robot which conduces to lower mechanical stiffness in
the links. Also, the components of the robot are changed such that the cost is re-
duced, which can infer larger individual variations and unwanted non-linearities.
The most crucial component, when it comes to flexibilities, is the gearbox. The
gearbox has changed more and more to a flexible component, where the flexibil-
ities have to be described by non-linear relations in the models in order to have
good control performance. There is therefore a demand of new approaches for
motion control where less accurate models can be sufficient. One solution can
be to estimate the position and orientation of the end-effector along the path and
then use the estimated position and orientation in the feedback loop of the mo-
tion controller. The most simple observer is to use the measured motor angular
positions in the forward kinematic model to get the position and orientation of
the end-effector. The performance is insufficient and the reason is that the oscil-
lations on the arm side do not influence the motor side of the gearbox that much
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due to the flexibilities. The flexibilities can also distort the oscillations of the arm
side. The observer can consequently not track the true position and another ob-
server is therefore needed. The observer requires a dynamic model of the robot
in order to capture the oscillations on the arm side of the gearbox as well as more
measurements than only the motor angular positions. One way to obtain infor-
mation about the oscillations on the arm side can be to attach an accelerometer
on the robot, e.g. at the end-effector.

A natural question is, how to estimate the arm angular positions from the mea-
sured acceleration as well as the measured motor angular positions. A common
solution for this kind of problems is to apply sensor fusion methods for state
estimation. The acceleration of the end-effector as well as the measured motor
angular positions can be used as measurements in e.g. an extended Kalman filter
(EKF) or particle filter (PF). In Karlsson and Norrlof [2004, 2005], and Rigatos
[2009] the EKF and PF are evaluated on a flexible joint model using simulated
data only. The estimates from the EKF and PF are also compared with the theo-
retical Cramér-Rao lower bound in Karlsson and Norrl6f [2005] to see how good
the filters are. An evaluation of the EKF using experimental data is presented
in Henriksson et al. [2009], and in Jassemi-Zargani and Necsulescu [2002] with
different types of estimation models. A method using the measured acceleration
of the end-effector as input instead of using it as measurements is described in
De Luca et al. [2007]. The observer, in this case, is a linear dynamic observer
using pole placement, which has been evaluated on experimental data.

2 State Estimation

The estimation problem for the discrete time non-linear state space model

Xie1 = f(Xp ug) + g(xp )Wy, (1a)
Yi = h(xp, ug) + vy, (1b)

is to find the state vector x; € R"* at time k given the measurements y; € R"”
k =1,...,N. The estimation problem can be seen as calculation/approximation
of the posterior density p(xxly;.;) using all measurements up to time I/, where
Y11 = {y1,--.,y1}. There are two types of problems, filtering and smoothing. Fil-
tering uses only measurements up to present time and smoothing uses future
measurements also, i.e., I = k for filtering and ! > k for smoothing. Using Bayes’
law, and the Markov property for the state space model, repeatedly, the optimal
solution for the Bayesian inference can be obtained. See Jazwinski [1970] for de-
tails. The solution to the Bayesian inference can in most cases not be given by
an analytical expression. For the special case of linear dynamics, linear measure-
ments and additive Gaussian noise the Bayesian recursions have an analytical so-
lution, which is known as the Kalman filter (KF). Approximative methods must
be used for non-linear and non-Gaussian systems. Here three approximative so-
lutions are considered; the extended Kalman filter (EKF), the extended Kalman
smoother (EKS) and the particle filter (PF).
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EKF The EKF [Anderson and Moore, 1979] solves the Bayesian recursions using
a first order Taylor expansion of the non-linear system equations around the pre-
vious estimate. The process noise w; and measurement noise vy are assumed
to be Gaussian with zero mean and covariance matrices Q; and Ry, respectively.

The time and measurement updates are
o Rrgker = f Rreage-1, uk-1)s
TU: T T (2a)

Prik-1 = Fro1Proap-1Fr g + Gro1Qr1 Gy

-1
Ky = Py Hy (HkPklk—lH; + Rk) ,

MU: % = R + Kie (Yk = h(Xgk-1, Uk)), (2b)
Pr = (I = KgHy) Prje—y,

R Jdh(x,u
Fr = B va— » G = g(Xpoik-1), Hy = %

X=Rf_1|k-1

(3)
x=Rgk-1
The notation Xyx, Pyjx, Xxk—1 and Pyx_; means estimates of the state vector x
and covariance matrix P at time k using measurements up to time k and k -1,
respectively.

EKS The EKS [Yu et al., 2004] solves the Bayesian recursions in the same way as
the EKF. The difference is that future measurements are available. First, the EKF
equations are used forward in time, then the backward time recursion

&S 3 Tp-1 as s
%3 =Rk + PrFL P (Kb — Rketle) (4a)
s _ Tp-1 s -1
Pin =Pk + PP Pt (Phoyy — Preaik) Prty i Fx Pk (4Db)
is used, where Fy is given above.

PF The PF [Doucet et al., 2001; Gordon et al., 1993] solves the Bayesian recur-
sions using stochastic integration. The PF approximates the posterior density

p(xkly1.x) by a large set of N particles {xg)}f\il, where each particle has an as-
signed relative weight w?{l), chosen such that Zfil w;(l) = 1. The PF updates the
particle location and the corresponding weights recursively with each new ob-
served measurement. Theoretical results show that the approximated posterior
density converges to the true density when the number of particles tends to in-

finity, see e.g. Doucet et al. [2001]. The PF is summarised in Algorithm 1, where
the proposal density ppmp(x;(llﬁxg),ykﬂ) can be chosen arbitrary as long as it is
possible to draw samples from it. In this work the optimal proposal density, ap-
proximated by an EKEF, is used. See Doucet et al. [2000], and Gustafsson [2010]
for details. The state estimate for each sample k is often chosen as the minimum
mean square estimate

N . .
Xk = E[x¢] = f X p(Xgly 1) dxg = ng)xgs). (5)
Rix i=1
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Algorithm 1 The Particle Filter (PF)

1: Generate N samples {xg)}fil from p(xg).

2: Compute

. ) (i
o _ o P pe i)
Yk T e D ()
' . pP P(xk |xk_1rYk)
and normalise, i.e., u'/;{l) = wg)/ Z?’:l w;{]), i=1,...,N.
3: [Optional]. ngerate a new set {xgcl*)}f\il' by resampling‘with replacgment N
times from {xg)}f\il, with probability u'/](;) = Pr{xg*) = xgz)} and let w;cl) =1/N,
i=1,...,N.
4: Generate predictions from the proposal density
(i) i

X+l

~ pprop(xk+llxgcz*)’ Yk+1)x 1 = 11 ey N

5: Increase k and continue to step 2.

3 Dynamic Models

3.1 Robot Model

This section describes a two-link non-linear flexible robot model, corresponding
to joint two and three for a serial six DOF industrial robot. The dynamic robot
model is a joint flexible two-axes model from Moberg et al. [2008], see Figure 1.
Each link is modelled as a rigid-body and the joints are modelled as a spring
damping pair with non-linear spring torque and linear damping. The deflection
in each joint is given by the arm angle q,; and the motor angle q,,;. Let

T T T

qQa = (%1 %2) ;A = (anl/’h sz/ﬁz) ;T = (Tml’h Tm2172) ,

where 7,,; is the motor torque and #; = q,,i/q,; > 1 is the gear ratio. A dynamic
model can be derived as

Ma(qa)qa + C(qur qa) + G(qa) + N(‘l) =0, (63-)
M,. 45, + F(q5,) - N(q) = 75, (6b)

using Lagrange’s equation, where N(q) = T(q,—q%,) + D(q,—q%,), M,(-)and M,
are the inertia matrices for the arms and motors, respectively, C(-) is the Coriolis-
and centrifugal terms, G(-) is the gravity torque, F(-) is the friction torque, T(-)
is the spring stiffness torque and D(-) is the damping torque. See Moberg et al.
[2008] for a full description of the model.

3.2 Accelerometer Model

The accelerometer attached to the robot measures the acceleration due to the mo-
tion the robot performs, the gravity component and in addition some measure-
ment noise is introduced. When modelling the accelerometer it is also important
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Figure 1: A two degrees-of-freedom robot model. The links are assumed to
be rigid and the joints are described by a two mass system connected by a
spring damper pair. The accelerometer is attached in the point P.

to include a bias term. The acceleration is measured in a frame Ox,z, fixed to the
accelerometer relative an inertial frame, which is chosen to be the world fixed
base frame Ox,z;, see Figure 1. The acceleration in Ox,z; can thus be expressed
as

P<(qa) = Riss (2a) (P(qa) +85) + b, (7)

where p,(q,) is the acceleration due to the motion and g; = (0 g)T models the
gravitation, both expressed in the base frame Oxpz;,. The bias term is denoted by
bACC and is expressed in Ox,zs. Ry/5(q,) is a rotation matrix that represents the
rotation from frame Ox;z; to frame OXx,z,.

The vector p,(q,) can be calculated as the second derivative of p,(q,) which is
shown in Figure 1. Using the forward kinematic relation, the vector p, can be
written as

pb(qa) = Yacc(qa) (8)

where Y,¢ is a non-linear function. Taking the derivative of (8) with respect to
time twice gives

2 d
@b(qa) = ﬁTACC(qu) = Jacc(qa)ba + (E]Acc(qa))qw 9)

where Jacc(qy) 2 ‘g—?lcc is the Jacobian matrix. The final expression for the accel-
eration measured by the accelerometer is given by (7) and (9).

3.3 Modelling of Bias

In (7) a bias component is included in the accelerometer model, which is un-

=
known and may vary over time. The bias component b; = (b}( e bzb) can be
modelled as a random walk, i.e.,

bk+1 :bk+w],:, (10)
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T. . . .
where w']: = (w}("l w:'"b) is process noise and n; is the number of bias

terms. The random walk model is then included in the estimation problem and
the bias terms are estimated simultaneously as the other states. Let a state space
model without any bias states be given by (1). The augmented model with the
bias states can then be written as

(ﬁ’;ﬂ) _ (f@a uk>) . (g(:;k) ?)(x;;), (1)
i = hlxg, wy) + Cby + vy, 12)

where I and 0 are the identity and null matrices, respectively, and C € R"*" is a
constant matrix

4 Estimation Models

Four different estimation models are presented using the robot and acceleration
models described in Section 3. The process noise wy and measurement noise vy
are in all four estimation models assumed to be Gaussian with zero mean and
covariance matrices Q and R, respectively.

4.1 Non-linear Estimation Model

Let the state vector be
T T
(T LT T LT T .aT
X= (Xl X; X3 x4) = (ql 4y 9 ) , (13)

T T
where q, = (qal qaz) are the arm positions and q%, = (qfnl qfnz) are the mo-
tor positions on the arm side of the gearbox. Let also the input vector u = 77,.
Taking the derivative of x with respect to time and using (6) give

X3
X4
M7 (x1) (=C(x1,%3) = G(x1) - N(x)) |
M;! (u - F(x4) + N(x))

X = (14)

In order to use the estimation methods described in Section 2 the continuous state
space model (14) has to be discretised. The time derivative of the state vector can
be approximated using Euler forward according to

. Xfy1 — Xg

X=—, 15

TS (15)

where T; is the sample time. Taking the right hand side in (14) and (15) equal to
each other give the non-linear discrete state space model

X1k + TsX3 i
Xpop = B Xpk + TeXqk .
T xak + ToMg (x k) (=C (% k X3) — G(x1 ) = N(xg))
Xgk + TM,! (g = F(xg ) + N(xg))
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The noise is modelled as a torque disturbance on the arms and motors, giving a
model according to (1a) where f(xy, uy) is given by the right hand side in (16)
and

0 0
0 0
Xp) = _ , 17
g( k) TsMal(xl,k) 0 ( )
0 .M}

where 0 is a two by two null matrix and the noise wy € R*.

The measurements are the motor positions q%, and the end-effector acceleration
péw(qa). The measurement model (1b) can therefore be written as

yi = ( > 2k )+vk, (18)
Royss(x1,1) (%) + 80)

where p,(x¢) is given by (9) and v; € R%. In (9) are q, and q, given as states,
whereas §, is given by the third row in (14). The accelerometer bias b =

A
(b‘;CC’X b;:cc,z) is modelled as it is described in Section 3.3 with

0
c:(I), (19)

where I and 0 are two by two identity and null matrices, respectively.

4.2 Estimation Model with Linear Dynamic

A linear dynamic model with arm positions, velocities and accelerations as state
variables is suggested. Let the state vector be

. .. T
x=(x] x} x})=(qf 4af &I), (20)
-
where q, = (%1 qa2) are the arm positions. This yields the following state
space model in discrete time
Xir1 = Fxp + Guug + Gywy, (21)

where uy is the input vector and the process noise wy € R2. The constant matrices
are given by

T3
1 1 LI .
F=1|o I TJI |, Gy =Gy = TTSI (22)
0o 0 I T.1

where I and 0 are two by two identity and null matrices, respectively. The in-
put, ug, is the arm jerk reference, i.e., the differentiated arm angular acceleration
reference.
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The motor positions are calculated from (6a) where the spring is linear, i.e.,

T(qi —qa) = (ko1 ,?2) (q7 — 9a) = K- (g5 — qa). (23)

The damping term is small compared to the other terms [Karlsson and Norrlof,
2005] and is therefore neglected for simplicity. The measurement model for the
accelerometer is the same as in (18) where ¢, is a state in this case. The mea-
surement model can now be written as

_ qfn,k
Yie= [Rb/s(xl,k)(pb(xk) +gb)]+vk' @4

where v; € R* and

Q =X1k + K™ (M, (%1 0)x3 5 + C(x1 0 Xo.k) + G(X1 1)), (25a)

d
pb(xk) =Jacc(X1,k)X3 k + (E]Acc(xl,k))xz,k- (25b)

Once again, the accelerometer bias by““ is modelled according to Section 3.3.
However, the estimation result is improved if bias components for the motor
measurements also are included. The explanation is model errors in the mea-

T
surement equation. The total bias component is by = (bZ’”’T b‘I:CC'T) , where

T T
bZ'” = (bZ’”1 bZ"’Z) and bp¢ = (b‘;cc’x b;:cc’z) . The matrix C in (12) is for this
model a four by four identity matrix.

4.3 Linear Estimation Model with Acceleration as Input

In De Luca et al. [2007] a model using the arm angular acceleration as input is
presented. Identifying the third row in (14) as the arm angular acceleration and
use that as an input signal with (13) as state vector give the following model,

X3
X4
g’
M,,! (u - F(x4) + N(x))

, (26)

.
Il

where ' is the new input signal. If the friction, spring stiffness and damping
are modelled with linear relations, then

0 0 I 0 0 0
| o 0 0 I 0 o0 [(gN
=1 o 0 0 0 It o (u G
M,'K -M,/K M,/D -M,}/(D+F,) 0 M,/
where

_ kl 0 _ dl 0 _ 1712fd1 0
o 8 efd ) nlE A
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The linear state space model is discretised using zero order hold (ZOH). ZOH is
used instead of Euler forward since it gives a better result and an explicit solution
exist when the model is linear. The only remaining measurements are the motor
positions, which give a linear measurement model according to

yk:(o I 0 O)Xk+Vk, (28)

where v, € R%. Note that the arm angular acceleration ¢ is not measured direct,
instead it has to be calculated from the accelerometer signal using (7) and (9),
which is possible as long as the Jacobian Jcc(xq ) has full rank.

4.4 Non-linear Estimation Model with Acceleration as Input

The linear model presented in Section 4.3 is here reformulated as a non-linear
model. Given the model in (26) and using Euler forward for discretisation give

x1,k + TiXs k
xok + TiXyg g
X3kt quglk
Xk + TM;,! (ug — F(xgx) + N(xy))

(29)

Xk+1 =

The noise model is assumed to be the same as in Section 4.1, and the measurement
is the same as in (28).

5 Experiments on an ABB IRB4600 Robot

5.1 Experimental Setup

The accelerometer used in the experiments is a triaxial accelerometer from Cross-
bow Technology, with a range of +2 g, and a sensitivity of 1 V/g [Crossbow Tech-
nology, 2004]. The orientation and position of the accelerometer are estimated
using the method described in Axelsson and Norrl6f [2012]. All measured signals
are synchronous and sampled with a rate of 2kHz. The accelerometer measure-
ments are filtered with an LP-filter before any estimation method is applied to
better reflect the tool movement. The path used in the evaluation is illustrated
in Figure 2 and it is programmed such that only joint two and three are moved.
Moreover, the wrist is configured such that the couplings to joint two and three
are minimised. The dynamic model parameters are obtained using a grey-box
identification method described in Wernholt and Moberg [2011].

It is not possible to get measurements of the true state variables, as is the case
for simulation, instead, only the true trajectory of the tool, more precise the TCP,
x and z coordinates, is used for evaluation. The true trajectory is measured us-
ing a laser tracking system from Leica Geosystems. The tracking system has an
accuracy of 0.01 mm per meter and a sample rate of 1 kHz [Leica Geosystems,
2008]. However, the measured tool position is not synchronised with the other
measured signals. Resampling of the measured signal and a manual synchroni-
sation are therefore needed, which can introduce small errors. Another source of
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Figure 2: Measured path for the end-effector used for experimental evalua-
tions.

error is the accuracy of the programmed TCP in the control system of the robot.
The estimated data is therefore aligned with the measured position to avoid any
static errors. The alignment is performed using a least square fit between the
estimated position and the measured position.

5.2 Experimental Results

Six observers using the four different estimation models described in Section 4
are evaluated. The observers are based on the EKF, EKS, PF or a linear dynamic
observer using pole placement [Franklin et al., 2002].

OBS1: EKF with the non-linear model in Section 4.1.
OBS2: EKS with the non-linear model in Section 4.1.

OBS3: EKF with the linear state model and non-linear measurement model in
Section 4.2.

OBS4: PF with the linear state model and non-linear measurement model in Sec-
tion 4.2.

OBS5: EKF with the non-linear model where the acceleration of the end-effector
is input, see Section 4.4 .

OBS6: Linear dynamic observer using pole placement with the linear model
where the acceleration of the end-effector is input, see Section 4.3. [De Luca
et al., 2007]

The only measured quantity, to compare the estimates with, is the measured tool
position, as was mentioned in Section 5.1. Therefore, the estimated arm angles
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are used to compute an estimate of the TCP using the kinematic relation, i.e.,

X .
(5] = Frertaus (30

where q, is the result from one of the six observers at time k. The result is
presented with diagrams of the true and estimated paths for the horizontal parts
of the path in Figure 2. The path error

e = \/(Xk —%e)? + (zx - 2%, (31)

where X, X, Zx and Z; are the true and estimated position for the tool in the x-
and z-direction at time k, as well as the root mean square error (RMSE)

(32)

where N is the number of samples, are also used for evaluation. Moreover, the
first 250 samples are always removed because of transients. The execution time
for the observers is also examined. Note that the execution times are with re-
spect to the current MATLAB implementation. The execution time may be faster
after some optimisation of the MATLAB code or by using another programming
language, e.g. C++. The observers are first paired such that the same estimation
model is used, hence OBS1-OBS2, OBS3-0BS4, and OBS5-OBS6 are compared. Af-
ter that, the best observers from each pair are compared to each other.

OBS1 and OBS2. It is expected that OBS2 (EKS with non-linear model) will give
a better result than OBS1 (EKF with non-linear model) since the EKS uses both
previous and future measurements. This is not the case as can be seen in Figure 3.
The reason for this can be model errors and in particular the non-linearities in
the joint stiffness.

One interesting observation is the higher orders of oscillations in the estimated
paths. The oscillations can be reduced if the covariance matrix Q for the process
noise is decreased. However, this leads to a larger path error. The RMSE values
can be found in Table 1. The table shows that OBS2 is slightly better than OBSI.

With the current MATLAB implementation the execution times are around five
and seven seconds, respectively, and the total length of the measured path is four
seconds, hence none of the observers are real-time. Most of the time is spent in
evaluating the Jacobian Hj in the EKF and it is probably possible to decrease that
time with a more efficient implementation. Another possibility can be to run the
filter with a lower sample rate. OBS2 is slower since an EKF is used first and then
the backward time recursion in (4). However, most of the time in the EKS is spent
in the EKF. As a matter of fact, the execution time is irrelevant for OBS2 since the
EKS uses future measurements and has to be implemented off-line.

None of the two observers can be said to be better than the other in terms of
estimation performance and execution time. The decision is whether future mea-



112 Paper B Evaluation of Six Different Sensor Fusion Methods

T ~ T
Ve \/\.
AN

v\

1.006
1.004
1.002

/
’

z [m]

0.998
0.996

—_——_—
\
‘
.

AN I T I R B

il

0.804
0.802

0.798
0.796
0.794 | | | | L |

m
o
oo
L L L L L
[
l

Figure 3: The two horizontal sides of the true path (solid), and the estimated
path using OBS1 (dashed), and OBS2 (dash-dot).

Table 1: RMSE values of the path error e for the end-effector position given
in mm for the six observers.
| oBs1 ~ OBS2 OBS3  OBs4  OBS5  OBS6
e || 1.5704 15664 2.3752 1.5606 1.6973 1.7624

surement can be used or not. OBS1 is chosen as the one that will be compared
with the other observers.

OBS3 and OBS4. Figure 4 shows that the estimated paths follow the true path
for both observers. It can be noticed that the estimate for OBS3 (EKF with linear
dynamic model) goes somewhat past the corners before it changes direction and
that OBS4 (PF with linear dynamic model) performs better in the corners. The
estimate for OBS4 is also closer to the true path, at least at the vertical sides. The
RMSE values of the path error for OBS3 and OBS4 are presented in Table 1. The
RMSE for OBS4 is approximately two-thirds of the RMSE for OBS3.

The MATLAB implementation of OBS3 is almost real-time, just above four seconds,
and the execution time for OBS4 is about ten hours. The execution time for OBS3
can be reduced to real-time without losing performance if the measurements are
decimated to approximately 200 Hz.

The best observer in terms of the path error is obviously OBS4 but if the execution
time is of importance, OBS3 is preferable. OBS4 will be compared with the other
observers since the path error is of more interest in this paper.
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Figure 4: The two horizontal sides of the true path (solid), and the estimated
path using OBS3 (dashed), and OBS4 (dash-dot).

OBS5 and OBS6. OBS6 (linear model with acceleration as input using pole place-
ment) performs surprisingly good although a linear time invariant model is used,
see Figure 5. It can also be seen that OBS5 (linear model with acceleration as in-
put using EKF) performs a bit better. OBS5 also has a higher order oscillation as
was the case with OBS1 and OBS2. This is a matter of tuning where less oscilla-
tions induce higher path error. The RMSE values of the path error are showed in
Table 1.

Both observers execute in real-time. The execution times are just below one sec-
ond and around one-fifth of a second, respectively. OBS6 is clearly the fastest one
of the six proposed observers. OBS5 is the one that will be compared to the other
observers.

Summary

The three observers OBS1, OBS4, and OBS5 are the best ones from each pair. From
Table 1 it can be seen that OBS1 and OBS4 have the same performance and that
OBS5 is a bit worse, see also the path errors in Figure 6. The differences are small
so it is difficult to say which one that is the best. Instead of filter performance,
other things have to be considered, such as complexity, computation time, and
robustness.

Complexity. The complexity of the filters can be divided into model complexity
and implementation complexity. The implementation of OBS1 is straightforward
and no particular tuning has to be performed in order to get an estimate. The
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tuning is of course important to get a good estimate. Instead, most of the time
has to be spent on a rigorous modelling work and identification of the parameters
to minimise model errors.

For OBs4 the opposite is true. The model is simple and requires not that much
work. Most of the time has to be spent on implementing the PF. The stan-
dard choices of a proposal distribution did not work due to high SNR and non-
invertible measurement model. Instead, an approximation of the optimal pro-
posal, using an EKF, was required. The consequence is more equations to imple-
ment and more tuning knobs to adjust.

The model complexity for OBS5 is in between OBS1 and OBS2. No model for the
rigid body motion on the arm side is needed which is a difference from the other
two. However, a non-linear model for the flexibilities and friction is still required,
which is not the case for OBS4.

Computation time. The computation time differs a lot for the three observers.
OBS5 is in real-time with the current MATLAB implementation and OBS1 can prob-
ably be executed in real-time after some optimisation of the MATLAB code or with
another programming language. The computation time for OBS4 is in the order
of hours and is therefore far from real-time.

Robustness. An advantage with OBS5, compared to the other two, is that the
equations describing the arm dynamics are removed, hence no robustness issues
concerning the model parameters describing the arm, such as inertia, masses, cen-
tre of gravity, etcetera. However, the model parameters describing the flexibilities
remains.

Other advantages. An advantage with OBS4 is that the PF provides the entire
distribution of the states, which is approximated as a Gaussian distribution in
the EKF. The information about the distribution can be used in e.g. control and
diagnosis.

6 Conclusions

A sensor fusion approach to estimate the end-effector position by combining a
triaxial accelerometer at the end-effector and the motor angular positions of an
industrial robot is presented. The estimation is formulated as a Bayesian estima-
tion problem and has been evaluated on experimental data from a state of the art
industrial robot.

Different types of observers where both the estimation model and the filter were
changed, have been used. The three observers with the best performance were

a) an EKF using a non-linear dynamic model,
b) a particle filter using a linear dynamic model, and

¢) an EKF with a non-linear model, where the acceleration of the end-effector
is used as an input instead of a measurement.
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The performances of these three observers were very similar when considering
the path error. The execution time for a) was just above the real-time limit, for
¢) just below the limit, and for b) in the order of hours. The time required for
modelling and implementation is also different for the three different observers.
For b), most of the time was spent to implement the filter and get it to work,
whereas most of the time for a) was spent on modelling the dynamics.
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Abstract

Prediction and filtering of continuous-time stochastic processes of-
ten require a solver of a continuous-time differential Lyapunov equa-
tion (CDLE), for example the time update in the Kalman filter. Even
though this can be recast into an ordinary differential equation (ODE),
where standard solvers can be applied, the dominating approach in
Kalman filter applications is to discretise the system and then ap-
ply the discrete-time difference Lyapunov equation (DDLE). To avoid
problems with stability and poor accuracy, oversampling is often used.
This contribution analyses over-sampling strategies, and proposes a
novel low-complexity analytical solution that does not involve over-
sampling. The results are illustrated on Kalman filtering problems in
both linear and non-linear systems.

1 Introduction

Numerical solvers for ordinary differential equations (ODE) is a well studied area
[Hairer et al., 1987]. The related area of Kalman filtering (state prediction and
state estimation) in continuous-time models was also well studied during the
first two decades of the Kalman filter, see for instance Jazwinski [1970], while
the more recent literature such as the standard reference Kailath et al. [2000] fo-
cuses on discrete time filtering only. A specific example, with many applications
in practice, is Kalman filtering based on a continuous-time state space model
with discrete-time measurements, known as continuous-discrete filtering. The
Kalman filter (KF) here involves a time update that integrates the first and second
order moments from one sample time to the next one. The second order moment
is a covariance matrix, and it governs a continuous-time differential Lyapunov

121
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equation (CDLE). The problem can easily be recast into a vectorised ODE problem
and standard solvers can be applied. For linear ODE’s, the time update of the lin-
ear KF can thus be solved analytically, and for non-linear ODE’s, the time update
of the extended KF has a natural approximation in continuous-time. One prob-
lem is the large dimension of the resulting ODE. Another possible explanation
why the continuous-time update is not used is the common use of discrete-time
models in Kalman filter applications, so practitioners often tend to discretise the
state space model first to fit the discrete-time Kalman filter time update. De-
spite a closed form solution exists, this involves approximations that lead to well
known problems with accuracy and stability. The ad-hoc remedy is to oversam-
ple the system, so a large number of small time updates are taken between the
sampling times of the observations.

In literature, different methods are proposed to solve the continuous-discrete
non-linear filtering problem using extended Kalman filters (EKF). A common
way is to use a first or second order Taylor approximation as well as a Runge-
Kutta method in order to integrate the first order moments, see e.g. LaViola
[2003]; Rao et al. [2011]; Mallick et al. [2012]. They all have in common that
the CDLE is replaced by the discrete-time difference Lyapunov equation (DDLE),
used in discrete-time Kalman filters. A more realistic way is to solve the CDLE as
is presented in Bagterp Jorgensen et al. [2007]; Mazzoni [2008], where the first
and second order moments are integrated numerically. A comparison between
different solutions is presented in Frogerais et al. [2012], where the method pro-
posed by the authors discretises the stochastic differential equation (SDE) using a
Runge-Kutta solver. The other methods in Frogerais et al. [2012] have been pro-
posed in the literature before, e.g. LaViola [2003]; Mazzoni [2008]. Related work
using different approximations to continuous integration problems in non-linear
filtering also appears in Sarkka [2007]; Zhang et al. [2005] for unscented Kalman
filters and Arasaratnam and Haykin [2009] for cubature Kalman filters.

This contribution takes a new look at this fundamental problem. First, we review
different approaches for solving the CDLE in a coherent mathematical framework.
Second, we analyse in detail the stability conditions for oversampling, and based
on this we can explain why even simple linear models need a large rate of over-
sampling. Third, we make a new straightforward derivation of a low-complexity
algorithm to compute the solution with arbitrary accuracy. Numerical stability
and computational complexity are analysed for the different approaches. It turns
out that the low-complexity algorithm has better numerical properties compared
to the other methods, and at the same time a computational complexity in the
same order. Fourth, the methods are extended to non-linear system where the
extended Kalman filter (EKF) is used. We illustrate the results on both a sim-
ple second order linear spring-damper system, and a non-linear spring-damper
system relevant for mechanical systems, in particular robotics.
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2 Mathematical Framework and Background

2.1 Linear Stochastic Differential Equations

Consider the linear stochastic differential equation (SDE)
dx(t) = Ax(t)dt + GdB(1), (1)

for t > 0, where x(t) € R"x is the state vector and f(t) € R" is a vector of Wiener
processes with E [dﬂ(t)dﬂ(t)T] = Qdt. The matrices A € R and G € R™"

are here assumed to be constants, but they can also be time varying. It is also
possible to include a control signal u(#) in (1) but that is omitted here for brevity.

Given an initial state %(0) with covariance P(0), we want to solve the SDE to get
%(t) and P(t) at an arbitrary time instance. By multiplying both sides with the

integrating factor ™A and integrating over the time interval gives
t
x(t) = eA'x(0) + J eA)IGdp(s)ds. (2)
0
Sva(t)

The goal is to get a discrete-time update of the mean and covariance, from %(kh)
and P(kh) to X((k + 1)h) and P((k + 1)h), respectively. The time interval h may
correspond to one sample interval, or be a fraction of it in the case of oversam-
pling. The latter case will be discussed in detail later on. For simplicity, the time
interval [kh, (k + 1)h] will be denoted as [0, ¢] below.

The discrete-time equivalent noise v;(t) has covariance given by
t t
Qd(t) — J.EA(t—S)GQGTeAT(t—S) ds = feATGQGTeATT dr, (3)
0 0

We immediately get an expression for the first and second order moments of the
SDE solution over one time interval as

x(t) = eA'%(0), (4a)
P(t) = ATP(0)eA ! + Qyu(t). (4b)
From (2) and (3), we can also recover the continuous-time update formulas
x(t) = AX(t), (5a)
P(t) = AP(t) + P()AT + GQG', (5b)

by, a bit informally, taking the expectation of (2) and then dividing both sides
with t and letting t — 0. Here, (5a) is an ordinary ODE and (5b) is the continuous-
time differential Lyapunov equation (CDLE).

Thus, there are two conceptually different alternatives. Either, solve the inte-
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gral (3) defining Q,(t) and use (4), or solve the ODE and CDLE in (5). These two
well-known alternatives are outlined below.

2.2 Matrix Fraction Decomposition

There are two ways to compute the integral (3) described in literature. Both are
based on computing the matrix exponential of the matrix

(A GQGT
H- (0 Q¢ ) (6)
The result is a block matrix in the form
Ht _ (M(t) M;y(f)
e = ( 0 Ms(t)) (7)

where the structure implies that M;(t) = eA* and Mj;(t) = eA’t. As shown in
Van Loan [1978], the solution to (3) can be computed as

Qu(t) = My(H)M; (1)T (8)

This is immediately verified by taking the time derivative of the definition (3) and
the matrix exponential (7), and verifying that the involved Taylor expansions are
equal.

Another alternative known as matrix fraction decomposition, which solves a ma-
trix valued ODE, given in Grewal and Andrews [2008]; Sarkkad [2006], is to com-

=
pute P(t) directly. Using the initial conditions (P(O) I) for the ODE gives

P(t) = (M (£)P(0) + M, (¢)) M5 (t) " (9)

2c(1)

The two alternatives in (8) and (9) are apparently algebraically the same.

There are also other alternatives described in literature. First, the integral in (3)
can of course be solved with numerical methods such as the trapezoidal method
or the rectangle method. In Rome [1969] the integral is solved analytically in the
case that A is diagonalisable. However, not all matrices are diagonalisable, and
even in such cases, this method is not numerically stable [Higham, 2008].

2.3 Vectorisation Method

The ODEs for the first and second order moments in (5) can be solved using a
method based on vectorisation. The vectorisation approach for matrix equations
is well known and especially for the CDLE, see e.g. Davison [1975]; Gaji¢ and
Qureshi [1995]. The method uses the fact that (5) can be converted to one single
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ODE by introducing an extended state vector

_fzx(t)) _ [ x(t)
z(t) = (Zp(l‘)) = (VechP(t))’ (10)
z(t):(‘g :P)z(t)+(vecthGT):Azz(t)+Bz, (11)

where Ap = DT (I® A + A®I)D. Here, vech denotes the half-vectorisation oper-
ator, ® is the Kronecker product and D is a duplication matrix, see Appendix A
for details.

The solution of the ODE (11) is given by [Rugh, 1996]
t
z(t) = ePe'z(0) + f A9 4sB,. (12)
0
One potentially prohibitive drawback with the solution in (12) is its computa-
tional complexity, in particular for the matrix exponential. The dimension of the
extended state z is n, = n, + n,(n, +1)/2, giving a computational complexity

of O(n8). Section 4 presents a way to rewrite (12) to give a complexity of O(n3)
instead of O(n9).

2.4 Discrete-time Recursion of the CDLE

The solution in (4b) using (8), the matrix fraction decomposition in (9), and the
ODE (12) evaluated at the discrete-time instances t = kh and t = (k + 1)h give the
following recursive update formulas

((k +1)h) = eAhP(kh) " My (WM (h)T (13)
((k+1)h) = (M )+ My(h))Mj(h)™! (14)

h
z((k + 1)h) = eAlz(kh) + f et dsB,, (15)

0

which can be used in the Kalman filter time update.

2.5 The Matrix Exponential

Sections 2.1 to 2.3 shows that the matrix exponential function is a working horse
to solve the linear SDE. At this stage, numerical routines for the matrix exponen-
tial are important to understand. One key approach is based on the following
identity and Taylor expansion [Moler and Van Loan, 2003]

AP — (M) z(“(%)*"*ﬁ(ﬁ) ) 5 ¢, m(AN) (16)

In fact, the Taylor expansion is a special case of a more general Padé approxima-
tion of eA"™ [Moler and Van Loan, 2003], but this does not affect the discussion
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here.

The eigenvalues of Ah/m are the eigenvalues of A scaled with h/m, and thus they
can be arbitrarily small if m is chosen large enough for any given h. Further,
the p’th order Taylor expansion converges faster for smaller eigenvalues of Ah/m.
Finally, the power function M™ is efficiently implemented by squaring the matrix
M in total log,(m) times, assuming that m is chosen to be a power of 2. We will
denote this approximation with e, ,,(Ah).

A good approximation e, ,,(Ah) is characterised by the following properties:

e Stability. If A has all its eigenvalues in the left half plane, then e, ,,(Ah)
should have all its eigenvalues inside the unit circle.

* Accuracy. If p and m are chosen large enough, the error HeAh - ep,m(Ah)”
should be small.

Since the Taylor expansion converges, we have trivially that

lim e, ,,(Ah) = (eAh/m)m = AN, (17a)

pA)OO
From the property lim, (1 + a/x)* = e, we also have

lim e, ,,(Ah) = ™. (17b)

m—-00

Finally, from Higham [2008] we have that

1 1
AP B2

mP(p + 1)! (17¢)

oA e8] <
However, for any finite p and m > 1, then all terms in the binomial expansion of
ep,m(Ah) are different from the Taylor expansion of eA, except for the first two
terms which are always I + Ah.

The complexity of the approximation e, ,,(Ah), where A € R""x, is in the order
of (log,(m) + p) n3, where pn? multiplications are required to compute AP and
log,(m)n3 multiplications are needed for squaring the Taylor expansion log,(m)

times.

Standard numerical integration routines can be recast into this framework as well.
For instance, a standard tuning of the fourth order Runge-Kutta method for a
linear ODE results in ey 1 (Ah).

2.6 Solution using Approximate Discretisation

We have now outlined three methods to compute the exact time update in the
discrete-time Kalman filter. These should be equivalent up to numerical issues,
and will be treated as one approach in the sequel.

Another common approach in practice, in particular in Kalman filter applica-
tions, is to assume that the noise is piece-wise constant giving the discrete-time
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system

x(k + 1) = Byx(k) + Gv(k), (18a)
Cov (v,(k)) = Qp, (18b)

where Fj, = e, ,,(Ah), G, = Ioh eAtdtG, and Qj, = hQ. The discrete-time Kalman
filter update equations

%(k + 1) = Bj&(k), (19a)
P(k + 1) = F;P(k)F] + G,Q;,G/, (19b)

are then used, where (19a) is a difference equation and (19b) is the discrete-time
difference Lyapunov equation (DDLE). The update equations (19) are exact for the
discrete-time model (18). However, there are several approximations involved in
the discretisation step:

* First, F; = ¢p,,,(Ah) is an approximation of the exact solution given by F;, =

eA, Tt is quite common in practice to use Euler sampling defined by F), =
I+Ah= 61,1(Ah).

* Even without process noise, the update formula for P in (19b) is not equiv-
alent to (5b).

* The discrete-time noise vy(t) is an aggregation of the total effect of the
Wiener process df(t) during the interval [t,t + h], as given in (3). The
conceptual drawback is that the Wiener process df(t) is not aware of the
sampling time chosen by the user.

One common remedy is to introduce oversampling. This means that (19) is iter-
ated m times using the sampling time h/m. When oversampling is used, the co-
variance matrix for the discrete-time noise vy (k) should be scaled as Q;, = hQ/m.
In this way, the problems listed above will asymptotically vanish as m increases.
However, as we will demonstrate, quite large an m can be needed even for some
quite simple systems.

2.7 Summary of Contributions

* Section 3 gives explicit conditions for an upper bound of the sample time h
such that a stable continuous-time model remains stable after discretisation.
The analysis treats stability of both x and P, for the case of Euler sampling
e1,m(A), for the solution of the SDE given by the ODE (11). Results for p > 1
are also briefly discussed. See Table 1 for a summary when the vectorised
solution is used.

* Section 4 presents a reformulation of the solution to the ODE (11), where the
3
computational complexity has been decreased from (log,(m) + p) (n,%/Z) to
(log,(m) + p + 43) ni.

* Section 5 shows how the computational complexity and the numerical prop-
erties differs between the different methods.
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Table 1: Summary of approximations e, ,,(Ah) of A The stability region
(h < hp,y) is parametrised in A; which are the eigenvalues to A. In the case
of Runge-Kutta, only real eigenvalues are considered.

Approach p m Stability region (Myay)
Euler sampling 1 1 —ZIR;—{IQ\’}

Oversampled Euler | 1 m>1 —%
Runge-Kutta 4 1 —%8!_52, A eR
Oversampled 4 m>1 —%, A eR

Runge-Kutta

* Section 6 presents a second order spring-damper example to demonstrate
the advantages using a continuous-time update.

* Section 7 discusses implications for non-linear systems, and investigates a
non-linear system inspired by applications in robotics.

3 Stability Analysis

It is known that the CDLE in (5b) has a unique positive solution P(¢) if A is Hur-
witz!, GQGT > 0, the pair (A, GQG") is controllable, and P(0) > 0 [Gaji¢ and
Qureshi, 1995]. We want to show that a stable continuous-time system results
in a stable discrete-time recursion. We therefore assume that the continuous-
time ODE describing the state vector x(t) is stable, hence the eigenvalues A;, i =
1,...,n, to A are assumed to be in the left half plane,i.e., Re{A;} <0,i=1,...,n,.
It will also be assumed that the remaining requirements are fulfilled.

For the methods described in Section 2.2 we have that H has the eigenvalues +1;,
i=1,...,n,, where A; are the eigenvalues of A. This follows from the structure
of H. Hence, the matrix exponential eHt will have terms that tend to infinity and
zero with the same exponential rate when t increases. However, the case t = h is
of most interest, where h is finite. Note that a small/large sample time depends
strongly on the system dynamics. Even if the matrix !’ is ill-conditioned, the
product (8) and the ratio (9) can be limited under the assumptions above, for not
too large values of t. Note that the solution in (9) is, as a matter of fact, based on
the solution of an unstable ODE, see Grewal and Andrews [2008]; Sarkka [2006],
but the ratio C(t)M;3(t)~! can still be bounded. Both of these methods can have
numerical problems which will be discussed in Section 5.2.

L All eigenvalues are in the left half plane.
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3.1 Stability for the Vectorisation Method using Euler Sampling

The stability analysis in this section is standard and a similar analysis has been
performed in Hinrichsen and Pritchard [2005]. The difference is that the analy-
sis in Hinrichsen and Pritchard [2005] investigates which discretisation methods
that are stable for sufficiently small sample times. The analysis here is about to
find an upper bound of the sample time such that a stable continuous-time model
remains stable after discretisation.

The recursive solution (15) is stable for all & according to Lemma 3 in Appendix B,
if the matrix exponential can be calculated exactly. Stability issues arise when
Azl has to be approximated by ep,m(Azh). In this section we derive an upper
bound on h that gives a stable solution for e; ,,(A,h), i.e., Euler sampling. The
Taylor expansion and in particular Euler sampling is chosen due to its simplicity,
the same approach is applicable to the Padé approximation as well. Higher orders
of approximations using the Taylor expansion will be treated briefly at the end of
this section.

From Section 2.3 we have that the matrix A, is diagonal, which means that calcu-
lation of the matrix exponential eAz" can be separated into eA" and eA?". From Lii-
tkepohl [1996] it is known that the eigenvalues of Ap are given by A; + A;, 1 <
i < j < ny, hence the ODE describing the CDLE is stable if A is Hurwitz. In or-
der to keep the discrete-time system stable, the eigenvalues of both ¢; ,,(Ah) and
e1,m(Aph) need to be inside the unit circle. In Theorem 1 an explicit upper bound
on the sample time & is given that makes the recursive solution to the continuous-
time SDE stable.

Theorem 1. The recursive solution to the SDE (1), in the form of (15), where the
matrix exponential eAz"" is approximated by e, ,,(A,h), is stable if

2mRe {/\1 + /1]}
h<min{-——————=,1<i<j<n., (20)
|/\1‘ + /\Jl
where A;,i =1,...,n,, are the eigenvalues to A.

Corollary 1. The bound in Theorem 1 becomes
2
h< ——m, Ai €R, (21)
Ai

for real eigenvalues.

Proof: Start with the ODE describing the state vector x(t). The eigenvalues to
e1,m(Ah) = (I+ Ah/m)™ are, according to Lemma 2 in Appendix B, given by (1 +
A;h/m)". The eigenvalues are inside the unit circle if |(1 + A;#/m)™| < 1, where

=

In (22), the parametrisation A; = a;+ib; has been used. Solving |(1 + A;h/m)™| < 1

m

1
:(Z\/m2+2aihm+(af+bi2)h2 : (22)
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Re {A,‘ + /\]}

Figure 1: Level curves of (20), where the colours indicate the values on h.

for h and using the fact 1) = alz + bi2 give

h<- (23)
il
Similar calculations for the ODE describing vech P(t) give
2m(a; + aj) )
h<——2, 1<i<j<ny (24)
|/\i + /\]|
Using A; = A; in (24) gives
_ 2m(a; + ug) __ 4ma; _ ma;’ (25)
‘/\, + /\]‘ |2/\z| |/\1|

which is half as much as the bound in (23), hence the upper bound for / is given
by (24). O

Theorem 1 shows that the sample time can be decreased if the absolute value of
the eigenvalues are increased, but also if the real part approaches zero. The level
curves of (20) for h = ¢ = constant in the complex plane are given by

m\?2 m?
=C@({lij+?) +b12]=c—2 (26)

201']'1’1’1
) 2
as; + bi]-
where a;; = Re {/\i + /\j} and b;; = Im {/\i + Aj}. Equation (26) is the description
of a circle with radius m/c centred in the point (—m/c, 0). The level curves are

shown in Figure 1, where it can be seen how the maximal sample time depends
on the magnitude and direction of the eigenvalues.
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Stability conditions of e, ,,(A,h) for p > 1 can be carried out in the same way as
for p = 1. For p = 2, the calculations can be done analytically and this results
again in (20),
2mRe {/\1 + /1]}
h<min{-——————=,1<i<j<n,. (27)
|/\1‘ + /\Jl

It means that though the accuracy has increased, recall (17c), the stability condi-
tion remains the same.

Increasing the order of approximation even more, results in a higher order poly-
nomial inequality that has to be solved. A numerical solution is therefore pre-
ferred. The stability bound for h/m will actually increase when p > 2 increases.
For example, ey ,,(Ah), which corresponds to the Runge-Kutta solution for a lin-
ear ODE gives, for real eigenvalues,

2.7852m
A

This is less conservative than the corresponding bound in (21).

h < eR. (28)

4 Reformulation of the Vectorised Solution for the
CDLE

The solution to the ODE describing the second order moment given by (12) can
be computed efficiently using the following lemma.

Lemma 1. The solution to the vectorised CDLE

vechP(t) = ApvechP(t) + vechGQG', (29)
is given by
vechP(t) = Fp(t)vechP(0) + Gp(t)vech GQG'. (30)
where Fp(t) and Gp(t) are given by
Sl gl )
Proof: The derivation in Appendix A gives that
Fp(t) = e®?!, (32)
Gp(t) = Apl(eA? 1) (33)
It is now easily verified that the Taylor expansion of (31) and (32) as
A;,l(eAPf—I):It+APf+AI%£+A§,f+..., (34)
2! 3! 4!

are the same. O
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The last result is important of two reasons. First, we avoid inversion of the large
matrix Ap by solving a matrix exponential instead. Second, the condition that Ap
has to be non-singular is relaxed.

The new solution based on Lemma 1 is presented in Theorem 2. The solution re-
quires the matrix exponential and the solution of an algebraic Lyapunov equation
for which efficient numerical solvers exist.

Remark 1. In contrast to Lemma 1, the solution to the CDLE in (5b) presented in Theo-
rem 2 actually requires Ap to be non-singular. The eigenvalues to Ap are given by A; + A;,
1 <i < j < ny [Liutkepohl, 1996], so we have that Ap is non-singular when the eigenvalues
of A are not mirrored in the imaginary axis. Eigenvalues in the origin is a special case of

this.

Theorem 2. Let Q be positive definite and assume that the eigenvalues of A are
not mirrored in the imaginary axis. Then the solution of the CDLE (5b) is given

by
P(t) = eAP(0)eA ! + Qy(1), (35a)
AQ, () + QAT + GOGT - eA'GQGTeA' = 0, (35b)

where Q(t) is a unique and positive definite solution to (3).

Proof: Taylor expansion of the matrix exponential gives

2,2 3.3
Apt . Apt
2! 3!
Using (73) in Appendix C, each term in the Taylor expansion can be rewritten
according to

APt = T+ Apt +

+... (36)

Al =D'10A + Ao T)f*D, (37)
hence
ehrt = pteteasasiip 7172 pi oAt g oA (38)
The first term in (30) can now be written as
eA?'vech P(0) = DY (e ® eAf)Dvech P(0) = Df(eAf @ eAf)vec P(0)
" Dtvec ATP(0)eA™! = vech eATP(0)eA . (39)
Similar calculations give
¢**'vech GQG' = Dfvec e*’GQG et £ vech Q(t). (40)
The last term in (30) can then be rewritten according to
A (eA? —T)vech GQG' = Ap'vech (Q(1) - GQG') £ vech Qq(t),  (41)

where it is assumed that Ap is invertible. Equation (41) can be seen as the solution
of the linear system of equations Apvech Q,(t) = vech (Q(t) — GQG'). Using the
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derivation in (65) in Appendix A backwards gives that Q (t) is the solution to the
algebraic Lyapunov equation

AQ,(t) + Qq(1)AT +GQGT - Q(1) = 0. (42)
Combining (39) and (41) gives that (30) can be written as
P(r) = eATP(0)eA ' + Qqu(t), (43)
where Q(t) is the solution to (42).

It is easily verified that Qg (t) in (3) satisfies (42) and it is well known that the
Lyapunov equation has a unique solution iff the eigenvalues of A are not mirrored
in the imaginary axis [Gaji¢ and Qureshi, 1995]. Moreover, the assumption that Q
is positive definite gives from (3) that Q(f) is positive definite, hence the solution
to (42) is unique and guaranteed to be positive definite under the assumptions on
A. O

If Lemma 1 is used directly, a matrix exponential of a matrix of dimension n,(n, +
1) x ny(n, + 1) is required. Now, only the Lyapunov equation (35b) has to be
solved, where the dimensions of the matrices are n, x n,. The computational
complexity for solving the Lyapunov equation is 3573 [Higham, 2008]. The total
computational complexity for computing the solution of (5b) using Theorem 2
is (log,(m) + p + 43) n3, where (log,(m) + p) n3 comes from the matrix exponen-
tial, and 4313 comes from solving the Lyapunov equation (3573) and taking four
matrix products giving 21 each time.

The algebraic Lyapunov function (35b) has a unique solution only if the eigenval-
ues of A are not mirrored in the imaginary axis [Gaji¢ and Qureshi, 1995], as a
result of the assumption that Ap is non-singular, and this is the main drawback
with using Theorem 2 rather than using Lemma 1. In the case of integrators, the
method presented in Wahlstrom et al. [2014] can be used. To be able to calculate
Q,(t), the method transforms the system such that the Lyapunov equation (35b)
is used for the subspace without the integrators, and the integral in (3) is used for
the subspace containing the integrators.

Discrete-time Recursion The recursive solution to the differential equations in (5)
describing the first and second order moments of the SDE (1) can now be written
as

x((k + 1)h) = eAx(kh), (44a)
P((k + 1)h) = A" P(kh)eA' + Q(h), (44b)
AQ (h) + Qu(MAT + GQGT - A"GQGTeA' = 0, (44c)

Equations (44b) to (44c) are derived using t = kh and t = (k + 1)h in (35).

The method presented in Theorem 2 is derived straightforwardly from Lemma 1.
A similar solution that also solves an algebraic Lyapunov function is presented
in Davison [1975]. The main difference is that Theorem 2 gives a value of the
covariance matrix Qg(t) for the discrete-time noise explicitly, as opposed to the
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Table 2: Six variants to calculate P(t). The last column shows the computa-
tional complexity p in O(n%) which is described in detail in Section 5.1.

METHOD | Description p in O(n})
I P(t) from Lemma 1. 6
II P(t) from Theorem 2. 3
11 P(t) from (4b) with Q calculated using equa- 3
tion (8).
v P(t) from (4b) with Q  calculated using an 3

eigenvalue decomposition for diagonalising
the integrand in (3).

\Y% P(t) from (4b) with Q, calculated using nu- 3
merical integration of the integral in (3) using
quadv in MATLAB.

VI P(t) from the matrix fraction decomposition 3
in (9).

solution in Davison [1975]. Moreover, the algebraic Lyapunov function in Davi-
son [1975] is independent of time, which is not the case here since eAtGQGTeATt
changes with time. This is not an issue for the recursive time update due to the
fact that eA"GQGTeA™! is only dependent on h, hence the algebraic Lyapunov
equation (44c) has to be solved only once.

5 Comparison of Solutions for the CDLE

This section will provide rough estimates of the computational complexity of
the different approaches to compute the CDLE, by counting the number of flops.
Numerical properties are also discussed. Table 2 summarises six variants of the
methods presented in Section 2 of how to calculate P(t).

5.1 Computational Complexity

Rough estimates of the computational complexity can be given by counting the
number of operations that is required. From Section 4 it is given that the compu-
tational complexity for METHOD I is O(n$) and for METHOD 11 it is (log,(m) + p +
43)n3. The total computational complexity of METHOD III is roughly (8(log, () +
p) + 6)n3, where (log,(m) + p)(2n,)® comes from ef* and 673 from the remaining
three matrix products. Using e.g. an eigenvalue decomposition to calculate the
integral, i.e., METHOD 1V, gives a computational complexity of O(nf’c). For nu-
merical integration, i.e., METHOD V, the computational complexity will be O(n?)
due to the matrix exponential and matrix products. The constant in front of n3
will be larger than for METHOD III and METHOD IV because of element-wise in-
tegration of the n, x n, symmetric matrix integrand, which requires n,(n, + 1)/2
number of integrations. For the last method METHOD VI, the same matrix expo-
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Figure 2: Mean execution time for calculating P(t) for randomly generated
state matrices with order n, x n, over 1000 MC simulations.

nential as in METHOD III is calculated which gives (log,(m) + p)8n3 operations.
In addition, 213 operations for the matrix inverse and 473 operations for the two
remaining matrix products are required. In total, the computational complexity
is (8(log,(m) + p) + 6)n3. The product C(t)Mj3(t)~! can of course be calculated
without first calculate the inverse and then perform the multiplication, but it is a
rough estimate presented here.

The computational complexity is also analysed by performing Monte Carlo simu-
lations over 1000 randomly chosen stable systems. The order of the systems are
n, =10,50,100,500,1000. As expected, the solution using METHOD I takes very
long time as can be seen in Figure 2. For METHOD I the size has been restricted to
n, < 100 since Ap grows to much for larger values. However, the computational
time using METHOD I compared to the other methods is clear. The computa-
tional time for the other methods are in the same order, which is also expected.
As discussed previously, the numerical integration will give a computational com-
plexity that has the same slope but with a higher offset than METHOD II-1V, and
METHOD VI, which is seen in Figure 2. It can also be noted that the numerical
integration for n, = 10 is slower than the METHOD L.

Note that not only the number of operations of performing e.g. the matrix ex-
ponential and the matrix multiplications affect the total time. Also, time for
memory management is included. However, the slope of the lines for large n,
is approximately six for METHOD I and three for the other methods, which agree
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Table 3: Standard deviation of the execution time for calculating P(t).
10 50 100 500 1000

I | 9.63-10> 7.85-107? 1.38 - -

IT | 1.88-10> 1.46-10* 8.20-10* 4.37-102 1.03-107!

IT | 6.09-10° 8.84-10> 3.71-10% 3.89-10% 2.41-10"!

IV | 7.67-10° 1.72-10* 7.42-10* 5.14-102 2.15-10"!

V | 1.26:10* 4.96-10* 1.68-103 2.12-10"! 1.39

VI | 1.95.-105 5.35-10> 3.89-10*% 3.69-102 2.06-107!

with the computational complexity discussed above. The standard deviation for
the computation time for the different methods is at least one order of magnitude
less than the mean value, see Table 3.

5.2 Numerical Properties

Here, the numerical properties will be analysed. First, the solution P(t) should
hold for any value of t. It means that a large enough value of ¢ should give that
P(t) equals the stationary solution given from the stationary Lyapunov equation

APt L PSAT L GQGT = 0 (45)

Second, the recursive updates should approach P5't and then stay there when
k — co.

Randomly generated stable system matrices, over 100 MC simulations?, of order
1, = 2 will be used with GQG' = I to show how the methods perform. For the
first case the value t = 100 has been used and for the second case the sample time
h = 0.01 s has been used and a total of 10,000 samples.

The stationary matrix P$%! is not obtained for METHOD III-1V, and METHOD VI
for all MC simulations. However, methods METHOD I-II and METHOD V gives
Pstt a5 the solution. The reason that METHOD III and METHOD VI cannot give
the correct stationary matrix is that they have to calculate the ill-conditioned

matrix eH,

For the second case, where the recursive update is used, the norm of difference
”P(t) - PStat” for the methods are shown in Figure 3 for the first 1000 samples. It
can be seen that METHOD I-V converge to the stationary solution. METHOD VI
is not able to converge to the stationary solution when the time goes by, instead
numerical problems occur, giving Inf or NaN (Not-a-Number) as solution.

6 Linear Spring-Damper Example

The different solutions and approximations described above will be investigated
for a linear model of a mass M hanging in a spring and damper, see Figure 4. The

2Here, only 100 MC simulations are used to be able to visualise the result, otherwise too many
samples with Inf or NaN as solution, which cannot be displayed in the figure.
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Figure 3: The mean norm over 100 MC simulations of the error P(t) — PStat
for the recursive updates. METHOD I-V gives the same behaviour whereas
METHOD VI diverges
equation of motion is
MG+dg+kq-Mg=0 (46)

where g is the distance from where the spring/damper is unstretched and g =

9.81 is the gravity constant. A linear state space model, using M = 1, with x =
T

(q q) is given by

x(t):(_ok _1d)x(t)+ (g) . (47)
O

6.1 Stability Bound on the Sample Time

The bound on the sample time that makes the solution to (47) stable, when Euler

sampling e; ,,(Ah) is used, can be calculated using Theorem 1. The eigenvalues
for A are

% . (48)
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Figure 4: A mass hanging in a spring and damper.

If d? — 4k > 0 the system is well damped and the eigenvalues are real, hence
2m 2m 2m } 2m

d+ViZl—ak d-Vai—ak 4 | a+vViZ-ak

h< min{ (49)

If instead d? — 4k < 0, the system is oscillating and the eigenvalues are complex,
giving

(50)

h<min{dm 2m dml_ dm
MY T 2k [T 2k

where we have used the fact that d2 — 4k < 0 to get the minimum value.

The values on the parameters have been chosen as d = 2 and k = 10 giving an
oscillating system. The stability bound is therefore h < 0.1ms.

6.2 Kalman Filtering
We will now focus on Kalman filtering of the spring-damper example.

The continuous-time model (47) is augmented with process noise giving the mod-
el

dx(t) = Ax(t)dt + B + Gdp(1), (51)

where A and B are given by (47), G = (0 1 )T and dB(t) is a scalar Wiener process

with E [dﬁ(t)dﬁ(t)T] = Qdt. Here it is used that Q = 5-1073. It is assumed that
the velocity 4 is measured with a sample rate T;. The measurement equation can
be written as

Vi = (O l)Xk + e = Cxy + e, (52)

where e} € R is discrete-time normal distributed white noise with zero mean and

a standard deviation of o = 0.05. Here, yi £ y(kT;) has been used for notational
convenience. It is easy to show that the system is observable with this measure-
ment. The stability condition for the first order approximation e; ,,(Ah) was cal-
culated to be h < 0.1m seconds in Section 6.1. We chose therefore T, = h = 0.09s.

T
The simulation represents free motion of the mass when starting at x5 = (O 0) .
The ground truth data is obtained by simulating the continuous-time SDE over
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tmax = 20s with a sample time hg that is 100 times shorter than T;. In that
case, the Wiener process d §(t) can at each sample instance be approximated by a
normal distributed zero mean white noise process with covariance matrix Qhg.

Four Kalman filters are compared where ¢A” is approximated either by e, ,,(Ah)
or by the MATLAB-function expm. The function expm uses scaling and squar-
ing techniques with a Padé approximation to compute the matrix exponential,
see Moler and Van Loan [2003]; Higham [2005]. Moreover, the update of the co-
variance matrix P(t) is according to the discrete filter (19b) or according to one
of the solutions presented in Sections 2.1 to 2.3. Here, the solution to the CDLE
given by Theorem 2 has been used, but the other methods would give the same
results. Remember though that the matrix fraction method can have numerical
problems. In summary, the Kalman filters are:

1. Fj, = ey,,,(Ah) and P(k + 1) = F,P(k)F} + G,Q;G],

2. Fjis given by the MATLAB-function expmand P(k+1) = FhP(k)FZ+GthGZ,

3. Fj = e1,u(Ah) and P(k + 1) = F,P(k)F] + Qq(h),

4. Fj, is given by the MATLAB-function expm and P(k + 1) = FhP(k)FZ +Q (h),
where Q () is the solution to the Lyapunov equation in (44c).

The Kalman filters are initialised with the true x, used for ground truth data,
plus a normal distributed random term with zero mean and standard deviation
0.1. The state covariance is initialised by P(0) = I. The covariance matrix for the
measurement noise is the true one, i.e., R = 02. The covariance matrix for the
process noise is different for the filters. For filter 1 and 2 the covariance matrix
Qh/m is used whereas for filter 3 and 4 the true covariance matrix Q is used.

The filters are compared to each other using Ny;c = 1000 Monte Carlo simula-
tions for different values of m. The oversampling constant m takes the following
values:

{1, 2, 3, 4,5 6,7, 8 9, 10, 20, 30, 40, 50} (53)

Figure 5 shows the root mean square error (RMSE) defined according to

1 tmax

pi=v 3 2 M)’ (54a)

t=t,

where tj = t;,,/2 in order to remove the transients, N is the number of samples
in [tg, tmax], and

Npc
MCp_ |1 TIPS
P =\ 5 Y (o-xo), (54b)

where XE.])(t) is the true ith state and )‘(ﬁj)(t) is the estimated ith state for Monte
Carlo simulation number j. The two filters 1 and 3 give almost identical results
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for the RMSE, therefore only filter 1 is shown in Figure 5, see the solid line. The
dashed lines are the RMSE for filter 4 (filter 2 gives the same result). We can
see that a factor of m = 20 or higher is required to get the same result for Euler
sampling as for the continuous-time solution®. The execution time is similar for
all four filters and increases with the same amount when m increases, hence a
large enough oversampling can be difficult to achieve for systems with hard real-
time requirements. In that case, the continuous-time solution is to prefer.

Remark 2. The maximum sample time, derived according to Theorem 1, is restricted by
the CDLE as is described in the proof. It means that we can use a larger sample time for
the ODE describing the states, in this particular case a twice as large sample time. Based
on this, we already have oversampling by a factor of at least two, for the ODE describing
the states, when the sample time is chosen according to Theorem 1.

In Figure 6 we can see how the norm of the stationary covariance matrix* for the
estimation error changes when oversampling is used. The four filters converge
to the same value when m increases. For the discrete-time update in (19b), i.e.,
filter 1 and 2, the stationary value is too large for small values of m. For the
continuous-time update in Theorem 2, it can be seen that a first order Taylor ap-
proximation of the exponential function, i.e., filter 3, gives a too small covariance
matrix which increases when m increases.

A too small or too large covariance matrix for the estimation error can be crucial
for different applications, such as target tracking, where the covariance matrix is
used for data association.

7 Extensions to Non-linear Systems

We will in this section adapt the results for linear systems to non-linear systems.
Inevitably, some approximations have to be done, and the most fundamental one
is to assume that the state is constant during the small time steps h/m. This
approximation becomes better the larger oversampling factor m is chosen.

7.1 EKF Time Update

Let the dynamics be given by the non-linear SDE
dx(t) = f(x(t))dt + G(x(t))dB(t), (55)

for t > 0, where x(t) € R™, f(x(t)) : R — R™, G(x(t)) : R — R™"#, and
dp(t) € R" is a vector of Wiener processes with E[dﬁ(t)dﬂ(t)T] = Qdt. For

simplicity, it is assumed that G(x(t)) £ G. The propagation of the first and second
order moments for the extended Kalman filter (EKF) can, as in the linear case, be

31t is wise to choose m to be a power of 2, as explained in Section 2.5
4The covariance matrix at time tmax is used as the stationary covariance matrix, i.e., P(tmax)-
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Figure 5: RMSE according to (54) as a function of the degree of oversampling,
where the solid line is filter 1 (filter 3 gives the same) and the dashed line is

filter 4 (filter 2 gives the same).
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Figure 6: The norm of the stationary covariance matrix for the estimation
error for the four filters, as a function of the degree of oversampling.
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Figure 7: A single flexible joint.

written as [Jazwinski, 1970]

x(t) = f(%(t)), (56a)
P(t) = F&(1))P(t) + P(t)F(x(t))" + GQGT, (56b)

where F(%(t)) is the Jacobian of f(x(t)) evaluated at %(t). The main differences
to (5) are that a linear approximation of f(x) is used in the CDLE as well as the
CDLE is dependent on the state vector x. Without any assumptions, the two
equations in (56) have to be solved simultaneously. The easiest way is to vec-
torise (56b) similar to what is described in Appendix A and then solve the non-

linear ODE
i( (1) )_( f&(t), (57)
dt \vechP(t)] ~ \Ap(%(t))vech P + vech GQG' )’

where Ap(x(t)) = DT (I ® F(%(t)) + F(%(t)) ® I)D. The non-linear ODE can be solved
using a numerical solver such as Runge-Kutta methods [Hairer et al., 1987]. If it
is assumed that X(¢) is constant over an interval of length h/m, then the two ODEs
describing %(t) and vech P(t) can be solved separately. The ODE for %(t) is solved
using a numerical solver and the ODE for vech P(¢) becomes a linear ODE which

can be solved using Theorem 2, where A - F(x(t)).

Remark 3. When m increases, the length of the interval, where %(t) has to be constant,
decreases. In that case, the assumption of constant %(¢) is more valid, hence the two ODEs

can be solved separately without introducing too much errors.

Similar extensions for the method using matrix fraction are straightforward to
derive. The advantage with the vectorised solution is that it is easy to solve the
combined ODE for x(t) and vech P(t) using a Runge-Kutta solver. This can be com-
pared to the method using matrix fraction, which becomes a coupled differential
equation with both vector and matrix variables.

7.2 Simulations of a Flexible Joint

A non-linear model for a single flexible joint is investigated in this section, see
Figure 7. The equations of motion are given by

]aqa + G(%) + D(‘?W qm) + T(GIW qm) =0, (58a)
]mqm+F(qm)_D(7a’ "Im)_ T(Qa' %ﬂ) =u, (SSb)
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Table 4: Model parameters for the non-linear model.

]a ]m M ¢ d kl k2 fd g
1 1 1 1 1 10 100 1 9.81

where the gravity, damping, spring, and friction torques are modelled as

G(qq) = —gM & sin(q,), (59a)
D(4a, 4m) = d(qa = 4m), (59b)
(Qa' Gm) = k2(qa = @) + k1(9a — 9m)°, (59¢)

(Gm) = fadm (59d)

Numerical values of the parameters, used for simulation, are given in Table 4.
The parameters are chosen to get a good system without unnecessary large os-
T

cillations. With the state vector x = (qa Am  4a qm) a non-linear system of
continuous-time ODEs can be written as

X3

X4
(gM(E sin Xl dA34—k2A12—k1A%2) 4 (60)

3

]m (dA34 + k2A12 + k1A12 - de4 + M)

X=|1
Ja

flxu)

where A;; = x; — x;. The state space model (60) is also augmented with a noise
model according to (55) with

0 0

0 0
G=|,_ 61
]al 0 ( )

0 J!

For the simulation, the arm is released from rest in the position g, = g, = 7/2

and moves freely, i.e., u(t) = 0, to the stationary point x = (Tl w 0 O)T. The
ground truth data is obtained using a standard fourth order Runge-Kutta method
with a sample time hg = 1-107¢s, which is much smaller than the sample time T;
for the measurements. In the same way as for the linear example in Section 6, the
Wiener process d f(t) can be approximated at each discrete-time instant by a zero
mean white noise process with a covariance matrix Qhg, where Q = 1-10731,. It is
assumed that the motor position g,, and velocity 4,, are measured, with additive
zero mean Gaussian measurement noise e(kT,) € R? with a standard deviation
0 = 0.05I,. The sample time for the measurements is chosen to be T, = h = 0.1s.

Two extended Kalman filters (EKF) are compared. The first filter uses the discrete-
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time update (19) where Euler sampling
x((k + 1)h) = x(kh) + hf (x(kh), u(kh)) £ F(x(kh)) (62)

has been used for discretisation. The second filter solves the continuous-time
ODE (57) using a standard fourth order Runge-Kutta method. The filters are ini-
tialised with the true x(0) used for simulating ground truth data plus a random
term with zero mean and standard deviation 0.1. The covariance matrix for the
estimation error is initialised by P(0) = 1-10-%I;. The results are evaluated over
1000 Monte Carlo simulations using the different values of m listed in (53).

Figure 8 shows the RMSE, defined in (54), for the four states. The discrete-time
filter using Euler sampling requires an oversampling of approximately m = 10 in
order to get the same performance as the continuous-time filter, which is not af-
fected by m that much. In Figure 9, the norm of the stationary covariance matrix
of the estimation error, i.e., |P(tyax)||, is shown. Increasing m, the value ||P(ty.4)l|
decreases and approaches the corresponding value for the continuous-time fil-
ter. The result is in accordance with the linear model described in Section 6.2.
The standard deviation for ||[P(¢y,,y )| is several orders of magnitude less than the
mean value and decreases as m increases with a similar rate as the mean value in
Figure 9.

The execution time for the two filters differs a lot. They both increase linearly
with m and the continuous-time filter is approximately 4-5 times slower than
the discrete-time filter. This is because of that the Runge-Kutta solver evaluates
the function f(x(#)) four times for each time instant whereas the discrete-time
filter evaluates the function F(x(kh)) only once. However, the time it takes for the
discrete-time filter using m = 10 is approximately 1.6 times slower than using
m = 1 for the continuous-time filter.

8 Conclusions

This paper investigates the continuous-discrete filtering problem for Kalman fil-
ters and extended Kalman filters. The critical time update consists of solving
one ODE and one continuous-time differential Lyapunov equation (CDLE). The
problem can be rewritten as one ODE by vectorisation of the CDLE. The main
contributions of the paper are:

1. A survey of different ways to solve the linear SDE is presented. The different
methods, presented in Table 2, are compared to each other with respect to
stability, computational complexity and numerical properties.

2. Stability condition for Euler sampling of the linear ODE which describes the
first and second order moments of the SDE. An explicit upper bound on the
sample time is derived such that a stable continuous-time system remains
stable after discretisation. The stability condition for higher order of ap-
proximations, such as the Runga-Kutta method, is also briefly investigated.

3. A numerical stable and time efficient solution to the CDLE that does not
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Figure 8: RMSE according to (54), where the solid line is the discrete-time
filter using Euler sampling and the dashed line is the continuous-time filter
using a Runge-Kutta solver.
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Figure 9: The norm of the stationary covariance matrix for the estimation
error for the EKF using Euler sampling (solid) and a fourth order Runge-
Kutta method (dashed).
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require any vectorisation. The computational complexity for the straight-
forward solution, using vectorisation, of the CDLE is O(nfc), whereas the
proposed solution, and the methods proposed in the literature, have a com-
plexity of only O(n3).

The continuous-discrete filtering problem, using the proposed methods, is evalu-
ated on a linear model describing a mass hanging in a spring-damper pair. It is
shown that the standard use of the discrete-time Kalman filter requires a much
higher sample rate in order to achieve the same performance as the proposed
solution.

The continuous-discrete filtering problem is also extended to non-linear systems
and evaluated on a non-linear model describing a single flexible joint of an in-
dustrial manipulator. The proposed solution requires the solution from a Runge-
Kutta method and without any assumptions, vectorisation has to be used for the
CDLE. Simulations of the non-linear joint model show also that a much higher
sample time is required for the standard discrete-time Kalman filter to be compa-
rable to the proposed solution.

Appendix

A Vectorisation of the CDLE

The matrix valued CDLE
P(t) = AP(¢) + P(HAT + GQG', (63)
can be converted to a vector valued ODE using vectorisation of the matrix P(¢).
P(t) € R™*"x is symmetric so the half-vectorisation is used. The relationship
between vectorisation, denoted by vec, and half-vectorisation, denoted by vech,
is
vecP(t) = Dvech P(t), (64)
where D is a n? x ny(n, + 1)/2 duplication matrix. Let np = n,(n, + 1)/2 and
Q = GQG. Vectorisation of (63) gives
vech P(t) = vech (AP(t) + P(t)AT + Q)
= vech AP(t) + vech P(t)AT + vech Q
= D' (vec AP(#) + vec P(+)AT) + vech Q

(€9 D+[(I ®A) + (A ®I)|Dvech P(t) + vech Q

= Apvech P(t) + vech Q (65)

where ® is the Kronecker product and D' = (D'D)"!D" is the pseudo inverse
of D. Note that D'D = I and DD # I. The solution of the ODE (65) is given
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by [Rugh, 1996]
¢
vech P(t) = eAP'vech P(0) + f eAP(1=5) ds vech Q. (66)
0

Assume that Ap is invertible, then the integral can be computed as

t t

d
Ap(t=5) 3o _ Apt [ ,~Aps 3o _ _A-l,-Aps) _ ,—Aps
feP ds_ePJe Pds_/ds( Ape I’)_e P/

0 0
= APIAG! (I -~ e_APt) = A}l (eAI’t - I). (67)

B Eigenvalues of the Approximated Exponential
Function

The eigenvalues of e, ,,(Ah) as a function of the eigenvalues of A are given in
Lemma 2 and Lemma 3 presents the result when p — oo if A is Hurwitz.

Lemma 2. Let A; and v; be the eigenvalues and eigenvectors, respectively, of
A € R™". Then the p’th order Taylor expansion e ,,(Ah) of eAl is given by

pm
ep,m(Ah):(I+A—h+...+l(A—h) )
™

pl\m
which has the eigenvectors v; and the eigenvalues
CR2A2 A2 war\"
1+ hAi + L+ L+ L (68)
m  2lm?2  3!m3 p!mP

fori=1,...,n.

Proof: The result follows from an eigenvalue decomposition of the matrix A. [
Lemma 3. In the limit p — oo, the eigenvalues of e, ,,(Ah) converge to ehhi,
i=1,...,n If A is Hurwitz (Re {1;} < 0), then the eigenvalues are inside the unit
circle.

Proof: When p — co the sum in (68) converges to the exponential function e/*

i =1,...,n. The exponential function can be written as
Rel i)

i
’

il — cos Im {A;} +isin Im{A;})

which for Re {A;} < 0 has an absolute value less than 1, hence e is inside the
unit circle. 0
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C Rules for Vectorisation and the Kronecker Product

The rules for vectorisation and the Kronecker product are from Higham [2008]
and Litkepohl [1996].

vecAB = (I® A)vecB = (B! @ I)vec A (69)
(CT ® A)vec B = vec ABC (70)
IRA+BI=A®B (71)
ASB _ oA g P (72)

(73)

73

e

DD'I®A+A®ID=(I®A+AQI)D
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Abstract

The performance of a non-linear filter hinges in the end on the ac-
curacy of the assumed non-linear model of the process. In particu-
lar, the process noise covariance Q is hard to get by physical mod-
elling and dedicated system identification experiments. We propose
a variant of the expectation maximisation (EM) algorithm which iter-
atively estimates the unobserved state sequence and Q based on the
observations of the process. The extended Kalman smoother (EKS) is
the instrument to find the unobserved state sequence. Our contribu-
tion fills a gap in literature, where previously only the linear Kalman
smoother and particle smoother have been applied. The algorithm
will be important for future industrial robots with more flexible struc-
tures, where the particle smoother cannot be applied due to the high
state dimension. The proposed method is compared to two alternative
methods on a simulated robot.

1 Introduction

Joint parameter identification and state estimation in state space model is an im-
portant branch of system identification [Ljung, 1999]. During the last decade,
subspace based approaches for estimating fully parametrised linear state space
models (so called black box models) have been well explored [Ljung, 1999]. At
the same time, the theory of grey-box identification of uncertain parameters in
physical models has been developed [Bohlin, 2006]. The model is here a non-
linear state space model without process noise. The basic idea is that the sys-
tem can be simulated for each value of the parameter vector, and the simulated
output can be compared to the observed measurements, where for instance the
maximum likelihood estimate (MLE) is computed. The situation with process
noise is considerably harder, since the simulated output has to be replaced with
a smoothing filter for the state sequence. A further problem is that the likeli-
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hood function becomes rather complicated. The EM algorithm in Dempster et al.
[1977] provides a method to compute the MLE by separating the smoothing and
parameter estimation problems. It has been explored for linear Gaussian models,
where the system matrices (A, C, Q, R) are estimated using the Kalman smoother
as the state estimator [Cappé et al., 2005]. For non-linear models, there is on-
going research on using the particle smoother to estimate the parameters in a
non-linear dynamic model [Schén et al., 2011]. However, the particle smoother
is not applicable for models with high state dimension.

Here we propose to use a linearised model for state estimation, leading to an
extended Kalman smoother (EKS). The EM algorithm will thus be approximate
in the same way as the EKS. We focus on the process noise covariance matrix,
which is the hardest one to assess in the modelling phase. Our application in
mind is industrial robots, where inertia, flexibilities and friction parameters in
each joint are all rather straightforwardly identified by dedicated experiments,
see Wernholt [2007] and Carvalho Bittencourt et al. [2010]. The sensor noise
covariance is also quite easy to get. Process noise, on the other hand, models
quite complex phenomena as well as model uncertainties.

The motivation to do this for industrial robots is the development of new robots
with increased elasticity and larger individual variations, such as variation of
gearbox stiffness or in the parameters describing the mechanical arm. To main-
tain or improve the robot performance, the motion control must be improved for
this new generation of robots. For robots with traditional measurement systems,
where only the motor angular position is measured, this can be obtained by im-
proving the model-based control as described in Bjorkman et al. [2008]. Another
option is to use inertial sensors to improve the estimation of the robot tool posi-
tion and velocity, which requires good knowledge about the noise. The estimated
state trajectories can be used for on-line feedback control as a mean of increasing
both the robust and the nominal performance of the robot. Another possible use
of tool estimation is iterative learning control (ILC) [Wallén et al., 2009].

Section 2 gives a short introduction to the problem and the EM algorithm. The
calculations for the EM algorithm are then given in Section 3. Two alternative
methods are presented in Section 4. Section 5 describes a robot model which is
used in Section 6 to compare the three methods. Finally, Section 7 concludes the

paper.

2 Problem Formulation

This paper is focused on a model structure given by
Xir1 = Fi (X ug) + Fa(x)w, (1a)
Vi = h(x, ug) +vi, (1b)
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where x; € R™, y; € R, wi ~ N(0,Q) and v, ~ N'(0,R). All model parameters

are assumed to be known except for Q € S" and R € SZil. Assume also that
F,(xy) has the following structure

0
Fr(x) == . 2

2( k) (FZ(xk)) ( )
This type of model structure is common for mechanical systems derived by New-
ton’s law or Lagrange’s equation.

One approach to find the covariance matrices R and Q is to use the well known
Maximum likelihood (ML) method. The idea with the ML method is to find the
unknown parameters 6 such that the measurements y;.y = {yy,...,yn} become
as likely as possible. In other words,

A

6" = argmax pg(y1.n), (3)
CIEC)

where pg(y;.n) is the probability density function (PDF) of the observations para-
metrised with the parameter 6. It is common to take the logarithm of the PDF,

Lo(y1:n) = log pe(y1:n), (4)
and find the parameter 6 that maximises (4), i.e.,
6™ = argmax Lo(y1.n). (5)
6cO

These two problems are equivalent since the logarithm is a monotonic function.
The ML problem can be solved using a standard optimisation method, see e.g.
Boyd and Vandenberghe [2009]. The solution can however be hard to find which
has lead to the development of the expectation maximisation (EM) algorithm.

The EM algorithm was originally invented by Dempster et al. [1977]. Theory
and examples for the EM algorithm can be found in McLachlan and Krishnan
[2008], see also Gibson and Ninness [2005] for robust estimation of LTI state space
models. In Schon et al. [2011], a solution of the more complicated problem to
estimate non-linear state space models is given, using a particle smoother. As
mentioned before, the particle smoother cannot be applied if the state dimension
is too high.

2.1 The Expectation Maximisation Algorithm

The principal idea with the EM algorithm is to introduce variables x;. which are
not observed directly. The variables x;.y can instead be observed indirectly from
y1.n. Take now the joint log-likelihood function

Lo(y1.n-X1:N) = log pe(yi:n, X1:N) (6)

185__,_ (Si) is the set of all symmetric positive definite (semi-definite) p x p matrices
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of the observed variables y;. and the variables x;.5. Equation (6) cannot be used
directly since x;.5 are unknown. Instead, calculate
[(0;0;) = Eg, [log pa(y1.N, x1.8)ly1:N ] (7)

where Eg,[-|-] is the conditional mean with respect to a PDF defined by the pa-
rameter ;. It can now be shown, see e.g. Schon et al. [2011], that any 0, such
that

I(6;6,) >T(6;6)), (8)
implies that

Lo(yi:n) > Lo, (y1:N)- 9)
Hence, the EM algorithm provides a sequence 8,/ = 1, 2,..., which approximates
AML . . . . . .
0 better and better for every iteration. The EM algorithm is summarised in

Algorithm 1. A possible stop criterion for the EM algorithm could be when the
change in 0, between two iterations, is small enough.

Algorithm 1 The Expectation Maximisation (EM) Algorithm

1: Select an initial value 6, and set I = 0.
2: Expectation Step (E-step): Calculate
['(6;0;) = Eg, [log pe(y1.n, X1:N)lY1:N ] -

3: Maximisation Step (M-step): Compute
0,1 =argmax I'(6;0;).
€O

4: If converged, stop. If not, set I =/ + 1 and go to step 2.

3 EM for Covariance Estimation

This section describes how the covariance matrices for the process and measure-
ment noise in (1) can be estimated using the EM algorithm. It is not possible to
simultaneously estimate both the covariance matrix Q for the process noise and
the covariance matrix R for the measurement noise, since it is the scaling between
them that affects the estimate when an extended Kalman filter (EKF) [Anderson
and Moore, 1979] is used. Therefore, estimate first R with dedicated experiments
and then Q with the EM algorithm. The matrix R can be estimated according to
the following steps.

1. Perform experiments and select a constant segment y of the measured sig-
naly.

2. Calculate vy =yy —y, where y is the mean of y.

3. Finally,

1 N
_ T
R = ng_lvkvk. (10)
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The matrix R can now be used in the EM algorithm to estimate Q.

Equation (1) can also be expressed in the more general conditional densities as

Xie1 ~ P(Xpet Xe) = N (Xper; Frpo FoxQF] ), (11a)
Yk ~ pylx) = N (yi; he, R), (11b)

where N (-) is the multivariate normal distribution function. The multivariate
normal distribution for the n-dimensional variable y with mean g and covariance
¥ is defined according to

1 1y a\Ty-1l¢, =
N X A e 2= T (p—pp) 12
The short notation
A A A
Fix = Fi(xp,ug),  Fpir = Fa(xk), g = h(xg, ug),

is sometimes used for simplicity in the sequel. Proceed now with the derivation
of the expectation and maximisation steps in Algorithm 1, where 6 = Q is the
sought parameter.

3.1 Expectation step

The joint likelihood can easily be written as

po(yi:n,Xi:N) = po(X1, Y1) I_l po(yilxi)po(xilxi-1), (13)
i=2
where
P(Xi YilX1:4-1, Y1,k-1) = P(Xko YiXk—1) = pyxlxx)p(xi[xi—1) (14)

has been used repeatedly. Taking the logarithm of (13) and using (11) together
with (12) give

1.
Lo(y1:n, X1.v) =log po(y1n. Xin) = L+ = Zlog I_[ (le 1QF; 1) )
=2 A::O

N

1

EZ le 1QF;; 1) Fi; (15)
i=2

where T is an expression independent of Q, t is the Moore-Penrose inverse [Mitra
and Rao, 1971],

= A

Fri=xi=Fy i, (16)
and ]_[/\]_10 A;j(+) means to take the product of all non-zero eigenvalues. The struc-

ture of F; in (2) gives

‘ T +_ 0 _ 0
(F,i-1QF], ;) —(0 £, 0F, ] (17)
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which leads to

t ~ t
[14((Fais@F ) ) = [(FainQFLL )| (18)
/\jio
The joint log-likelihood function (15) can now be written as
Lo(y1.n,X1.N) =L + = Zlog(' le 1QF21 1) )
1o _
-3 Y F(FiaQFL) Fu (19)
i=2
Next step is to calculate the expectation of Lg(y;.n,X;:n) to obtain I'(Q; Q).
1 o ~ U
['(Q;Q;) =Eq, [LQ(YLN;X1;N)|Y1:N] =L+3 ZEQ, [log(‘(FZ,i—lQI?zi_l) ‘) Yl:N]
i=2
1 '
—Str ZEQ, [(Fz,i—lQFL,l) FyF|; Y1:N] (20)
i=2
where L is independent of Q. The trace operator comes from the fact that
t~ =
FL (Fai1QFL, ) o =t (B (P QFF, ) Fig). (21)
Start with the calculations of the first expectation in (20).
~ t
Eq, [log(‘(Fz,ileﬁL_l) ) Y1:N]
~ t
~ [ tos |(Fatxi-QF -0 | pasxilyins i (22)

The integral cannot be solved analytically. Instead, an approximation has to be
made. The smoothed density of x;_; has a high peak around the smoothed esti-
mate if the sampling frequency and the SNR are high. Here, we use the extended
Kalman smoother (EKS), see Yu et al. [2004]. We can therefore approximate x;_;
with the smoothed states )‘(j_llN, in other words,

(fz(ﬁ?_HN)Qﬁg(f‘f—uN))Jr

Eq, [log(’(Fz,i-1QFL_1)+‘) Y1:N] ~ log( ) (23)

The second expectation in (20) can be written as

T~
Eq, [(Fli—lQF;,i—l) Fl,zﬂ,i YI:N]

T~
= j(Fz(XH)QF;(Xi—ﬂ) FuiF] ;po,(xi Xialyry) dxidxi g (24)
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Now use the smoothed density again and let

(F2xi-)QFS (xi-1)) = (Fal&, yJQET(R_ ) (25)

We have now

+~
Eq, [(FZYi—lQFzT,ifl) FLiF]

YI:N]

A A + ~
~ (Pz(xf_”N)QF;(Xf_”N)) JPl,i?—{,iPQ,(xi:Xi—ﬂYl:N)dxi dx;_q, (26)

where pg,(x;,x;_1ly1.n) can be seen as the smoothed density of the augmented

T T .
state vector &; = (xif1 X; ) ,1.e.,

I
po,(Xi, xi_1ly1.n) = po,(&ily1n) = N (51'; Ei|N'Pz‘5|}f])' (27)
The first and second order moments of the smoothed &; can be expressed as
A N S
. XN £ Pl Piin
£i|N = ( ;A(s ! ); P;IN = (PS )T ps » (28)
iIN i-1,ilN iIN
where ﬁ?—uN' ﬁ?lN' P?—IIN and P?|N are the first and second order moments of the
smoothed %X;_; and X; respectively. These are obtained if the augmented model
Xk
& = ( ) 29
k+1 F1 (xk’ uk) ( )

is used in the EKS. The integral in (26) cannot be solved analytically. Instead,

a first order Taylor expansion of F;(x;_1) around ﬁf—llN is used. The expression

1?1,1‘1?{,- in (26) can now be written as

FyF[, =(Xi - F (xi—l))(xi - F (xi—l))T
z(Xi = Fr(X_yn) = Juie1 - (Xig —ﬁf,lw))
x (x5 = Fy &) =Tt (i — % 0))
= (—11,1'-1 1) (51‘ - é?w) (Ei - é;N)T (—Il,i-l I)T
(T (&= Ew) (K - &)

+ (&5 — Fr &) (&6 - é?w)T (T, I)T

A A A A T
+ (xzs'|N -k (x?—llN))(xle -k (x?—llN)) , (30)
where the Taylor expansion
Fr(xio1) = Fy(&;_y n) + Jio1 - (Xim1 = %) (31a)
aFl (X)
i-1 = , 31b
Jiia e (31b)

1IN
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has been used.

The integral in (26) now becomes
A —~ (’ T
M; = J. FuiF] po, (%o Xicly1:n) dx; dxiy = (i I)anf; (i 1)

R R R R T
+ (x?u\f -k (x?—l\N)) (X?|N - Fl(x?—llN)) : (32)

It is thus possible to calculate I'(Q; Q;) according to

rQ;Q) L+—Zlog(| (Fstaw)) )+ 5 Z[long*lﬂog(le £ w))]

=2

T
——trQ+ZP+ M (FEE_ ) (33)
where we have used the fact that

(Eri—lQFzrifl)Jr _( 2,i- 1) Q+F21 1 (34)

In (34) it is used that F _, and Q have full row rank, and Fz: 1 and le 1Q have
full column rank, see Mltra and Rao [1971].

3.2 Maximisation step

Maximisation with respect to Q is the same as maximisation with respect to Qf =
Q! Take the derivative of (33) with respect to Q! and let the result be equal to
zero gives

Jar(Q; N—1 1Y ;
;g*?l) -T2 _EZ FY(_ M (3%, y)) = 0. (35)
i=2

The solution of the maximisation step is now obtained as

Ql+l ZP+ Xi_ 1|N F+(ﬁ§_1|N))T' (36)

3.3 Stop Criterion

The stop criterion can be chosen in different ways. Section 2.1 suggests that the
EM algorithm stops when the difference in the new and previous estimate is less
than a threshold. Another way is to use Lg(y;.n) in (4). The main problem is
to maximise Lg(y;.n), therefore stop the algorithm when no increase in Lg(y;.n)
can be observed. Equation (4) can be written as

N-1
Lo(yi:n) = log pa(y1:n) = log| p(y1) ]_I po(Yisily1:i)
i=1
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N-1
=logp(y1)+ ) logpq(yir1lyr:i) (37)
i=1
where Bayes’ rule has been used repeatedly. Here, log p(y;) is a constant and can
be omitted in the sequel for simplicity. The PDF pg(y;;1lyi:i) is identified as the
PDF for the innovations which can be calculated as

po(yiclyr:i) = N (it BRiey) Hisa PiyiHY; + R), (38)
dh(x
Hj,, = % B (39)
X=Xi+1i

where %;,1; and P;,; are calculated in the EKF during the measurement update.
The algorithm can now be stopped when

|Lo,(yin) - Lo, (Vi) < 70 (40)

where m and y are parameters to choose.

4 Alternative Ways to Find the Covariance Matrix of
the Process Noise

There are many alternative ways of estimating the covariance matrix for the pro-
cess noise and here two examples will be described. These two alternatives, which
are less complicated than the EM algorithm, will be compared to the result of the
EM algorithm in Section 6.

The first method, presented in Algorithm 2, minimises the path error

er = Xk — 2 + Iy~ 942, (41)

where X; and yj are the true coordinates for the tool, and X, and ¥, are the esti-
mated coordinates for the tool. To simplify the problem, the covariance matrix is
parametrised as a diagonal matrix. The notation (X, ) = EKF(Q) in Algorithm 2
denotes that the estimated position is a function of Q. A standard optimisation
method can be used to solve step 2 in Algorithm 2, see e.g. Boyd and Vanden-
berghe [2009]. The problem is not convex, i.e., the solution is not guaranteed to
give a global optimum. However, the method is straightforward and has been
used before, see Henriksson et al. [2009] and Axelsson [2009]. One disadvantage
with the method is that the true tool position is required.

The second method starts with an initial guess Q(. The smoothed states are then
calculated using Q. After that, equation (1a) and the smoothed states are used
in order to derive the noise wy, k = 1,..., N. The covariance matrix is finally ob-
tained from the vector wy.y = {wy,..., wy}. The method is repeated with the new
Q-matrix until convergence is obtained. The method is summarised Algorithm 3.
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Algorithm 2 Minimisation of the path error

1: Select an initial diagonal matrix Qy € R**4,

2: Minimise ‘/lejzl lex|? subject to A >0,j=1,..,4 (%xy) = EKF(Q), and
Q =diag (A, Ay, A3, A4) Qo

3: The sought covariance matrix Q is obtained as Q = diag(/\j, A%, A5, /\Z)Qo
where /\;, j=1,...,4, are the optimal values from step 2.

Algorithm 3 Iterative covariance estimation with EKS

1: Select an initial value Q( and set / = 0.
2: Use the EKS with Q.
3: Calculate the noise according to

FIN o N
Wk = Fz(xiw) (xi+1|N - Fl(xiw' uk))'

4: Let Qj, be the covariance matrix for wy according to

L&

.

Qi1 = N Zwkwk-
k=1

5: If converged, stop, If not, set I = [ + 1 and go to step 2.

5 Application to Industrial Robots

The robot model is a joint flexible two axes model from Moberg et al. [2008]. The
model assumes rigid links and flexible joints. Each joint is a two mass system
consisting of two angles, the arm angle q,;, and the motor angle gq,,,;. Let the state
vector be given by
T
x=( g «) =(al @} af ab) (42)
T T

where q, = (%1 qaz) A P (qml qmz) , contain the arm angles q, and the
motor angles q,, of both joints. The model accounts for flexibilities in the joints
via non-linear stiffness and linear viscous damping. The model also includes non-
linear friction. A continuous-time state space model of the system is given by,

X
. x
x= Ma_l(xl)(—c(xpxs,)—G(Xl)—N(x)+wa) ’ (43)
M;nl(N(X)+F(X4)+u+Wm)

where N(x) = D (x3 —x4) + T(xq,X;). N(x) accounts for the flexibilities in the
joints, via the linear viscous damping D - (x3 — x4) and the non-linear stiffness
T(x1,x3). In other words, if we dispense with N(x), we are back at a standard
rigid robot model. Furthermore, M,(x;) and M,, are the mass matrices for the
arm and motor, C(x1,x3) accounts for the centrifugal and centripetal torques,
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and G(x;) accounts for the effect of gravity on the links. The non-linear friction
is described by F(x3), u represents the motor torque applied to the robot and

T T
a Wm

gives a discretised model according to (1) and (2). The rank conditions in order
to use (34) are also satisfied.

=
w = (w ) is the process noise. An Euler forward approximation of (43)

6 Simulation Results

The method in Section 3 is evaluated and compared to the two alternative meth-
ods described in Section 4. The model given in Section 2 is first simulated, accord-
ing to Axelsson [2009], to get all the required quantities, i.e., ug, yx, Xx and yj. In
system identification, it is common to estimate a certain parameter or parameters
starting at different initial values and see if the true one is obtained. Here, on the
other hand, there is no information about the true covariance matrix, even for
simulated data. Instead, the estimated covariance matrices, for different initial
values, are used to calculate the path error according to (41). When the path er-
ror differs a lot with different initial values it means that the method converges
to different local optima. There is however no guarantee that a solution is in a
global optimum although the path errors do not differ. Here, the maximum and
minimum of the 2-norm of the path error are used to see how much the solutions
differ with different initial values. It is preferred to have a method that results in
small and similar path errors for different initial values.

Table 1 shows that the maximal and minimal path errors for the EM algorithm
are more or less the same. The same concerns Algorithm 3. The EM algorithm
gives however a lower path error. Algorithm 2 gives, on the other hand, path er-
rors that differs considerably. This can also be seen in Figure 1. This means that
Algorithm 2 gets stuck in different local optima. A comparison between the path
errors for the EM algorithm, Algorithm 3 and the best solution of Algorithm 2 is
shown in Figure 2. The EM algorithm is clearly much better than the two alterna-
tives.

It is also interesting to see how (37) looks like for Q;, I =0, ..., both for the EM
algorithm and Algorithm 3. The EM algorithm and Algorithm 3 were therefore
forced to take more iterations than necessary. The log-likelihood function (37)
can be seen in Figure 3 for 100 iterations. We see that the curve for the EM algo-
rithm flattens out somewhere around 50 iterations and stays constant after that.
It means that it is unnecessary to continue to more than about 60 iterations. One

Table 1: Max and min of the 2-norm of the path error in mm for the three
different methods.

’ \ Max \ Min ‘
EM 0.2999 | 0.2996

Alg. 2 | 3.3769 | 1.5867
Alg. 3 | 2.6814 | 2.6814
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Figure 1: The path error for 10 Monte Carlo simulations of Algorithm 2.
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Figure 2: The best path error for the EM algorithm (solid), Algorithm 2
(dashed) and Algorithm 3 (dash-dot).
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Figure 3: The log-likelihood function for the first 100 iterations in the EM
algorithm (solid) and Algorithm 3 (dash-dot).

thing to comment is the peak around 10 iterations in the curve. This contradicts
the property of the EM algorithm that the sequence Q;, | = 0,..., approximates
QM better and better. This can be explained by the approximations that have
been made during the expectation step and that the calculation of (37) in the EKF
is approximately. The curve for Algorithm 3 flattens out after 10 iterations and
stays constant after that. Algorithm 3 is also without any peak and the stationary
value is lower than for the EM algorithm.

7 Conclusions and Future Work

Three different methods to estimate the covariance matrices have been compared.
The EM algorithm derived in Section 3 gives a lower path error, considering the
true path and the estimated path from an EKF. The EM algorithm is also robust
to changes in the initial value. One advantage with the EM algorithm is that no
true tool position is needed, which is the case for Algorithm 2. A next step is to
use the EM algorithm on experimental data to estimate the covariance matrices.
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Abstract

Control of a flexible joint of an industrial manipulator using H.,-
design methods is presented. The considered design methods are 1)
mixed-H,, design, and ii) H,, loop shaping design. Two different con-
troller configurations are examined: one uses only the actuator posi-
tion, while the other uses the actuator position and the acceleration
of the end-effector. The four resulting controllers are compared to a
standard PID controller where only the actuator position is measured.
The choices of the weighting functions are discussed in details. For
the loop shaping design method, the acceleration measurement is re-
quired to improve the performance compared to the PID controller.
For the mixed-H,, method it is enough to have only the actuator po-
sition to get an improved performance. Model order reduction of the
controllers is briefly discussed, which is important for implementa-
tion of the controllers in the robot control system.

1 Introduction

The requirements for controllers in modern industrial manipulators are that they
should provide high performance, at the same time, robustness to model uncer-
tainty. In the typical standard control configuration the actuator positions are
the only measurements used in the higher level control loop. At a lower level, in
the drive system, the currents and voltages in the motor are measured to provide
torque control for the motors. In this contribution different H,-controller de-
sign schemes are compared when using two different sensor configurations. First,
the standard case where only the position of the actuator rotation is used, and
second a configuration where, in addition, the acceleration of the tool tip is mea-
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sured. Two different H,, methods are investigated: i) loop shaping [McFarlane
and Glover, 1992], and ii) multi-H,, design [Pipeleers and Swevers, 2013; Zavari
et al.,, 2012].

Motivated by the conclusions from Sage et al. [1999] regarding the area of robust
control applied to industrial manipulators, this contribution includes:

* results presented using realistic models,
* a comparison with a standard PID control structure,

* model reduction of the controllers to get a result that more easily can be
implemented in practice.

The model used in this contribution represents one joint of a typical modern
industrial robot [Moberg et al., 2009]. It is a physical model consisting of four
masses, which should be compared to the typical two-mass model used in many
previous contributions, see Sage et al. [1999] and the references therein. The joint
model represents the first joint of a serial 6-DOF industrial manipulator, where
the remaining five axes have been configured to minimise the couplings to the
first axis. To handle changes in the configuration of the remaining axes, gain
scheduling techniques can be used based on the results in this paper.

An important part of the design is the choice of the weighting functions, which
is an essential task to get a satisfactory performance. The work of choosing the
weights is difficult, tedious and time consuming. This can be be the reasons for
why H,, methods are not used that often in practice even though the performance
and robustness can be increased. In particular, the use of two measurements
for control of one variable requires special treatment. The development of the
weighting functions for the four controllers is discussed in details, and provides
a significant part of the contributions in the paper.

Controller synthesis using H,, methods has been proposed in Song et al. [1992];
Stout and Sawan [1992], where the complete non-linear robot model first is lin-
earised using exact linearisation, second an H,, controller is designed using the
linearised model. The remaining non-linearities due to model errors are seen as
uncertainties and/or disturbances. In both papers, the model is rigid and the
H, controller, using only joint positions, is designed using the mixed-sensitivity
method. In Sage et al. [1997] H, loop shaping with measurements of the actuator
positions is applied to a robot. The authors use a flexible joint model which has
been linearised. The linearised model makes it possible to use decentralised con-
trol, hence H,, loop shaping is applied to n SISO-systems instead of the complete
MIMO-system.

Explicit use of acceleration measurements for control in robotic applications has
been reported in, for example, de Jager [1993]; Dumetz et al. [2006]; Kosuge et al.
[1989]; Readman and Bélanger [1991] and Xu and Han [2000]. In Dumetz et al.
[2006], a control law using motor position and acceleration of the load in the
feedback loop is proposed for a Cartesian robot!. The robot is assumed to be

IFor a Cartesian robot the joint acceleration is measured directly by an accelerometer, while for a
serial type robot there is a non-linear mapping depending on the states.
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Figure 1: System description for general H,, synthesis (a) and loop shaping
(b)-

flexible and modelled as a two-mass system, where the masses are connected
by a linear spring-damper pair. Another control law of a Cartesian robot using
acceleration measurements is presented in de Jager [1993]. The model is a rigid
joint model and the evaluation is made both in simulation and experiments.

In Kosuge et al. [1989] a 2-degrees-of-freedom (DOF) manipulator is controlled
using acceleration measurements of the end-effector. The model is assumed to be
rigid and it is exactly linearised. The joint angular acceleration used in the non-
linear feedback loop is calculated using the inverse kinematic acceleration model
and the measured acceleration. The use of direct measurements of the angular ac-
celeration in the feedback loop is presented in Readman and Bélanger [1991] for
both rigid and flexible joint models. A more recent work is presented in Xu and
Han [2000], where a 3-DOF manipulator is controlled using only measurements
of the end-effector acceleration.

The theory for synthesis of H,, controllers is presented in Section 2. The model
describing the robot joint is explained in Section 3. In Section 4, the require-
ments of the system as well as the design of four controllers are described, and in
Section 5 the simulation results are shown. Finally, Section 6 discuss low order
controller synthesis and Section 7 concludes the work.

2 Controller Design Methods

In this section, a brief introduction to mixed-H,, design [Pipeleers and Swevers,
2013; Zavari et al., 2012] and H,, loop shaping [McFarlane and Glover, 1992] will
be presented.

2.1 Mixed-H_, Controller Design

A common design method is to construct the system P(s) in

z Pyyi(s) P12(5))(W) (W)
= = P(s 1
(Y) (P21(5) Pyy(s))\u )y M
by augmenting the original system y = G(s)u with the weights W,(s), Ws(s), and
Wr(s), such that the system z = F;(P, K)w, depicted in Figure 1a, can be written
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as
( )Gwul(s)
Fi(P,K) = -Wr(s)T(s) |, (2)
Ws(s)S(s)
where S(s) = (I + G(s)K(s))™! is the sensitivity function, T(s) = I — S(s) is the
complementary sensitivity function, and Gy (s) = —K(s)(I + G(s)K(s))™! is the

transfer function from w to u. The H,, controller is then obtained by minimising
the H,,-norm of the system F;(P, K), i.e., minimise y such that ||F;(P, K)||, < ¥
Using (2) gives

0 (Wy(iw)Gyy(iw)) <y, Yo, (3a)
G(Wr(iw)T(iw)) <y, Yo, (3b)
c(Ws(iw)S(iw)) < y, V. (3¢)

(

The transfer functions Gyy(s), S(s), and T(s) can now be shaped to satisfy the
requirements by choosing the weights Wy(s), Ws(s), and Wr(s). The aim is to get
a value of y close to 1, which in general is hard to achieve and it requires insight
in the deign method as well as the system dynamics. For more details about the
design method, see e.g. Skogestad and Postletwaite [2005]; Zhou et al. [1996].

The mixed-H,, controller design [Pipeleers and Swevers, 2013; Zavari et al., 2012]
is a modification of the standard H,,-design method. Instead of choosing the
weights in (2) such that the norm of all weighted transfer functions satisfies (3),
the modified method divides the problem into design constraints and design ob-
jectives. The controller can now be found as the solution to

mirI1<i(1rr)1ise Y (4a)
subject to  ||Wp(s)S(s)|| (4b)
[[Ms(5)S(s)lle < 1 (4¢)
Wa(s)Gwul(s )II (4d)
IWr(s)T (5)lloo (4e)

where y not necessarily has to be close to 1. Here, the weight Wg(s) has been
replaced by the weights Mg(s) and Wp(s). The method can be generalised to other
control structures and in its general form it is formulated as a multi-objective
optimisation problem. More details about the general form and how to solve the
optimisation problem are presented in Pipeleers and Swevers [2013]; Zavari et al.
[2012].

2.2 Loop Shaping using H_, Synthesis

For loop shaping [McFarlane and Glover, 1992], the system G(s) is pre- and post-
multiplied with weights Wi (s) and W,(s), see Figure 1b, such that the shaped
system Gg(s) = W;(s)G(s)W;(s) has the desired properties. The controller K,(s)
is then obtained using the method described in Glover and McFarlane [1989]
applied on the system Gq(s), giving the controller K (s). Finally, the controller



3  Flexible Joint Model 175

dm a1 9a2 9a3
k k k
u 1 2 3 wp
] ]al ]u2 ]a?:
— — —
wm
0000 d 1500000 dp 1050007 d3 250000
fm fal faZ fa3

Figure 2: A four-mass flexible joint model, where ], is the motor inertia and
Ja1, Ja2, and ] ;3 are the distributed arm inertias.

K(s) is given by
K(s) = Wi(s)Ks(s) Wa(s). (5)

Note that the structure in Figure 1b for loop shaping can be rewritten as a stan-
dard H,, problem according to Figure la, see Zhou et al. [1996] for details. It
will be used in Section 6 for synthesis of low order controllers.

The MATLAB function ncfsyn, included in the Robust Control Toolbox, is used
in this paper for synthesis of H,, controllers using loop shaping.

3 Flexible Joint Model

The model considered in this paper is a four-mass benchmark model of a sin-
gle flexible joint, see Figure 2, presented in Moberg et al. [2009]. The model
corresponds to joint 1 of a serial 6-DOF industrial manipulator, where the five
remaining axes are configured such that the couplings to joint 1 are minimised,
see Moberg et al. [2009] for more details about the operating point where the
model has been linearised.

Input to the system is the motor torque u, the motor disturbance w,, and the
end-effector disturbance wp. The four masses are connected by spring-damper
pairs, where the first mass corresponds to the motor. The other masses repre-
sents distributed masses placed along the arm. The first spring-damper pair is
modelled by a linear damper and non-linear spring, whereas the other spring-
damper pairs are modelled as linear springs and dampers. The non-linear spring
is characterised by a low stiffness for low deflections and a high stiffness for high
deflections. This behaviour is typical for compact gear boxes, such as harmonic
drive [Ruderman and Bertram, 2012]. For design of the H,, controllers, the non-
linear model is linearised in one operating point in the high stiffness region, mo-
tivated by that a constant torque, e.g. gravity, is acting on the joint. Moreover,
the friction torques are assumed to be linear and the input torque u is limited
to +20Nm. The outputs of the system are the motor position g,, and the end-
effector acceleration P, where

P Liqa +1qa + 13%3. (6)
1
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In (6), 1 is the gear ratio and Iy, I, and I3 are the respective link lengths.

Using Lagrange’s equation, the linearised flexible joint model can be described
by a set of four ODEs, which can be reformulated as a linear state space model
according to

x =Ax+Byu+Byu, (7a)
y = Cx + Dyu + Dy,w. (7Db)
where the state vector and disturbance vector are given by
. . . .\ T
x=(qm 40 a2 9a3 Gm 4o a2 da3) (8a)
T
W = (wm wp) . (Sb)

The linear state space model is used for design of the H,, controllers. Note that
the matrices C, Dy, and D,, are different depending on which sensor configura-
tion that is used, whereas the matrices A, B,;, and B,, stay the same.

4 Design of Controllers

In this section, four controllers based on the methods in Sections 2.1 and 2.2 are
considered, using only the motor angle g,, or both g,, and the acceleration of the
end-effector P. The controllers are

qm): Loop shaping controller using g,,.

HZS(
2. Hb ! (gm» P): Loop shaping controller using g,, and P.
3. Hm(q ,): Mixed-H,, controller using g,,.

He(

qm» P): Mixed-H,, controller using g,, and P.

The four controllers are compared to a PID controller where only g,, is used. The
PID controller is tuned to give the same performance as the best controller pre-
sented in Moberg et al. [2009].

To get high enough gain for low frequencies, without having the pole exactly
in 0, the break-point of the magnitude function has to be very small, around
1075 rad/s. From Figure 3 it can be seen that the main dynamics of the system
is present in the frequency interval 30-110rad/s. The large frequency span from
1075 rad/s to 110rad/s makes it numerically difficult to solve for the controller
using the standard iterative methods described in Skogestad and Postletwaite
[2005]; Zhou et al. [1996]. The mixed-H,, method does not suffer from this, since
the design objectives (choice of Wp) for low frequencies is separated from the
design constraints (choice of Mg).

4.1 Requirements

The controllers using H,, methods are designed to give better performance than
the PID controller. In practice it means that the H,, controllers should attenuate
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Figure 3: Singular values for the system from u toy (top) and w to'y (bot-
tom), fory = q,, (dashed) andy = (q,, P)' (solid).

the disturbances at least as much as the PID controller and the cut-off frequency
should be approximately the same.

In Figure 3, the singular values of the systems from wtoy = g,, and wtoy =

(qm 75)T show that an integrator is present. It means that in order to attenuate
piecewise constant disturbances, it is required to have at least two integrators
in the open loop GK. Since G already has one integrator, the other integrators
have to be included in the controller K. For controllers 2 and 4, an integrator
will be present if W; or W, include an integrator, recall (5). The requirements for
controllers 1 and 3 become that |S(iw)| — 0 for w — 0. Note that it is not possible
to stabilise the plant P(s) with marginally stable weights. Instead the pole has to
be moved into the left half plan a small distance.

4.2 Choice of Weights

H!3(q,,): Using only g,, as a measurement gives a SISO-system, hence W; and
W, are scalar transfer functions. For a linear SISO-system it is possible to use
one of W; and W, since the transfer functions commute with the system G(s).
Therefore, Wi(s) = 1 and W,(s) is chosen such that the desired loop shape is
obtained. First of all, it is necessary to have an integrator as discussed above.
Having a pure integrator will lead to that the phase margin will be decreased,
a zero in s = —10 is therefore added in order not to change the loop gain for
frequencies above 10rad/s. Next, the gain is increased to get the desired cut-off
frequency. The result using the weight is that the loop shape has peaks above



178 Paper E  H,-Controller Design Methods

30rad/s. To reduce the magnitude of the peaks a modified elliptic filter?

0.5227s% + 3.266s + 1406
H(s) = 5
5%+ 5.808s + 2324
is introduced in W,. The weights are finally given as

s+ 10

Wi(s) =1, Wy(s) =100 H(s). (10)

Using ncfsyn a controller of order 13 is obtained.

H! (g P): Adding an extra measurement signal in terms of the acceleration
of the end-effector gives a system with one input and two outputs. For stability
reasons, it is not possible to have an integrator in both control channels. There-
fore, the integrator is placed in the channel for g, since the accelerometer mea-
surement has low frequency noise, such as drift. For the same reason as for the
other controller, a zero in s = —3 is introduced. The transfer function from input
torque to acceleration of the end-effector has a high gain in the frequency range
of interest. To decrease the gain such that it is comparable with the motor angle
measurement, a low pass filter is added in the acceleration channel. The final
weights are

(11)

.2
Wi(s) =50, Wy(s)= diag(s 3 0 ),

s " (s+5)2
giving a controller of order 13. Introducing an elliptic filter to attenuate the

peaks in the open loop did not give the same results as for the H% (g,,)-controller.
Instead of improving the loop gain, the elliptic filter made it worse.

H™(q,,): For this controller, four different weights have to be chosen, recall (4).
The weight Mg should limit the peak of S and is therefore chosen to be a con-
stant®. The peak of G,y is also important to reduce in order to keep the control
signal bounded, especially for high frequencies. A constant value of W, is there-
fore also chosen. In the spirit of try simplest thing first, the weight Wr is also
chosen to be a constant

In order to attenuate the disturbances it is, as was mentioned above, necessary to
have at least one integrator in the controller. Forcing S to 0 is the same as letting
Wp approach co when w — 0. To get a proper inverse, a zero is also included
in the weight. Since a pure integrator is not used, the slope of the weight has to
be higher than 20 dB per decade frequency, in order to force S to be low enough.
This was accomplished by taking the weight to the power of 3 (2 was not enough).
The numerical values of the weights are chosen as

W, = 1075020 . = 10710720, (12a)
_ s+100.1)\3
Mg = 1071020, wp = (2250 (12b)

2The filter is designed to have a magnitude of 0dB up to 50rad/s, after that -10dB, but due to
ripple, the real magnitude will differ from that.
3More complicated weights can be used but here we try simple things first.
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The constant weights in the form 107%/20 can be interpret as a maximum value,
for the corresponding transfer function, of a dB. The resulting controller is of
order 10.

H™ (qm P): Like for the controller H%(qg,, P), designing the weights for the
mixed-H,, method becomes somewhat more involved with two measurements
and one control signal. The aim is to attenuate the disturbances influence on the
end-effector position. A variant is to find a rough estimate of the end-effector
position and then choosing the weights from that. A straightforward estimate of
P using P is

N 1 ..

Due to low frequency drift and bias in an accelerometer, this estimate is only
useful for high frequencies. A high pass filter is therefore used according to

Pagn= o Lpoe, 1 _p (14)
s P prs)?

where ¢, and p are constants to choose. Another straightforward estimate of P is
to use the motor angle g,, according to P = Iq,, where [ is the length of the arm.
Compared to the estimated position using the acceleration, this new estimate is
only valid for low frequencies. Using a low pass filter gives an estimate for low
frequencies. It is important that the two estimates do not overlap each other,
hence the low pass filter is chosen as the complementarity to the previous used
high pass filter. The low frequency estimate is now given by

52 25+ p

— _|\lg,, = c,—=pl 15
(p+S)2) dm Cl(p+$)2p Am ( )
where ¢; is a design variable. The final estimate of P is the sum of the two esti-
mates above, hence

75low:Cl (1_

A 2s+p 1 q
P=(agmprl <p+s)2)(7gi) (16)

w

Using the weights
Mg =MgW, Wp=WpW, Wp=WrW, (17)

where Mg, Wp, and Wy can be designed in a similar way as in Section 4.2, makes
it possible to use more than one output together with one input. The last weight
W, can be chosen similar as in Section 4.2. The numerical values of the weights
are

_ 10—40/20 _ (30s+75 0.1
W, =10 s W=(15F ) (18a)

§ _ _ s+80 \?
Ms = 10772, WP:(5+015) ’ (18b)
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and it turns out that Wr is not needed for the performance. Using these weights
results in a controller of order 13.

4.3 Controller Characteristics

The resulting loop gains for the five controllers are shown in Figure 4. The four
controllers using H,, methods do not give as high peaks as the PID-controller
around 100rad/s. It can also be seen that introducing P as a measurement elimi-
nates the notch at 30 rad/s.

In Figure 4, the magnitudes of the five controllers are presented. The PID con-
troller is smoother than the other controllers. The reason is that a part of the
system dynamics is included in the H,, controllers. As a result, they try to re-
move the resonance peaks from the system, which can be seen in Figure 3, hence
the peaks in the amplitude function of the H,, controllers. The weights W, for

the controllers H(g,,) and HZ(q,,, P) are different which can be seen in Figure 4
for high frequencies. Comparing the two controllers Hif,(q,n) and Hif,(qm, P) for
high frequencies it can be seen that they behave similar. The PID-controller has
the highest magnitude for high frequencies, which implies that the measurement

noise will be amplified more than for the H,, controllers.

5 Simulation Results

The five controllers are evaluated using a simulation model. The simulation
model consists of the flexible joint model described in Section 3, a measurement
system, and a controller. The robot joint model is implemented in continuous
time whereas the controllers operate in discrete time. The continuous-time con-
trollers developed in Section 4, are therefore discretised using Tustin’s formula.
The measurements are affected by a time delay of one sample as well as zero mean
normal distributed measurement noise. The sample time is T; = 0.5 ms.

The system is excited by a disturbance signal w containing steps and chirp signals
on both the motor and end-effector. The performance is evaluated using a perfor-
mance index, which is a weighted sum of peak-to-peak errors and settling times
in the simulated end-effector position and the maximum torque and the torque
noise in the simulated motor torque. The reader is referred to Moberg et al. [2009]
for complete details about the disturbance signals and the performance index.

Figure 5 shows how the motor torque differs between the five controllers. In the
upper diagram it can be see that H’(qg,,) gives higher torques than the PID and
the H.(q,,) controllers. The PID gives higher torque noise during steady state
due to the gain of the controller for high frequencies, recall Figure 4. In the lower
diagram in Figure 5 it is shown that the controllers 1% (g,,, P) and H(g,,,, P) give
similar torque signals, and lower compared to the PID controller. A low torque
signal is preferred to reduce the energy consumption and to decrease the wear in

the motor and gear.

The end-effector position is presented in Figure 6. In the top graph it is seen that
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Figure 4: Loop gain |KG| and controller gain |K| for the five controllers.
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Controllers using q,,
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Figure 5: Applied motor torque from the five controllers. The top graph
shows the controllers using only q,,. The bottom graph shows the PID and

the controllers using q,,, and P.
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Figure 6: Simulated end-effector position for the five controllers. The top
graph shows the controllers using only q,,. The bottom graph shows the PID
and the controllers using q,, and P.
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Table 1: Performance index for the five controllers, where lower value is
better.

PID  HE(qm) HE@w P)  H(Gw)  HZ(qm P)

55.7 55.4 45.8 42.4 28.8

H (g,,) gives, compared to the PID, higher oscillations during the time intervals
10-15s and 37-42s, which corresponds to a chirp disturbance at the end-effector.
For step disturbances and chirp disturbances on the motor (time intervals 16-21s
and 43-58s) 1’ (g,,) and the PID are more similar. The controller 1 (g,,) is bet-
ter than the other two controllers in the simulation. The bottom graph shows that
H™ (q,n, P) can handle the chirp disturbances on the motor (time intervals 16-21s
and 43-58s) and step disturbances very good. For a chirp disturbance on the end-
effector, the two H,, controllers give similar results. For step disturbances, the
controller Hiﬁ,(qm, P) gives lower peaks than the PID controller, however the set-
tling time is longer. The steady state error of approximately 2 mm after 25sis a
result of a constant torque disturbance on the end-effector. The size of the error
will depend on the size of the disturbance and the stiffness of the joint. The motor

position, which is measured, is controlled to zero for all five controllers.

The performance index for the five controllers is presented in Table 1. It shows,
as discussed above, that Hfﬁ,(qm) and the PID controller behave similar and that

Hiﬁ‘,(qm, P) and H"(q,,) give similar behaviour. The H".(q,,, P)-controller gives
the best result.

6 Low Order Synthesis

For implementation of the controller in the robot control system it is important
to have a low order controller. A controller in state space form requires O(n2)
operations to calculate the control signal, where n, is the dimension of the state
vector in the controller.

The low order controllers are here obtained using the MATLAB-function hinfst-
ruct, which is included in Robust Control Toolbox and it is based on techniques
from Apkarian and Noll [2006].

To find controllers with low orders using hinfstruct requires a model descrip-
tion, including the weights, in the form of (1). This structure is already used for
the controllers " (q,,) and H™(q,,, P), hence it is straightforward to synthesis
low order controllers using the weights presented in Sections 4.2 and 4.2. For the
loop shaping design method, the structure in Figure 1b can be rewritten in the
form of (1) including the weights Wj(s) and W,(s), explained in e.g. Zhou et al.
[1996]. Using the rewritten structure, the low order controllers based on Hf)f,(qnl)

and H!%(g,,, P) can be obtained using the weights from Sections 4.2 and 4.2.

Table 2 shows the lowest order for the respective controllers, that can be achieved
without changing the closed-loop performance too much. The table also shows
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Table 2: Lowest order of the controllers obtained using hinfstruct, with
the order before reduction in brackets. The corresponding performance in-
dex from simulations is also shown.
HE@m) M@ P) HE(m)  HE (G P)
Order 5(13) 4(13) 5(10) 7 (13)
Perf. ind. 60.8 49.4 48.3 40.8

the performance index obtained when the controllers are used in the simulation
environment. The orders can be reduced by a factor of two to three but the per-
formance of the reduced order controllers is worse than the full order controllers.
Since the controller based on loop shaping with only g, as measurement has the
same performance for the full order controller as the PID controller, the low or-
der controller gives a worse performance than the PID controller. The other full
order controllers are much better than the PID controller and afford to get a re-
duced performance for the low order controllers without getting worse than the
PID controller.

Finally, note that the controllers only represents local minima solutions, hence
rerunning hinfstruct with other initial values can give a better, or worse, con-
troller. To handle this, several initial values have been used in hinfstruct.

7 Conclusions and Future Work

Four different H,, controllers for a flexible joint of an industrial manipulator are
designed using mixed-H,, controller design and the loop shaping method. The
model, on which the controllers are based, is a four-mass model. As input, the
controllers use either the motor angle only or both the motor angle and the accel-
eration of the end-effector. Tuning of the controllers requires understanding of
both the synthesis method and how the system behaves. For example, the mea-
surements for the mixed-H,, controller are first pre-filtered to give an estimate
of the tool position. The weighting functions for the resulting SISO system, from
input torque to the estimated tool position, are then chosen similar to the case
where only the motor position is used.

The controllers are compared to a PID controller and it is shown that if only the
motor angle is measured it is much better to use the mixed-H,, design method
compared to loop shaping. If instead the end-effector acceleration is added then
the performance is improved significantly for both methods. The steady state
error for the end-effector position is unaffected since the accelerometer does not
provide low frequency measurements. Using a low order controller synthesis
method, it is possible to reduce the order of the controllers by a factor of two to
three but at the same time a decrease in the performance index of 10-30 % can
be observed.

Investigation of robustness for stability with respect to model errors is one of
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several future directions of research. The mixed-H,, method has an advantage
compared to the loop shaping method since a model of the error is possible to
incorporate in the augmented plant P(s).

Another continuation is to investigate the improvement for other types of sen-
sors. One possibility is to have an encoder measuring the position directly after
the gearbox, i.e., q,1. This will improve the stiffness of the system, although it
will not eliminate the stationary error for the end-effector position. The ultimate
solution is to measure the end-effector position, but for practical reasons this is
in general not possible, instead the end-effector position can be estimated, as de-
scribed in Axelsson [2012]; Axelsson et al. [2012]; Chen and Tomizuka [2014],
and used in the feedback loop.

Extending the system to several joints giving a non-linear model, which has to be
linearised in several points, is also a future problem to investigate. A controller,
using the results from this paper, is designed in each point and for example gain
scheduling can be used when the robot moves between different points.
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Abstract

An H,-synthesis method for control of a flexible joint, with non-linear
spring characteristic, is proposed. The first step of the synthesis meth-
od is to extend the joint model with an uncertainty description of
the stiffness parameter. In the second step, a non-linear optimisa-
tion problem, based on nominal performance and robust stability re-
quirements, has to be solved. Using the Lyapunov shaping paradigm
and a change of variables, the non-linear optimisation problem can be
rewritten as a convex, yet conservative, LMI problem. The method is
motivated by the assumption that the joint operates in a specific stiff-
ness region of the non-linear spring most of the time, hence the perfor-
mance requirements are only valid in that region. However, the con-
troller must stabilise the system in all stiffness regions. The method
is validated in simulations on a non-linear flexible joint model origi-
nating from an industrial robot.

1 Introduction

The demand and the requirements for high precision control in electro mechani-
cal systems have been increasing over time. At the same time cost reduction and
more developed mechanical design criteria, with lower margins in the design,
reduces the size of the components involved. One such example is the speed re-
ducers used in many electro mechanical systems where the size and cost have
become increasingly important. The harmonic drive, sometimes referred to as
“strain-wave gearing”, is a very common example of a gear type that can deliver
high gear reduction ratio in a small device [Tuttle and Seering, 1996]. Characteris-
tic to compact gear boxes, such as harmonic drives, are that they have a relatively
small backlash, a highly non-linear friction behaviour, and in addition a very
non-linear stiffness [Tjahjowidodo et al., 2006]. One typical application of elec-
tromechanical systems, where harmonic drive gearboxes are used, is in industrial
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robots where the motivation for the work presented in this paper also comes from.
In this paper the control design for the electromechanical system, motor-gearbox
joint, hereafter referred to as the flexible joint system, is considered. In general,
robots are strongly coupled multivariate systems with non-linear dynamics and
in previous research on control of robots linear spring stiffness has been consid-
ered, see e.g. Sage et al. [1999] and the references therein. When the speed reduc-
ers are of harmonic drive type, linear models are however not sufficient for the
control as will be shown in the paper. Several non-linear models of the gearbox
have been presented in the literature, see Tuttle and Seering [1996]; Tjahjowidodo
et al. [2006]; Ruderman and Bertram [2012] among others.

What characterises the H,-controller synthesis method presented in this work is
that it can facilitate in designing a controller which gives performance in one re-
gion of parameter values, while for another region the performance requirement
is lower and only stability is sufficient. The proposed method is motivated by
the fact that the flexible joint operates in specific regions most of the time. For
example, a joint which is affected by gravity operates most of the time in the high
stiffness region, hence it is more important to have a controller with good per-
formance in the high stiffness region. However, the controller must stabilise the
system in all stiffness regions.

This paper is organised as follows. Section 2 presents the problem and how it
will be solved and the proposed method is outlined in Section 3. In Section 4, the
non-linear joint model used to test the proposed method is presented. The design
of the controller and the results are given in Sections 5 and 6. Finally, Section 7
concludes the paper.

2 Problem Formulation

The problem is to design a linear H,, controller that can stabilise a non-linear flex-
ible joint model, for example a motor-harmonic drive-joint system, using only the
primary position, the motor position q,,. There are a number of non-linearities
that characterise the gearbox in the flexible joint. Here, the spring stiffness of the
joint is considered and it is described by the function 74(A;), where A, = g, — g,
is the deflection between the motor position ¢,, and the secondary position, the
arm position g,. The non-linear spring is characterised by a low stiffness for small
deflections and a high stiffness for large deflections, which is typical for compact
gear boxes, such as harmonic drive [Tuttle and Seering, 1996; Ruderman and
Bertram, 2012]. Linearising the stiffness function would give a linear expression
k- (qm — 94), where the gain k depends on the deflection g,, — g, of the joint. The
lowest and maximal values of k are k'°V and kM8P, respectively. The complete
model and an explicit expression for 7,(A,) are presented in Section 4.

Control of non-linear systems using linear H,, methods is usually done by first
linearising the model in several operating points, e.g. gain scheduling techniques,
or using exact linearisation. Gain scheduling requires to know the operating
point of the spring and exact linearisation requires the full state vector, hence
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only the motor position is not enough to measure. A common solution is to intro-
duce an observer for estimating the state vector. However, it is not certain that
the estimated state vector is accurate enough to use due to model errors and dis-
turbances. The estimation problem has been investigated in e.g. Axelsson et al.
[2012]; Chen and Tomizuka [2014].

Instead, the problem considered in this paper is managed using an uncertainty
description of the stiffness parameter k to obtain a controller over the whole in-
terval for k. In general, the interval has to be relative short in order to obtain a
controller using regular methods. The reason for this is that the methods try to be
both robustly stable and have robust performance over the whole interval. The
uncertainty description of the linearised spring stiffness can give a long interval
of the parameter k that has to be covered. Instead of having a controller that sat-
isfies the requirements of both robust stability and performance over the whole
interval, the aim is to find a controller that is stable for all values of k but only
satisfies the performance requirements in the high stiffness region. The reason
for this is that in practice, the joint operates only in the high stiffness region most
of the time, e.g. an industrial manipulator affected by the gravity force. In reality
as low as zero stiffness must be handled due to backlash, but that is omitted here.

3 Proposed H_,-Synthesis Method

This section presents the proposed H,-synthesis method. First, the uncertainty
description is given. After that, the requirement for nominal stability and per-
formance together with robust stability is discussed, and the final optimisation
problem is presented.

3.1 Uncertainty Description

Let k be modelled as an uncertainty according to

k(6) = k + ks, (1a)
k = akMsh 4 glow, (1b)
E — akhigh _ ﬁklow, (IC)

where a, p are scaling parameters such that f < a. The uncertain parameter 0 is
contained in § = [—1 1] C R and may change arbitrarily fast. For 0 = +1 it holds
that the stiffness parameter

k(3) € [2pKY  2akhieh]. (2)

Since the aim is to have a controller that has good performance in the high stiff-
ness region, but only stable in the low stiffness region, it is desirably to have k
close to kMg and the lower bound of k(&) not larger than klov.

The stiffness parameter enters only in the A-matrix of the linearised system and
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WL,

v;Epm*; ‘;EPM*;
K(s)<_—| K(s) 4_—|
(a) (b)

Figure 1: Closed-loop system from w to z, without and with an uncertainty
description in (a) and (b) respectively.

assume that the part containing 9 is of rank one, then
A(6) = A +L6R (3)

with A € R™*"x, L € R"! and R € R""x. For the forthcoming calculations, it
is important to have L and R as a column and row matrix, respectively. The
augmented system in Figure 1b can now be constructed according to

A|L B, B,
R|0 0 0

P=

with A = 6.

3.2 Nominal Stability and Performance

Let P represent an LTI system, see Figure 1a,

x = Ax+ B,w+B,u, (5a)
z =C,x+D,,w+D,,u, (5b)
y = Cyx + Dyyw, (5¢)

where x € R"x is the state vector, w € R"v is the disturbance vector, u € R"« is
the control signal, y € R"? is the measurement signal, and z € R"z is the output
signal that reflects our specifications. The matrices in (5) have dimensions corre-
sponding to the vectors x, w, u, y, and z. Note that it is the nominal system, i.e.,
0 = 0 that is used here. Let the controller K in Figure 1a be given by

XK = AKXK + BKY, (6&1)
u= CKXK + DKY' (6b)
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Using the lower fractional transformation F;(P, K) gives the closed loop system
from w to z according to

Acr | Ber
Fi(P, K) _( Ccr | Dcr )
A+B,DyC, B,Cyg | B, +B,DgDy,
- BxC, Ag Bx Dy (7)
C,+ DzuDKCy D,.Cxk ‘ Dy + DzuDKDyw

From Gahinet and Apkarian [1994] it holds that the H,-norm of F;(P, K) is less
than y, i.e., ||[F;(P, K)||, < ¥, and the closed loop system is stable, i.e., Ac; has
all eigenvalues in the left half plane, if and only if there exists a positive definite
matrix P such that

AELP'FPACL PBCL C;L
B, P -yl D[, |<0. (8)
Ccr D¢y I

3.3 Robust Stability

To guarantee robust stability of the uncertain system for arbitrarily fast changes
in 0, quadratic stability is enforced which is given by

AP eS™ :P > 0and (9a)
A(8)"P + PA(8) <0, V6 € 6. (9b)

From Scherer [2006], the robust LMI (9b) holds if and only if there exist p, g € R
with p > 0 such that

RIS

Note that p, g € R with p > 0 parametrise all multipliers that satisfy

AT . _
(‘f) (_‘i’; l;)(?) >0, V6 € 6. (11)

Since the negative definiteness of a Hermitian matrix implies that its real part
is negative definite, ¢ = 0 can be enforced in (10) without loss of generality. It
follows from the fact that L and R are rank one matrices!. In addition, p=1
can be enforced since the LMI is homogeneous in P and p. By elaborating the
left-hand side of (10) gives that (9) is equivalent to

AP+ PA+R'R PL
LTPp 1 < 0. (12)

<0 (10)

HPES"’C:P>Oand(

1If rank L = rank R = 7, than g should be a 7 x r skew symmetric matrix and the involved compu-
tations are much more complex.
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The last LMI in (12) can be rewritten, similar to what is given by (8), using the
Schur complement, according to

ATP+PA PL RT
LTP -1 0 ]<0. (13)
R 0 -1

The LMI in (12) can also be obtained using IQC-based robust stability analysis
with frequency independent multipliers [Megretski and Rantzer, 1997], which
guarantees stability for arbitrarily fast changes in o.

3.4 Controller Synthesis

The controller is now obtained from the following optimisation problem

. 14
s, e
subjectto P >0 (14b)
A}L’PT+7>ACL PBc. C;L
B- P -yI D [<0 (14c)
Cct Dcp =1
A}LPT+PACL PLcr R,
L, P -1 0 |<0 (14d)
Rcp 0 -1

where Ly and R¢ are the matrices L and R augmented with zeros in order for
the dimensions to satisfy the closed-loop state vector x¢p = (xT x}; )T.

The minimisation problem in (14) gives a conservative solution because of the
same Lyapunov matrix P is used in both (8) and (13). For the approach not to be
conservative, different Lyapunov matrices should be used in (8) and (13). How-
ever, this multi-objective controller design is non-convex. To obtain a convex,
yet conservative, approximation, the Lyapunov shaping paradigm, as introduced
by Scherer et al. [1997], is used. Moreover, the minimisation problem in (14) is
non-linear due to products of P and the controller parameters Ag, Bx, Cg, and
Dg. However, a change of variables [Scherer et al., 1997] makes the constraints
linear and the resulting minimisation problem can be solved using LMI optimisa-
tion, e.g. using Yalmip [Lofberg, 2004].

The optimisation problem (14) will be easier to solve the smaller the perturbation
is. It can therefore be useful to introduce a scaling parameter 0 < x < 1 such that
6 € [-x «]. Decreasing 6 to [-x «] is equivalent to preserving 6 = [-1 1] but
rescaling L, according to L — «L. The good thing is that it can still be possible
to stabilise the system for 6 € [-1 1] due to the conservatism of the proposed
method. Note that « is a tuning parameter that affect the solution to (14). A too
large value can make the problem impossible to solve whereas a too small value
gives a controller that is not able to stabilise the non-linear system.
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///////////
///////////

Figure 2: A two-mass flexible joint model, where J,, is the motor and ], the
arm.

4 Non-linear Flexible Joint Model

The flexible joint model considered in this paper is of two-mass model type, see
Figure 2, where q,, is the motor position and g, the arm position. Here, both g,,
and ¢, are described on the motor side of the gearbox. Input to the system is the
motor torque u, the motor disturbance w,, and the arm disturbance w,. The two
masses are connected by a spring-damper pair, where the first mass corresponds
to the motor and the second mass corresponds to the arm. The spring-damper
pair is modelled by a linear damper, described by the parameter d, and the non-
linear spring is described by the function 74(A,) which is a piecewise affine func-
tion with five segments, i.e.,

FlowAg: A <7
(kiow + mi) A, —sign(Aq)%, % < |Aq| < %
T(A) = { (kiow +2m) Ay —sign(A) %L, < |A] <3
(kiow + 3mg) A, —sign(Aq)3m2k\y, < |Aq| <y
knighg  —sign(Ay) XY, W< |A]

where my = (knigh — kiow)/4, and W a model parameter describing the transition
to the high stiffness region. Moreover, the friction torque is assumed to be lin-
ear, described by the parameter f,,, and the input torque u is limited to £20 Nm.
The measurement of the system is the motor position g,,, and g, is the variable
that is to be controlled. The model is a simplification of the experimental results
achieved in, e.g. Tjahjowidodo et al. [2006], where the non-linear torsional stiff-
ness also shows hysteresis behaviour.

The dynamical model of the flexible joint is given by
]uq'a_Ts(Aq)_d(qnz_Qa) =Wy (15a)
]mqm+T5(Aq)+d(q.m_q'u)+fmq'm = Ut wy, (15b)
where the model parameters are presented in Table 1. Using a state vector x

according to

x:(Qa 9m  4a Qm)Tl (16)
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Table 1: Numerical values of the model parameters.
Ja ‘ Jim W ‘ khigh ‘ klow ‘ d fm
0.042 | 0.005 | 2207/60/180 | 100 | 100/6 | 0.08 | 0.006

gives the non-linear state space model
qa
. Gm
*= ]l_a(TS(Aq)'f'd(qm_Qa)"'wa)
]Lm (u - TS(Aq) - d(q'm - q.u) - fmqm + wm)

Linearising the non-linear flexible joint model (17) gives a linear state space

L = = T
model X = AX + B,u + B, w, where w = (wa wm) and

0 0 1 0
_lo o o 1
A=|_k k _d 4 | (18a)
]11 ]ﬂ ]ll ]a
k _k 4 _dtf
]m ]VH ]m ]m
0 0 0
_ 0| - 0 0
B, = ol By, = 1 0 (18b)
1 15 1
Im ]Wl
C=(0 1 0 o). (18c¢)

Here, k is the stiffness parameter given by (1b). The uncertainty description (1)
gives

A(6) = A +LJR, (19a)
T=(0 o £ -£), (19b)
R=(-1 1 0 0). (19¢)

The notation ~ indicates that the weighting functions in the system P(s) are not
included here. Section 5 presents the weighting functions and how they are in-
cluded in the state space model to give the system P(s) in (5).

5 Controller Design

A common design method is to construct the system P in (5) by augmenting the
original system y = G(s)u with the weights W, (s), Ws(s), and Wr(s), such that
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the system z = F;(P, K)w, depicted in Figure 1a, can be written as

( $)Gwul(s )
Wr(s)T(s
Ws(s)S(s)

where S(s) = (I + G(s)K(s))™! is the sensitivity function, T(s) = I — S(s) is the

complementary sensitivity function, and Gy (s) = —K(s)(I + G(s)K(s))™! is the
transfer function from w to u. The H,, controller is obtained by minimising
the H,,-norm of the system F;(P, K), i.e., minimise y such that ||F;(P, K)||, < ¥

Using (20) gives

Fi(P,K) = (20)

G(Woliw)Gyyliw)) <y, Vo, (21a)
c(Wr(iow)T(iw)) <y, Vo, (21b)
c(Ws(iw)S(iw)) < y, Vw. (21¢)

The transfer functions Gyy(s), S(s), and T(s) can now be shaped to satisfy the

requirements by choosing the weights W,(s), Ws(s), and Wr(s). In general this
is a quite difficult task. See e.g. Skogestad and Postletwaite [2005]; Zhou et al.
[1996] for details.

The mixed-H,, controller design [Pipeleers and Swevers, 2013; Zavari et al., 2012]
is a modification of the standard H,-design method. Instead of choosing the
weights in (20) such that the norm of all weighted transfer functions satisfies (21),
the modified method divides the problem into design constraints and design ob-
jectives. The controller can now be found as the solution to

mlrl?(rg;lse Y (22a)
subjectto  ||WpS|l, < ¥ (22b)
IMsSlle <1 (22¢)
Wy Gwulleo < (22d)
W Tl <1 (22e)

where y not necessarily has to be close to 1. The LMI in (8) can be modified to fit
into the optimisation problem (22), see Zavari et al. [2012].

The weight Mg should limit the peak of S and is therefore chosen to be a constant.
The peak of Gy, is also important to reduce in order to keep the control signal
bounded, especially for high frequencies. A constant value of W, is therefore also
chosen. Finally, the weight Wr is also chosen to be a constant for simplicity.

The system from w to the output includes an integrator, hence it is necessary to
have at least two integrators in the open loop GK in order to attenuate piecewise
constant disturbances. The system G has one integrator hence at least one integra-
tor must be included in the controller. Including an integrator in the controller
is the same as letting |S(iw)| — 0, for @ — 0. Forcing S to 0 is the same as letting
Wp approach co when w — 0. However, it is not possible to force pure integra-
tors in the design since the generalised plant P(s) is not possible to stabilise with
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Figure 3: Controller gains |K| and |K|.

marginally stable weights. Instead the pole is placed in the left half plane close
to the origin. Zeros must be included in the design as well to get a proper inverse.
The following weights have been proven to work

W,y =107°%20 wp =1078/20, (23a)

Mg = 1078/20, Wp = (s +50)(s+ 15)(s+5)

"~ 500(s + 0.2)(s + 0.001)2" (23b)

The constant weights in the form 107420 can be interpret as a maximum value,

for the corresponding transfer function, of A dB.

The augmented system P is obtained using the command augw (G, [Wp;MS],
WU, WT) in MATLAB, where G is the system described by K, Eu, and C in (18).
The uncertainty description of k(9) in (1) is used with a = 0.9167, and g = 0.5,
i.e., the nominal value is k = kP8P k = 83.33, and k(6) € [16.67 183.33]. The
scaling parameter is chosen as « = 0.75. Finally, the uncertainty model is updated
according to

L=(o T), R=(0 R (24)

where 0 is a zero matrix with suitable dimensions.

6 Results

The optimisation problem in (14) is solved using Yalmip [Lofberg, 2004] and a
controller K of order nx = 6 is obtained. A controller K, with the same weights
as for the robust stabilising controller K, using the optimisation problem in (14)
without the LMI (14d) is derived to show the importance of the extra LMI for
robust stability and also what is lost in terms of performance. The controller
gains |K| and |K| are shown in Figure 3, and they have a constant gain before
1073 rad/s due to the pole at s = —0.001. The major difference is the notch for K
around 100rad/s and the high gain for K for high frequencies.

The robust stability can be analysed using the structured singular value (SSV).
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Figure 4: Structured singular values for robust stability using the controllers
K and K.

The system is robustly stable if the sSV for the closed loop system from wy to
zp with respect to the uncertainty A is less than one for all frequencies. A thor-
ough description of the SSvV can be found in Skogestad and Postletwaite [2005].
Figure 4 shows the Ssv for the closed loop system using K and K and it can be
seen that the SSv using K is less than one (0 dB) for all frequencies whereas the
ssv using K has a peak of approximately 15dB. As a result K cannot stabilise the
system for all perturbations, as expected.

The step responses for the controller K using the linearised system in k = khish
and the controller K using the linearised systems in k = kM8 and k = kl°W are
shown in Figure 5. It can be seen that K is better than K for the linearised system
in the high stiffness region. It means that in order to get a controller that is
robustly stable for k(9), the performance has been impaired. It can also be seen
that the performance for K is better in the high stiffness region than in the low
stiffness region, since the nominal value k = khigh,

The sSV can also be used for analysing nominal performance and robust perfor-
mance, see Skogestad and Postletwaite [2005]. The requirement is that the Ssv
should be less than one for different systems with respect to some perturbations.
Figure 6 shows the SSV for robust stability, nominal performance, and robust per-
formance using K. It can be seen that the requirements for robust stability and
nominal performance are satisfied. However, the requirement for robust perfor-
mance is not satisfied. The reason is that the optimisation problem (14) does not
take robust performance into account.

Finally, simulation of the non-linear model using K is performed to show that the
controller can handle dynamic changes in the stiffness parameter and not only
stabilising the system for fixed values of the parameter. The non-linear model is
simulated in Simulink using the disturbance signal in Figure 7a, which is com-
posed by steps and chirp signals. Figures 7b and 7c show the arm angle ¢q,(f) on
the arm side of the gearbox and the motor torque 7(t). From 0s up to 25s the sys-
tem operates in the region 0 < )Aq| < W most of the time except for short periods
of time when the step disturbances occur. The arm disturbance after 25s keeps



202 Paper F Ho,-Synthesis Method for Control of Non-linear Flexible Joint Models

K khlgh
--- K, klow B
— R high | |

0 I | | | | [
0 0.5 1 1.5 2 2.5 3 3.5

Time [s]

Figure 5: Step response of the controllers K and K using system linearised
in k" and kP8R, The first 0.15s are magnified to show the initial transients.
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Figure 7: Disturbance signal for the simulation experiment and the obtained
arm angle and motor torque.
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the system in the high stiffness region except for a few seconds in connection with
the step disturbances.

The stationary error for q,(t) at the end is due to the fact that the controller only
uses g,,(t) and the constant w,(t) is not observable in g,,(t) hence q,(t) cannot be
controlled to zero. The primary position q,,(¢) does not have any stationary error.

7 Conclusions

A method to synthesise and design H,, controllers for flexible joints, with non-
linear spring characteristics, is presented. The non-linear model is linearised in
a specific operating point, where the performance requirements should be full
filled. Moreover, an uncertainty description of the stiffness parameter is utilised
to get robust stability for the non-linear system in all operating points. The re-
sulting non-linear and non-convex optimisation problem can be rewritten as a
convex, yet conservative, LMI problem using the Lyapunov shaping paradigm
and a change of variables, and efficient solutions can be obtained using standard
solvers.

Using the proposed synthesis method an H,, controller is computed for a specific
model, where good performance can be achieved for high stiffness values while
stability is achieved in the complete range of the stiffness parameter. A controller
derived with the same performance requirement but without the additional sta-
bility constraint is included for comparison. By analysing the structured singular
values for robust stability for the two controllers it becomes clear that the con-
troller without the extra stability constraint will not be stable for the parameter
variations introduced by the non-linear stiffness parameter.

In the synthesis method it is assumed that the parameter 6 changes arbitrarily
fast, which is a conservative assumption for real systems. It would therefore be a
good idea to have a limited change in ¢ in the future development of the method.
Moreover, the use of a common Lyapunov matrix P must be relaxed to reduce
the conservatism further. Here, the path following method from Hassibi et al.
[1999]; Ostertag [2008] can be further investigated.
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Abstract

In this paper the norm-optimal iterative learning control (ILC) algo-
rithm for linear systems is extended to an estimation-based norm-
optimal ILC algorithm where the controlled variables are not directly
available as measurements. The objective function in the optimisa-
tion problem is modified to incorporate not only the mean value of
the estimated variable, but also information about the uncertainty of
the estimate. It is further shown that if a stationary Kalman filter is
used for linear time-invariant systems the ILC design is independent
of the estimation method. Finally, the concept is extended to non-
linear state space models using linearisation techniques, where it is
assumed that the full state vector is estimated and used in the ILC
algorithm. Stability and convergence properties are also derived.

1 Introduction

The iterative learning control (ILC) method [Arimoto et al., 1984; Moore, 1993]
improves performance, for instance trajectory tracking accuracy, for systems that
repeat the same task several times. Traditionally, a successful solution to such
problems base the ILC control law on direct measurements of the control quantity.
When this quantity is not directly available as a measurement, the controller must
rely on measurements that indirectly relate to the control quantity, or the control
quantity has to be estimated from other measurements.

In Ahn et al. [2006]; Lee and Lee [1998] a state space model in the iteration do-
main is formulated for the error signal, and a KF is used for estimation. The dif-
ference to this paper is that in Ahn et al. [2006]; Lee and Lee [1998] it is assumed
that the control error is measured directly, hence the KF is merely a low-pass filter,
with smoothing properties, for reducing the measurement noise. In Wallén et al.
[2009] it is shown that the performance of an industrial robot is significantly in-
creased if an estimate of the control quantity is used instead of measurements of

209
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a related quantity. Still, the concept of ILC in combination with estimation of the
control quantity, has not been given much attention in the literature.

In this paper the estimation-based ILC framework, where the control quantity
has to be estimated, is combined with an ILC design based on an optimisation
approach, referred to as norm-optimal ILC [Amann et al., 1996]. The estima-
tion problem is here formulated using recursive Bayesian methods. Extensions
to non-linear systems, utilising linearisation techniques, are also presented. The
contributions are summarised as

1. Extension of the objective function to include the full probability density
function (PDF) of the estimated control quantity, utilising the Kullback-
Leibler divergence.

2. A separation lemma, stating that the extra dynamics introduced by the sta-
tionary KF is not necessary to include in the design procedure of the ILC
algorithm.

3. Extensions to non-linear systems, including stability and convergence prop-
erties as well as additional appropriate approximations to simplify the ILC
algorithm.

2 Iterative Learning Control (ILC)

The ILC-method improves the performance of systems that repeat the same task
multiple times. The systems can be open loop as well as closed loop, with internal
feedback. The ILC control signal uj,;(¢) € R" for the next iteration k + 1 at
discrete time ¢t is calculated using the error signal and the ILC control signal,
both from the current iteration k. Different types of update laws can be found in
e.g. Moore [1993].

One design method is the norm-optimal ILC algorithm [Amann et al., 1996; Gun-
narsson and Norrlof, 2001]. The method solves

N-1
e 2 2
minimise ) [leg1 (£, + g1 (B,
upi(*) =0

N1 (1)
subject to Z s (8) —ug ()| < 6,
£=0

where e, 1(t) = r(t) — z;,1(t) is the error, r(t) the reference signal, and z,(t)
the variable to be controlled. The matrices W, € S}, and W,, € S}% are weight
matrices, used as design parameters, for the error and the ILC control signal, re-
spectively!.

Using a Lagrange multiplier and a batch formulation (see Appendix A) of the

1§" . denotes a n x n positive definite matrix.
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Estimation — Zx(f)

£(t) %—» yi(t)

S
ug () > > zj(t)

Figure 1: System S with reference r(t), ILC input uy(t), measured vari-
able yi(t) and controlled variable z;(t) at ILC iteration k and time t.

system from uy,(t) and r(t) to zy,(t) gives the solution

Uy =Q - (U + L-€) (2a)
Q :(SIuWeszu + Wu + /\I)_l(/\l + Sl—uweszu) (Zb)
L=(A1+S;,WeSu) ' SpuWe, (2¢)

where A is a design parameter and
We=IyoW, S/, W,=IyeW,esl", (3)

Iy is the N x N identity matrix, ® denotes the Kronecker product, S, is the batch
model from u to z, and €; =T —z;. The reader is referred to Amann et al. [1996];
Gunnarsson and Norrlof [2001] for details of the derivation.

The update equation (2a) is stable and monotone for all system descriptions S,,,
i.e., the batch signal u converges to a constant value monotonically, see e.g. Barton
et al. [2008]; Gunnarsson and Norrlof [2001].

3 Estimation-based ILC for Linear Systems

The error ey(t) used in the ILC algorithm should be the difference between the
reference r(f) and the controlled variable z(t) at iteration k. In general the con-
trolled variable zy(t) is not directly measurable, therefore an estimation-based
ILC algorithm must be used, i.e., the ILC algorithm has to rely on estimates based
on measurements of related quantities. The situation is schematically described
in Figure 1.

3.1 Estimation-based Norm-optimal ILC

A straightforward extension to the standard norm-optimal ILC method is to use
the error é(t) = r(t) — Zx(t) in the equations from Section 2, where Z;(¢) is an
estimate of the controlled variable. The estimate Z(¢) can be obtained using e.g.,
a Kalman filter (KF) for the linear case, or an extended Kalman filter (EKF) for the
non-linear case [Kailath et al., 2000]. Linear systems are covered in this section
while Section 4 extends the ideas to non-linear systems. In both cases it must be
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assumed that i) the system is observable, and ii) the filter, used for estimation,
converges.

The solution to the optimisation problem can be obtained in a similar way as for
the standard norm-optimal ILC problem in Section 2, where the detailed deriva-
tion is presented in Amann et al. [1996]; Gunnarsson and Norrl6f [2001]. An
important distinction, compared to standard norm-optimal ILC, relates to what
models are used in the design. In the estimation-based approach, the model from
uy1(f) and r(f) to Zx,1 () is used, i.e., the dynamics from the KF must be included
in the design, while in the standard norm-optimal design, the model from uy ()
and r(#) to zx,(¢) is used.

Let the discrete-time state space model be given by

Xt +1) = A(t)x(t) + By (t)ui(t) + B ( Jr(t) + G(t)wi(t), (4a)

Yi(t) = Cy(£)xi(t) + Dyu(t)ur(t) + Dy (£)r(t) + vi(t), (4b)

zi(t) = Co(£)xk(t) + Dgy (t)ui(t) +Dzr(f)r(t), (4¢)

where the process noise w; ~ M (0, Q;), and the measurement noise v; ~ N (0, R;).

A batch model (see Appendix A for definitions) for the output y; and the estimate
7). can be written as

Yi = Cy@x¢ + Sy + Sy, T, (5a)
%k = CZEIS)A(O + Siuﬁk + Sirf + Siy?k' (5b)

where w(t) and v(t) have been replaced by their expected values, which are both
equal to zero, in the output model (5a). The KF batch formulation has been used
in the model of the estimate in (5b). The optimal solution is now given by

Upy =Q- (U + L-€) (6a)
Q =(SIWeSy + Wy + AI) HAL+SIW.S,) (6b)
L=(M+SIW.s,)'sIw,, (6¢)

where Sy, = §;,,+5;ySyy (see (26), (30) for details), and e, = -z;. The expressions
for Q@ and L in (6) are similar to (2). The only difference is that S, is used instead
of S,,. Theorem 1 presents a result for the special case of LTI-systems using the
stationary KF2.

Theorem 1. (Separation lemma for estimation-based ILC): Given an LTI-system
and the stationary KF with constant gain matrix K, then the matrices S, and S,
are equal, hence the ILC algorithm (2) can be used for the estimation-based norm-
optimal ILC.

Proof: The result follows from the fact that it can be shown algebraically that
Sy and S,, are equal. The proof involves several algebraical manipulations, and

2The stationary Kalman filter uses a constant gain K which is the solution to an algebraic Riccati
equation, see Kailath et al. [2000].
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only the first steps of the calculations, in the case of Dy, = 0 and Dy, = 0, are pre-
sented here. From Appendix A it follows that S,, = C,WB, and S, = C,¥B, +
C,W,KCyWB,. The structure of By, gives S, = C, (‘I’F + ‘I’ZKICY\I’) B, where

I' = diag (I -KCy, ..., I-KCy, 0). After some manipulations it can be shown

that WT + \T’ZICCY‘I’ = W, hence S, = Sy. The case Dy, # 0 and D, # 0 gives
similar, but more involved, calculations. O

The result from Theorem 1 makes it computationally more efficient to compute
the matrices @ and L, since the matrix S, requires fewer calculations to obtain,
compared to the matrix S,. Even if the iterative KF update is used, the Kalman
gain K converges eventually to the stationary value for LTI systems. If this is done
reasonably fast, then S, = S,, can be a good enough approximation to use.

The stability result for the ILC algorithm in (6) is given in Theorem 2.

Theorem 2. (Stability and monotonic convergence): The estimation-based ILC
algorithm (6) is stable and monotonically convergent for all systems given by (5).

Proof: Assuming that the KF is initialised with the same covariance matrix P
at each iteration, makes the sequence of Kalman gains K(¢), t = 0,..., N — 1 the
same for different ILC iterations since P and K are independent of the control
signal u. The system matrices S;, and S;y are therefore constant over the ILC
iterations, hence the same analysis for stability and monotone convergence as for
the standard norm-optimal ILC, presented in Barton et al. [2008]; Gunnarsson
and Norrlof [2001], can be used. O

3.2 Utilising the Complete PDF for the ILC Error

Usually, only the expected value of the probability density function (PDF) p(z(t))
of the estimated control quantity, which can be obtained by the KF or the EKF, is
used. However, since the KF and EKF provides both the mean estimate and the
covariance matrix for the estimation error, it is possible to use the full PDF in the
design. The norm-optimal ILC is therefore extended to handle both the expected
value and the covariance matrix of the estimated control error.

The objective of ILC is to achieve an error close to zero. Only considering the
mean value is insufficient since a large variance means that there is a high prob-
ability that the actual error is not close to zero. Hence, the mean of the distribu-
tion should be close to zero and at the same time the variance should be small.
To achieve this the PDF of the error is compared with a desired PDF with zero
mean and small variance, using the Kullback-Leibler (KL) divergence [Kullback
and Leibler, 1951]. The objective function (1) is modified by replacing the term
leg1 (1)l with the KL-divergence Dy (q(eg1()llp(eks (1)), where pleg, (1)) is
the actual distribution of the error given by the estimator, and g(ex,1(t)) is the
desired distribution for the error, which becomes a design parameter.
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Using a KF to estimate the state vector and calculating the control error according
to &(t) = r(t) — Z(t) gives that é(¢) has a Gaussian distribution [Kailath et al., 2000]

X(t) ~ N (%41, Pyy), (7)

where %X,; denotes the mean value and Py; denotes the covariance matrix for the
estimation error. In both cases the value is valid at time ¢ given measurements
up to time f. Moreover, let the estimated control quantity be given by

2(t) = C,(£)X(t) + Dyu(t)u(t) + Dypr(t)r(t). (8)

Since (8) is an affine transformation of a Gaussian distribution
2(t) ~ N (z;2(t]t), X4 (t]t)), (9a)
2(t]t) = Co(t)k¢j + Doy (t)u(t) + Dyr(t)r(t), (9b)
Z,(tlt) = Co(t)P ;i Cy (1) (%)

Finally, the error é(t) = r(t) — z(t) has the distribution

&(t) ~ ple(t) = N (e; é(tlt), Ze(tlt)), (10a)
é(tlt) = x(t) — 2(tt), (10b)
Ze(tlt) = Cy(t)P 1 Cy (1) (10¢)

For the linear case where é;(t) is Gaussian distributed according to (10) it is as-
sumed that the desired distribution should resemble g(e(t)) = A (e; 0, L), where
Y is a design parameter. Straightforward calculations utilising two Gaussian dis-
tributions give the KL-divergence [Arndt, 2001]

1
Dy (N (x; ]JO,EO)”N(X;yl,El)) = E(tr 251):1

_ )y
+(p _l‘z)TZzl(lﬁ _’42)+10g%_nx]1 (11)

where tr is the trace operator and |- | the determinant of a matrix. Therefore, the
KL-divergence using p(e(t)) from (10) and g(e(t)) = N (e; 0, X) gives

D (alet)llple(t) = Se(d0TZ (He(tln) + & (12

where & is a term which does not depend on x, u, and y. Here we used that
the covariance matrix for the estimation error is independent of the observed
data, as a consequence of the KF update equations. It only depends on the model
parameters and the initial value Pj. The objective function is finally modified by
replacing the term ||ej (t)||€ve in (1) with

w131 g - (13)

The interpretation of the result is that, if the estimated quantity is certain it will
affect the objective function more than if it is less certain, i.e., an estimated er-
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ror signal with large uncertainty has a low weight. The optimisation problem is
solved in the same way as in Section 3.1. The only difference is that the weight
matrix for the error in batch form, now is given by

W, = diag(2:(0[0), ..., T(N-1IN-1))es™.
Remark 1. The separation lemma in Theorem 1 and the stability result in Theorem 2 are
not affected when the full PDF is included in the objective function.

Remark 2. By interchanging the distributions p(-) and ¢(-) the result will be the norm
of the mean error but now weighted with =, which is a tuning parameter, hence no
information of the covariance matrix of the control error is used in the design.

3.3 Structure of the Systems used for ILC and Estimation

In the derivation of the estimation-based norm-optimal ILC algorithm in Sec-
tion 3.1 it is assumed that the KF takes the signals r(¢) and u(t) as inputs. How-
ever, in general the estimation algorithm does not always use r(t) and ug(t) as
input. As an example, a system with a feedback loop usually uses the input to
the controlled system for estimation, not the input to the controller. More gen-
eral, the estimation algorithm only uses a part of the full system for estimation,
whereas the other part is completely known or not interesting to use for estima-
tion. Nevertheless, the system (4) is a valid description of the estimation-based
ILC since the internal signal used for estimation can be written as an output from
a system with r(t), ug(t), and yx(¢) as inputs.

Let T (t) be the known signal used for estimation, hence the estimated variable
can be written as

2k (t) = Far(q) T (t) + Fay(Q)yi(2). (14)
Moreover, the signal 7, (t) can be seen as an output from a system with r(t), ug(t),
and y(t) as inputs, hence

Ti(t) = Fre(q)r(t) + Fru(q)up(t) + Fry(q)y(£). (15)
Combining (14) and (15) gives
2k (t) = Spr(@)r(t) + Szu(q)ur(t) + Say(q)yk(t), (16)

where

Ssx(q) = Fi2(q)Fee(q), S3u(q) = F3.(q)Fru(q),
Szy(q) = Fi'c("])F’ry(q) + Fiy(q)’

which is in the form described in Figure 1. It is straightforward to take this
into consideration when deriving the ILC update control algorithm since it only
changes the definitions of S;, Sz, and S;y. Note that the dimension of the state
vector describing (5a) and (5b) can differ since (5b) is constructed using only a
part of the complete system.
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4 Estimation-based ILC for Non-linear Systems

Iterative learning control for non-linear systems has been considered in e.g. Avra-
chenkov [1998]; Lin et al. [2006]; Xiong and Zhang [2004]. Using a batch for-
mulation of a non-linear state space model gives the following set of non-linear
equations y, = F (uy). The goal for the control is to solve for @ such that r = F(u),
which has an iterative solution according to uy,; = uy + Lie;. The proposed
solutions in Avrachenkov [1998]; Lin et al. [2006]; Xiong and Zhang [2004] all
have in common that they calculate the gain Ly using different approximations
of the Newton method, which is a common method for solving non-linear equa-
tions. In Lin et al. [2006] the solution is rewritten, giving first a linearised system,
where standard linear ILC methods can be applied, and then a final update of the
ILC signal for the non-linear system. Nothing is stated about how to generally
obtain the state trajectory for the linearisation step.

The method proposed here is to directly transform the non-linear system to a
linear time-varying system, and then use the standard norm-optimal method.
The linear state space model is obtained by linearising around an estimate of
the complete state trajectory obtained from the previous ILC iteration. A neces-
sary assumption is to have uy,; close to Uy, in order to get accurate models for
the optimisation. It is possible to achieve Uy, close to uy by assigning A a large
enough value. The drawback is that the convergence rate can become slow.

4.1 Solution using Linearised Model

The non-linear model for iteration k and discrete time ¢

Xi(t+1) = f(x(t), ug(£), x(1)) (17a)
Yi(t) = hy(x(t), ug (), x(1)) (17b)
zi(t) = hy(xk (), ug(t), r(t)) (17¢)

is linearised around %j_; (f|t), u;_1(#), and r(¢), yielding the following linear time-
varying model

Xi(f+ 1) = Ap_q (8)xx(t) + Bi_g (H)ug(t) + sy k-1 (%)
Yi(t) = Cy g-1Xk(t) + Dy 1 (H)ug(f) + sy k-1 (£)
2 (t) = Cpi—1Xk(t) + Dy 1 (H)ug(t) + 55,41 (1)

where
d d dh
aca=2L Boaw=2 cuam=22,
oh, dhy dh,

Cz,k—l(t) = g: Dy,k—l(t) = xy Dz,k—l(t) = ou’
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all evaluated at the point x = X;_;(¢t), u = ug_{(¢), and r = r(¢), with
Sxk-1(t) =f (Rp_1(Hf), w1 (), x(t)) — Ay 1( VX1 (£) — By_y (t)ug_q ()
Sy, k-1(f) =hy(Xe_1 (H]t), ug_1 (2), 1(#)) — Cy k-1 ()X 1 (H]f) — Dy g1 (F)ug_1(¢)
Sz,k-1(8) =hy (X1 (£]t), w1 (1), £(£)) = Co 1 (H)Rp—1 (£t) = Dy (HJug—1 (£).

The linearised quantities only depend on the previous ILC iteration, hence they
are known at the current iteration. Using the linearised state space model gives,
as before, the estimate 2, () and the output y,(¢) in batch form as

Yk :Cy,kflq)kfl Xo + Syu,k—lﬁk + sysx,k—lgx,k—l + §y,kflr
2y =Cp 1 Pr_1%0 + Szuk-1Uk + Szy k1Y
+ Sisx,k—lgx,k—l + Sisy,k—lgy,k—l + §z,k—lr

where all the matrices in the right hand side are dependent of k, and the vectors
Sx.k Sy,k, and S, are stacked versions of s, r(t), sy, (), and s, i (f).

The norm-optimal ILC problem can be formulated and solved in the same way
as before. Unfortunately, since the batch form matrices are dependent of k, the
terms including T, X, Xo, Sx k, Sy,k, and S, x cannot be removed similar to what has
been done before. Note that the weight matrix for the error is also dependent of
k, since it consists of the covariance matrices for the control error. The solution
is therefore given by

_ 17,
Up,1 = (SI’kWe,kSu,k + Wu + /\I) |:/\llk + SI,kWe,k
X (f - Cz,k&ikiO - Sisx,kgx,k - sisy,kgy,k
=Szk — Sayk(Cyr Prxo + Sys_kSxk + §y,k))]: (18)

where Sy x = Sz k + Sy kSyu (see (26), (30) for details). The initial condition x
is of course not known, hence %y must be used instead.

Remark 3. If the change in |[uj,; —ug|| is sufficiently small, then the approximation
Syuk-1 = Syuk and similar for the rest of the quantities is appropriate. Given the ap-
proximation the ILC algorithm (18) is simplified to

Upy1 = Qg (Wx + Ly~ €p) (19a)

Qs =(Sg xWekSuk + Wu + A HAL+SL WeiSui) (19b)

Li =(AT+8L WeiSuk) 'Sy Wepk- (19¢)

Note that the change in u depends strongly on the choice of A. o

4.2 Stability Analysis for the Linearised Solution

To analyse the stability of non-linear systems, utilising the above described lin-
earisation technique, it is necessary to use the convergence results from Norrlof
and Gunnarsson [2002], which are based on theory for discrete time-variant sys-
tems. The stability property for the iteration-variant ILC system (18) is presented
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in Theorem 3.

Theorem 3. (Iteration-variant stability): If f(-), hy(-) and h,(-) are differen-
tiable, then the system using the ILC algorithm (18) is stable.

Proof: From [Norrléf and Gunnarsson, 2002, Corollary 3] it follows that (18) is
stable if and only if

-1
P ((SI,kWe,kSu,k W, + A1) /\) <1, (20)

for all k. The construction of W, from the covariance matrices, gives that
We €S, for all k. This fact, together with the fact that W, € S,,,and A e R,
guarantee that (20) is fulfilled for all k, hence the system with the ILC algorithm
is stable. O

5 Conclusions and Future Work

An estimation-based norm-optimal ILC control algorithm was derived where the
regular optimisation criteria for norm-optimal ILC was extended to an optimi-
sation criteria including the first and second order moments of the posterior
PDF, enabling better performance. For LTI-systems it was shown that the con-
trol law can be separated from the estimator dynamics. Extensions of the results
to non-linear systems using linearisation were also presented together with stabil-
ity and convergence results. The estimation-based norm-optimal ILC framework
enables a systematic model-based design of ILC algorithms for linear as well as
non-linear systems, where the controlled variables are not directly available as
measurements.

Future work includes smoothing instead of filtering, to obtain the estimates, and
to include the smoother dynamics in the ILC design. Also, investigating the use
of the KL-divergence when the estimates are obtained using a particle filter or
particle smoother is a possible extension.

Appendix

A State Space Model and Kalman Filter in Batch
Form

For the norm-optimal ILC algorithm it is convenient to describe the state space

model over the whole time horizon in batch form. The discrete-time state space
model

x(t+1) = A(#)x(t) + By (t)u(t), (21a)

y(t) = Cy()x(t) + Dyy(t)u(t), (21b)
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has the following update formula for the state vector [Rugh, 1996]

-1

X(t) = B(t, to)x(to) + ) (t, j + DBu(j)u(j),
Jj=to

for t > ty + 1, where the discrete-time transition matrix ¢(t, j) is

o A(t-1)- . -AG), t2j+1
¢(t;]) - { I, t = ]
Using (21b) and (22), the output is given by

-1

y(t) = Cy(£) (1, to)x(to) + Dyy(t)u(t) + ch(t)¢(t'j + 1)By(j)u(j).

=
Introducing the vectors
% = (x(to)" x(tg + N)T)'
w = (u(to)" u(ty+N)T)"
=yt oyt +N)T)

(22)

(24)

(25a)
(25b)

(25¢)

gives the solution from t = ty to t = tg + N as X = Dx(ty) + WB,u and for the

output as

¥ = C,®x(tg) + (CyW B, + Dy ) .
—_———

A
£Syu

Here x(tg) is the initial value, and

B, = diag (By(to),
Cy = diag(Cy(to),
Dy, = diag (Dyul(to),

I

o(to + 1, 1)
D = ¢(t0 +2 tO)

¢d(to + N, tg)
0
I

wo | Plto+2,t+1)

.., Byu(tg+N-1), 0
- Gyt +N))
., Dyy(to+N))

0 0
0
I 0

¢(t0+N,t0+1) ¢(t0+N,t0+2)

o o

(26)

(27e)
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The Kalman filter can be written in a similar batch form as described above. Let
the state space model be given by

x(t+1) = A(t)x(t) + ( Ju
y(t) = Cy( )x(t) + yult

where w(t) ~ M (0,Q(t)), and v(t) ~ N(0,R(#)
et al., 2000] we get

t) + G(t)w(t), (28)
u(t) +v(t), (29)

From the filter recursions [Kailath

(
(t)
)-
%(t+ 1]t +1) =(1- K(t + 1)Cy (¢ + 1) )A()R(tt) + (T K(t + 1)Cy (£ + 1) |By(t)u(t)
= K(t + 1)Dyy(t + Du(t + 1) + K(t + D)y(t + 1)
=A(t)R(tt) + By(t)u(t) - Dyy(t + Du(t + 1) + K(t + Dy(t + 1),
where, K(t) is the Kalman gain given by the recursion
P(t|t —1) =A(t - 1)P(t — 1]t - 1)A(t - 1)" + G(t - 1)Q(t — 1)G(t - 1)T
K(t) =P(t]t - 1)Cy (1) (Cy (P (Hlt - Ty (1) +R(H))
P(¢]t) =(T - K(£)Cy(1) )P(¢]t - 1).

The update formula for the estimated state vector is finally given by

-1
K(H]t) = B(t, to)x(tolto) + ) G(t,j+ 1)By(j)u(j)

]:t
t t
= ) $(t Dyl Z Bt Ky (),
j=to+1 j=to+

where a is defined as in (23), with A(t) instead of A(t). The KF recursion in batch
form becomes

X = Dx(tylty) + (WB, - W, Dy, )u + W,Ky,
where @, ¥, and 511 are given in (27) with A(t) and By (t) instead of A(t) and

B,(t). The remaining matrices are defined as

~ ~ [ 1
v, = (0(N+l)nx><nx ‘p(O Ny ))

1Ny
Dy, = diag(0, Dyy(tg+1), ..., Dylto+N))
K =diag(0, K(tg+1), ..., K(tg+N)).
Finally, the batch formulation for the variable

Z(t) = Cz(t)xt + Dzu(t)utl
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is given by
z = C,DR(tolty) + (C,(PB, - W, Dyy) + Dy ) U + C,W,KY, (30)
~———
N ig,

:Siu zy

where C, and D,,, are given in (27) using C,(t) and D,(¢).
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Abstract

This paper considers the aspects of controllability in the iteration do-
main for systems that are controlled using iterative learning control
(ILC). The focus is on controllability for a proposed state space model
in the iteration domain and it relates to an assumption often used
to prove convergence of ILC algorithms. It is shown that instead of
investigating controllability it is more suitable to use the concept of
target path controllability (TPC), where it is investigated if the output
of a system can follow a trajectory instead of the ability to control the
system to an arbitrary point in the state space. Finally, a simulation
study is performed to show how the ILC algorithm can be designed
using the LQ-method, if the state space model in the iteration domain
is output controllable. The LQ-method is compared to the standard
norm-optimal ILC algorithm, where it is shown that the control error
can be reduced significantly using the LQ-method compared to the
norm-optimal approach.

Introduction

Iterative learning control (ILC) is a method to improve the control of processes
that perform the same task repeatedly [Arimoto et al., 1984; Moore, 1993]. A
good example of such a process is an industrial robot performing arc welding or
laser cutting in a general production situation. The system used for ILC can be
both an open loop system as well as a closed loop system, therefore let the system
be described by Figure 1. Usually, the ILC control signal uy(t) € R"+ is updated

according to

ue (1) = F (a1 (e ('), =0, ,N =1,

227
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r(t)
ug(t)

—>
S > yk(t)
—>

Figure 1: System used for ILC. It can be either an open or closed loop system.
The reference signal is denoted by r(t), the ILC control signal by uy(t) and the
output signal by y(t), where k is the ILC iteration index and t the time index.

where ey (t) = r(f)—y(t) is the control error, r(t) € R™ the reference signal, y,(t) €
R™ the measurement signal, k the iteration index, t the time index and F(-) is
an update function. The main task is to find an update function that is able to
drive the error to zero as the number of iterations tends to infinity, i.e.,

llex()] = 0, k — oo, Vt. (1)

For the convergence proof it is usually suitable to use a batch description of the
system,

Vi = Syl + S, I. (2)

Here, the vectors y,, uy, and T are composed by the vectors yi(t), ui(t), and r(t)
stacked on each other for t = 0,..., N — 1, and the matrices S, and S, are lower
triangular Toeplitz matrices containing the Markov parameters for the system,
see Appendix A for details.

In Lee and Lee [1998, 2000]; Lee et al. [2000] it is proven that (1) holds under
the assumption that S, has full row rank. Moreover, in Amann et al. [1996]
it is assumed that ker S = (@ which is equivalent to S, having full row rank.
An important implication from this assumption is that it is necessary to have at
least as many control signals as measurement signals. Even if the numbers of
measurement signals and control signals are the same it can not be guaranteed
that the full rank requirement is fulfilled.

This paper investigates what it means that S, has full row rank, based on a state
space model in the iteration domain for which different types of controllability
properties are considered. The result shows that the requirement of full row rank
of S, is equivalent to the proposed state space model being output controllable.
Using the definition of controllability, the interpretation of having a rank defi-
cient matrix S, for a general system, is discussed. The aspects of controllability
are then extended to target path controllability (TPC) [Engwerda, 1988] which
is shown to be a more suitable requirement for ILC. TPC naturally leads to the
concept of “lead-in”, which is about extending the trajectory with a part in the
beginning, where it is not important to have perfect trajectory tracking, see e.g.
Wallén et al. [2011]. It is also important to realise that TPC can help in the design
of the reference trajectory to achieve tracking with as short lead-in as possible.

In this paper the focus is on time-invariant systems. However, extensions to time-
varying systems are straightforward using standard results for time-varying sys-
tems. In general, non-linear phenomena, such as control signal limitations, must
also be considered, but that has been omitted in this work.
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2 State Space Model in the lteration Domain

The state space model in the iteration domain uses the batch formulation of the
system dynamics. The batch formulation is known as the lifted system represen-
tation in the ILC community and is used both for design of ILC update laws, e.g.
norm-optimal ILC [Amann et al., 1996; Gunnarsson and Norrlof, 2001], as well
as for analysis of stability and convergence. In this work, the following linear
time-invariant state space model in discrete-time
x(t + 1) = Ax(t) + Byu(t) + B,r(¢t) + B,w(?), (3a)
y(t) = Cx(t) + v(t), (3b)
where w(t) ~ AN (0,Q) is the process noise and v(t) ~ N(0,R) is the measure-
ment noise, is considered. It is henceforth assumed that the system in (3) is both
controllable and observable. The following batch formulation of the system
X =Dx(0) + SyuU + Sy, T, (4a)
¥ =C%, (4b)
where w(t) and v(f) have been replaced with their expected values which are
equal to zero, can now be obtained according to Appendix A.

At ILC iteration k and k + 1 it holds that
X = Dx(0) + SyuUi + Sy T, (5)
X1 = Px(0) + SxuUps1 + SxeT (6)
where the initial state x(0) and the reference ¥ repeats for all iterations, which are

two common assumptions when applying ILC [Arimoto, 1990]. Subtracting (5)
from (6) gives the following expression

Xie1 = X + Syu(Wpy1 — Ug) = Xx + Sy Ay, (7)
where Ag, 2 Uy,; — Uy is considered as a new control signal. The state space
model in the iteration domain is therefore given by

Xpr1 = X + quAﬁkl (8a)
Yi = CXx. (8b)

3 Controllability

An important property for state space models is controllability, which considers
the ability to control the system to a predefined state or output. This section
considers necessary and sufficient conditions for the system in (8) to be control-
lable. First, state controllability is investigated and second, output controllability
is investigated.
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3.1 State Controllability

Controllability can formally be stated according to Definition 1.

Definition 1 (Controllability [Rugh, 1996]). A linear time-invariant state space
model is called controllable if given any state x there is a positive integer t; and
an input signal u(t) such that the corresponding response of the system, begin-
ning at x(0) = 0, satisfies x(tf) = xy.

Theorem 1 (Controllability [Rugh, 1996]). An LTI system is controllable if and
only if the rank of the controllability matrix € is equal to the state dimension.

From Theorem 1 it follows that the system in (8) is controllable if and only if
rank 6 = Nn,. Since the dynamics for (8) is an integrator, the controllability
matrix € is given by Sy, repeated N times, i.e.,

€ =(Sxu - Sxu) (9)
and the rank is simply given by
rank & = rank S,,. (10)

The system is therefore controllable if and only if rank Sy, = N#n,. A necessary
and sufficient condition for controllability of (8) is presented in Theorem 2.

Theorem 2. System (8) in the iteration domain is controllable according to Def-
inition 1 if and only if rank By = n,.

Proof: Exploiting the structure of Sy, gives

I 0 -+ 0)(B, O 0
A I -~ 0|0 B, --- 0
qu: : .. : . . U (11)
AN-T AN=2 ... 1Jlo o0 .- B,
Sy B

where it can be noted that the matrix W is square and triangular with all diagonal
elements equal to 1. The determinant of a square triangular matrix is equal to
the product of the diagonal elements [Liitkepohl, 1996], hence det W = 1 giving
that W is non-singular. It now follows that

rank S, = rank WB = rank B = N rank B,,. (12)

The system is therefore controllable if and only if rank B, = n,. O

Corollary 1. A necessary condition for system (8) to be controllable is that n,, >
Ty
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Proof: It is given that B, € R"**"«, hence rank B, < min {n,, n,}. It is therefore
necessary to have n,, > n, to be able to obtain rank B, = n,. O

Remark 1. Controllability of the time domain system (3), i.e.,
rank (Bu AB, --- A”x‘lBu) =Ny, (13)

does not imply that the iteration domain system in (8) is controllable.

3.2 Output Controllability

The system in (8) is, as shown above, not necessarily controllable. However, the
requirement of controllability is very strict. Often, it is not of interest in ILC
to control all the states but only the output. Therefore, it is more relevant to
consider output controllability of the system. A formal definition of output con-
trollability follows from Definition 1 with x replaced by y. The requirement for
output controllability is that the output controllability matrix, denoted by 6°,
has full rank [Ogata, 2002], where

¢°=(CB, CAB, --- CA™'B, D) (14)

for a general state space model parametrised by (A, B, C, D). A condition for out-
put controllability for the system in (8) is presented in Theorem 3.

Theorem 3. The system in (8) is output controllable if and only if
rank CSy, = Nn,,. (15)

Proof: From (9) and (14) it can be concluded that ¢° = C% for the system in (8).
Hence, the system is output controllable if and only if

€% =(CSxu -+ CSy) (16)
has full rank, i.e., rank ¢° = Nny. The result follows directly from the fact that
rank €° = rank CSy,,. O
Note that a general controllable LTI system is not necessarily output controllable,
and a general output controllable system is not necessarily controllable.

It follows from (15) that if the system is output controllable the matrix CSy,
must have Nny independent rows. Hence, the measurements in the time domain
model (3) must be independent which holds if rank C = n,. Theorem 4 presents
a necessary, but not sufficient, condition for output controllability.

Theorem 4. Assume rankC = n,. A necessary condition for system (8) to be
output controllable is that rank By > n,.
Proof: The rank of a product of two matrices is less than or equal to the minimum
of the rank of each matrix [Litkepohl, 1996], hence

rank CS,, < min {rank C, rank S, } = min {N rank C, N rank B} (17)
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From the assumption rank C = n, it follows that a necessary condition to have
rank CSy, = Nny is to have rank B, > n, O

In Section 1 it was mentioned that in Lee and Lee [1998, 2000]; Lee et al. [2000];
Amann et al. [1996] S, was assumed to have full row rank. In this work, S, =
CS,yu, hence the property (1) holds if the state space model (8) is output control-
lable. Section 4 will discuss the difficulties of having the system (8) controllable
and output controllable.

3.3 Stabilisability

When a system is uncontrollable it is important to make sure that the uncontrol-
lable modes are asymptotically stable, referred to as stabilisability, see Defini-
tion 2.

Definition 2 (Stabilisability [Rugh, 1996]). A linear system is stabilisable if
there exists a state feedback gain L such that the closed-loop system

x(t +1) = (A - BL)x(¢) (18)

is exponentially stable.

It follows from Definition 2 that a linear system is stabilisable if the uncontrol-
lable modes are asymptomatically stable, i.e., the eigenvalues of A, that are associ-
ated with the uncontrollable modes, lie inside the unit circle. The uncontrollable
modes can be obtained using a variable transformation, see e.g. Rugh [1996]. For
a general state space system, the transformed system can be cast in the form

= A A\ [F 1
)=l RaR)(5)e &
(X%H 0 Ay X% o/
where X! is the controllable part, i.e., (Ay1,By) is controllable, and %2 is the un-
controllable part. The eigenvalues of the uncontrollable part are the eigenvalues

of Ay, which must be inside the unit circle in order for the total system to be
stabilisable.

Considering the system in (8), it holds that all eigenvalues are equal to 1. Since
a similarity transformation does not change the eigenvalues, the uncontrollable
modes of (8) are only marginally stable, hence the system is not stabilisable.

4 Interpretation of the Controllability Requirements

A discussion about the possibilities for the system in (8) to be (output) control-
lable is given in this section. It is shown that (output) controllability of system (8)
is difficult to achieve, both from theoretical and practical perspectives.

In Rugh [1996] it is stated that controllability of the system (3) does not consider
what happens after time f;. It only considers if it is possible to reach the desired
state x; within the desired time interval. Moreover, a single input system with
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state dimension 7, can require #n, time steps to be able to reach the desired state
xs or the desired output y;. It means that it can take up to n, time steps before
the state space model (3) reaches the reference trajectory. This practically means
that the first part of X, and the corresponding part of y, cannot be defined by an
arbitrary reference.

Another reason for the system not being (output) controllable is the construction
of the vectors X and y. It will be physically impossible to achieve any given X or
Ys- A simple example with 7, = 2, where the states are position and velocity, and
the input is the acceleration, will be used to illustrate this.

Let p(t) be the position, v(t) the velocity, and let the state vector be

x(t) = (p(t) v(1)',

then the continuous-time model becomes
o [0 1 0
x(t)_(O 0)x(t)+(1)u(t). (20)

Discretisation of (20) using zero order hold gives the discrete-time model

(1 T T2/2
x(t+1)_(O 1)x(t)+( T, )u(t), (21)
where T; is the sample time. The batch vector X becomes

x=(p(1) v(1) p(2) v(2) - p(N) w(N)). (22)

From Theorem 2 it follows that the system in (8) is controllable if and only
rank B, = n, = 2. Here, rank B, = 1 hence the system is not controllable. To ex-
plain this, consider the dynamics and assume that at time ¢ the position p(t) = a
and the velocity v(t) = b for some constants a4 and b. It should be possible to
choose the position and velocity at the next time step t + 1 arbitrarily to have
controllability of the state space model in the iteration domain, according to Def-
inition 1. It can be noticed from (21) that it is impossible to go from p(t) = a and
v(t) = b to an arbitrary point at time ¢ + 1. It is therefore not possible to have any
value of X as Definition 1 requires.

If the position or the velocity is considered as the output, i.e., n, = 1, then the
necessary condition for output controllability from Theorem 4 is satisfied, hence
the system can be output controllable. In order to establish if the system is output
controllable it is necessary to check the rank of the matrix CS,,. It turns out that
the system is output controllable in both cases.

If instead Euler sampling is used to discretise (20), then the discrete-time model
becomes

x(t+ 1) = ((1) ?)x(m(?)u(t). (23)

If the position or the velocity is measured, then the necessary condition for out-
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put controllability from Theorem 4 is still satisfied. However, considering the
position as output gives that the first row in CS,, is equal to zero because of the
zero element in B, hence the rank condition for CSy, is not satisfied. It means
that the control signal does not affect the position directly. Instead the position is
affected indirectly via the velocity. Hence, from the explanation above, it follows
that the state space model in the time domain can require up to n, time steps
before it can reach the reference trajectory, which is the reason for the system in
the iteration domain not being output controllable.

For many practical applications, such as an industrial robot, it is not only the
position that is of importance but also the velocity needs to follow a predefined
trajectory in order to achieve a satisfactory result.

From this discussion, it follows that the assumption of S, having full row rank is
too restrictive to be of practical value. Instead of requiring standard controllabil-
ity it is necessary to check if the system can follow a trajectory, which is discussed
in Section 5.

5 Target Path Controllability

Output controllability concerns the possibility to reach a desired output at a spe-
cific time. For ILC it is of interest to reach a desired trajectory, in as few steps as
possible, and then be able to follow that trajectory, hence it is more interesting to
use the concept of target path controllability (TPC) [Engwerda, 1988]. Target path
controllability is used to investigate if it is possible to track any given reference
trajectory over some time interval for any initial state. A formal definition can
be found in Definition 3, where ¥(l, m) symbolises the vectors r(t) for t = I,..., m
stacked on top of each other. The same notation holds for u(/, m).

Definition 3 (Target path controllability [Engwerda, 1988]). Let p and q be
positive integers. Then a linear time-varying system is said to be target path
controllable at t;, with lead p and lag g, if for any initial state x(¢y) = xy and
for any reference output trajectory ¥(ty + p, to + p + g — 1), there exists a control
sequence u(ty, fo + p+ g — 2) such that y(t) = r(t) forall tp+ p <t <ty +p+g—1.

The target path controllability will be abbreviated as TPC(ty; p,q). For g = oo
the system is said to be globally TPC at t; with lead p. In this paper only LTI
systems are considered, therefore the starting time f; = 0 is used without loss of

generality, and TPC(p, q) 2 TPC(0; p, 9).

In Engwerda [1988] several results are presented to guarantee a system to be TPC.
These results are based on different subspaces defined using the system matrices
and will not be presented here. However, a rank condition of a certain matrix
will be presented. The condition is similar to what is used for standard output
controllability.
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Theorem 5. A linear time-invariant system is TPC(p, q) if and only if

rank Syy(p, 9) = qn,,
where
CAP'B, --- CB, --- 0

syu(p’ 61) = : .. .. :
CAPHI—2B, e CB,

Proof: The result follows directly from [Engwerda, 1988, Lemma 8] using the LTI
model in (3). O

Remark 2. Let p = ny and q = 1, then Syy(n1y, 1) = € for the system in (3), i.e., the
standard output controllability matrix is obtained.

The connection between TPC and output controllability is presented in Theo-
rem 6.

Theorem 6. Output controllability of the system in (8) is equivalent to the sys-
tem in (3) being TPC(1, N).

Proof: From Theorem 3 it holds that the system in (8) is output controllable
if and only if rankCSy, = Nn,. Using p = 1 and q = N gives Sy,(1,N) =
CS,y and from Theorem 5 it follows that the system is TPC(1, N) if and only if
rank Sy, (1, N) = Nn,. Hence, the two properties are equivalent. O

Return to the example in Section 4 for the case where Euler sampling has been
used and the position is the output. It was shown that CS,, did not have full row
rank due to the zero element in B,. However, removing the first row with only
zeros in CSy, gives the matrix Sy, (2, N —1). The conditions in Theorem 5 are now
satisfied, hence the system is TPC with lead 2.

Theorem 5 states a requirement for the system to be TPC. Another important
question, is it possible to track a given predefined reference trajectory? Even if
the system is TPC it can exist reference trajectories that cannot be tracked. Theo-
rem 7 presents a necessary and sufficient condition for reference trajectories that
are possible to track, which basically states that the reference should lie in the
range space of Sy, (p, q).

Theorem 7 (Strongly admissible reference trajectory [Engwerda, 1988, Theo-
rem 8]). A reference trajectory ¥(p, p + q — 1) is strongly admissible if and only
if

rank (Syu(p,4) Z(p,p + 49— 1)) = rank Syy(p, 9) (24)
where z(i) = r(i) — CA'x(0) fori = p,...,p+q - 1.
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Yo | —x(t)

Figure 2: Augmentation of the reference trajectory to include lead-in. The
original reference is denoted by r(t) and ¥(t) is the appended trajectory. The
transient of the output y(t) is also shown.

The reader is referred to Engwerda [1988] for a thorough description of admissi-
ble references and how to generate them.

6 Concept of Lead-in

Target path controllability can now be used to investigate after how many sam-
ples it is possible to track the reference, and during how many samples the ref-
erence can be tracked. It comes now naturally to define the concept of lead-in.
Lead-in means that the starting point of the original reference trajectory r(t) is
moved 7 samples forward in time by appending the reference with a new initial
partt(t), see Figure 2. Note that 7 > p in order to fulfil the requirements for TPC.
The output now follows the new reference signal, see Figure 2. The assumption
of the system being TPC with lead p < 7 means that the system should be able to
follow the original reference r(t). The error in the beginning, i.e., T(t) — y(t) for
t < 7, does not matter since the aim is to follow r(t). The new initial part ¥(t) of
the reference trajectory must of course be chosen carefully, e.g. using Theorem 7,
to be able to track the remaining trajectory r(t).

Lead-in may not always be possible to use in practice. If the application and the
trajectory do not permit to append 1(t), then lead-in cannot be used. In that case,
an update of the initial state must be used to get closer to the reference signal.
Being able to change the initial state while applying the philosophy of ILC can
help to decrease the initial error in an iterative manner.

7 Observability

Given a state space description of the system, such as (8), it is natural to consider
estimation of the state, using for example a Kalman filter. Intuitively, this would
enable smoothing in the time domain, within each batch, for a fixed iteration.
Dual to the controllability property, the observability becomes important when
considering state observer design.
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An LTI system is observable if and only if the rank of the observability matrix @
is equal to the state dimension [Rugh, 1996]. A condition for observability of the
system in (8) is presented in Theorem 8.

Theorem 8. System (8) in the iteration domain is observable if and only if

rank C = n,.

Proof: The observability matrix for the system in (8) is given by C repeated N
times, i.e.,

T
@=(c’ - cT). (25)

The system is therefore observable if and only if
rank @ = rank C = Nn,. (26)

From the structure of C it follows that rank C = N rank C. Hence, the system is
observable if and only if rank C = n,. O

Corollary 2. A necessary condition for system (8) to be observable is that n, >

My

Proof: It is given that C € R™™"x, hence rank C < min{ny, nx}. It is therefore
necessary to have n, > n, to be able to obtain rank C = n,. O

In practice, the number of measurements is usually less than the number of states.
Therefore, the system in (8) is in practice often not observable.

Remark 3. Observability of the time domain system (3), i.e.,
-
rank (CT (cA)T -+ (cA™1)T) =n, (27)

does not imply that system (8) is observable.

8 Output Controllable System for Design of ILC
Algorithms

If system (8) is output controllable, then the variable substitution z £ y =Cx
gives the new state space model

Zgy1 = Zg + Sulg,, (28a)

Yk = Zk, (28b)

which is controllable by design. The ILC control law can now be found using stan-
dard discrete-time control methods such as linear quadratic (LQ) control with in-
finite horizon, H,, control, model predictive control, etcetera. For simplicity, no
noise terms are included in (28), hence, there is no need for a state observer since
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all states are directly measured. A small simulation study of a flexible joint model
with linear spring characteristic will show the advantage of using LQ-design of
the ILC control law compared to the standard norm-optimal ILC method [Amann
et al., 1996].

The flexible joint model in continuous-time with the state vector

x:(Qa da  qm qm)T

is given by
0 1 0 0 0
I B AWK
)’( = O a 0 a Oa 1a X+ 0 u, (29)
k4 __k _f+d L
Mm Mm Mm Mm M'V’

with k = 8, d = 0.0924, M, = 0.0997, M,, = 0.0525, f = 1.7825 k, = 0.61. A
discrete-time model is obtained using zero order hold sampling with a sample
time T; = 0.1s. The system in the iteration domain is clearly not controllable
since the state dimension is larger than the number of inputs. To satisfy the
requirement for output controllability it is necessary to have at most one output.
The output is chosen as g,, which gives that CS,, has full row rank.

The LQ-problem for the model in (28) can be formulated as

minAi{nise ZEZTWeEi + A%iW JNAYH

i=1 (30)
subjectto €; =T-Yy,,

(28),

which can be solved using standard methods [Franklin et al., 1998].

Remark 4. Since only the output is considered in the LQ-formulation it is important to
know that the remaining original states do not cause any problems. It can be concluded
that the remaining states will behave properly due to observability of the original state
space model in the time domain.

The norm-optimal ILC from Amann et al. [1996]; Gunnarsson and Norrl6f [2001]
can be formulated using the batch vectors as

1
—el

e . — —_T — — — \T— —
minimise ki1 We€ki1 + Uy Wallgyy + A(Ugyg —0y) (U —ug)  (31)

Ukt 2
and the solution can be found in Gunnarsson and Norrl6f [2001]. To obtain a fair
comparison the tuning of the two design methods must be similar. Comparing
(31) and (30) gives that the control weights should be chosen as W, = 0 and
Wy = Al Numerical values of the weight matrices are W, = I and A = 1.
The reference signal is a unit step filtered four times through an FIR filter of
length n = 100 with all coefficients equal to 1/n. The performance of the two ILC
algorithms is evaluated using the relative reduction of the RMSE in percent with
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Figure 3: Relative reduction of the RMSE for the norm-optimal ILC algorithm
and the LQ-ILC algorithm.

respect to the error when no ILC signal is applied, i.e.,

N N
pi = 100 %Zekw/ 5 ) et (32)

t=1 t=1

The relative reduction of the RMSE is shown in Figure 3 for the two ILC algorithms.
It can be seen that the error for the norm-optimal ILC levels out whereas the
error for the LQ-ILC continues to decrease. The convergence speed is also faster
for the LQ-ILC. The simulation study shows that it can be worth to check output
controllability of the batch system and then use LQ-design instead of the standard
norm-optimal ILC algorithm. However, if the system is not output controllable
then the norm-optimal ILC control law must be used.

Remark 5. By introducing a terminal cost term |[ej;|[p in the objective function for the
norm-optimal ILC, and letting P be the solution to a suitable Riccati equation, the norm-
optimal ILC turns out to be equivalent to the LQ-controller. This follows from the principal
of optimality and dynamic programming.

9 Conclusions

This paper introduces a state space model in the iteration domain and discusses
what it means that the state space model is (output) controllable. It is shown
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that the condition to guarantee output controllability is equivalent to a condition
used in the literature to prove that the error tends to zero for the complete batch.
Furthermore, it is discussed what it means to have a general system (output)
controllable. A system with two states, position and velocity, is used to exemplify
this. For systems that are not controllable it is more suitable to use target path
controllability. This leads to the concept of lead-in where the first part of the
reference trajectory is not considered for perfect tracking performance. Finally,
LQ design of the ILC law for an output controllable system is compared to the
standard norm-optimal ILC law. It is shown that the LQ design outperforms the
norm-optimal ILC law.

Appendix

A State Space Model in Batch Form

The discrete-time state space model
x(t+ 1) = Ax(t) + Byu(t) + Bor(f) + By, w(t), (33a)
y(t) = Cx(t) + v(¢), (33b)

where w(t) ~ N (0, Q) is the process noise and v(#) ~ N(0,R) is the measurement
noise, has the following update formula for the state vector [Rugh, 1996]

ZAf 1B u(j) ZAf 1B, x(j ZAf B w(j),  (34)

for t > 1. After 1ntroduc1ng the vectors

x=(x()T ... x(N)T) eRN",
w=(w0)T ... w(N-1)7T) eRN™,
y= (YT . yN)T) e RV,
£=(x(0)7 ... x(N-1T) eRN™,
W= (w0 ... wN-1T) eRN™,
v=(v()T ... v(N)T) e RN,

the model in (33) can be written more compactly for a batch of length N as

X X(0) + Sy + Sy T + Sy W (35a)
y=Cx+Vv (35b)
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where x(0) is the initial value, C = Iy ® C, and

A B, 0 e 0
A? AB, B, e 0

P=1. [ Su= : : S K (36)
AN AN-1B, AN-2B, ... B,

where * = {u, r, w}. The process and measurement noise for (35) are w ~ AV (0, Q)
and v~ N(0,R), where @ = Iy ®Qand R =Iy ®R.
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