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Abstract

For large-scale biological networks represented as signed graphs, the index of frustration
measures how far a network is from a monotone system, i.e., how incoherently the system re-
sponds to perturbations. In this paper we find that the frustration is systematically lower in
transcriptional networks than in signaling and metabolic networks. Interpreting this result
in terms of energetic cost of an interaction, an erroneous or contradictory transcriptional
action costs much more than a signaling/metabolic error, and therefore must be avoided
as much as possible. Averaging over all possible perturbations, however, we also find that
signaling/metabolic networks tend to undergo a phase transition to order in an energetic
regime lower than for transcriptional networks, meaning that, in spite of the higher frustra-
tion, they can achieve a globally ordered response to perturbations even for moderate values
of the strength of the interactions. Furthermore, an analysis of the energy landscape shows
that signaling and metabolic networks lack energetic barriers around their global optima, a
property also favouring global order. In conclusion, transcriptional and signaling/metabolic
networks appear to have systematic differences in both the index of frustration and the tran-
sition to global order. These differences are interpretable in terms of the different functions
of the various classes of networks.

∗The authors are with SISSA-ISAS, International School for Advanced Studies, via Beirut 2-4, 34014 Trieste,
Italy. Corresponding author: altafini@sissa.it
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Author’s summary Studying the properties of a dynamical system is fundamental for under-
standing which functions/tasks it is optimized for. Biological networks, such as transcriptional,
signaling and metabolic networks, are essentially large scale dynamical systems with highly
complex behavior. The majority of the kinetic details needed for a classical dynamical system
investigation, e.g. for an analysis of the stability and robustness properties, are not accessible for
such biological networks. However, by using a minimal representation of these networks, like a
graph of signed interactions, it becomes possible to study other important dynamical properties,
like the degree of frustration, which represents how coherently the system responds to perturba-
tions. The aim of this paper is to use algorithms and methods inspired from statistical physics
(such as the notions of gauge invariance, of mean field theory for heterogeneous networks, and
of phase transition), in order to characterize several classes of large-scale biological networks
in terms of their monotonicity, frustration level, and degree of ordered response. Representing
biological networks as graphs of interactions and subsequently studying their properties is a
first step towards a less descriptive and more quantitative approach to the study of large-scale
complex dynamical systems.
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1 Introduction

For complex systems such as biological networks, rather than a precise description of the dy-
namics, which requires a quantity of kinetic details rarely accessible in large scale systems,
it is often more reasonable to use a minimal representation, such as a graph of interactions
between the molecular variables of interest [12, 13, 14, 23] and perhaps a sign describing the
functional mode of the pairwise interaction. Such graphical approaches have been extensively
used in recent years to model transcriptional [20, 28], signaling [19, 21, 22] and metabolic net-
works [12]. Signed adjacency graphs have been investigated in several different contexts, such
as economics [10, 24], social balance [1], and in the theory of frustrated spin systems [5, 8],
see [34] for a survey. In particular, in [30] signed graphs are linked to the theory of monotone
dynamical systems [29] and this last is used as a paradigm to explain the highly predictable
and ordered response of biological systems in many cases. In a biological network, a response
to a perturbation propagating incoherently through the network may result in an unpredictable
or contradictory behavior of the system as well as in a waste of resources. From a dynamical
point of view, a system never showing any such contradiction is called monotone [29, 30], see
Supplementary Notes for a more rigorous definition. From a statistical physics perspective, the
problem of determining when a dynamical system is monotone (or near monotone) is equivalent
to checking when an Ising model with signed couplings has no (or little) frustration [30, 6, 18].
We know from the theory of Ising models that it is energetically favorable for neighbouring spins
to be aligned when the coupling constant is positive and to be antialigned when it is negative.
Frustration then appears when in a cyclic subgraph or in a fan-in node it is impossible to satisfy
all of these pairwise relationships [30].

We have tested a number of large scale biological networks, and the frustration index we
observe varies considerably according to the type of network analyzed: it is very low for gene
regulatory networks and much higher for signaling and metabolic networks. In this paper we
propose an interpretation of this different behavior based on the characteristic “energy” associ-
ated to the interactions of a graph, namely that the higher energetic content of a transcription
event strongly disfavors incoherent or contradictory transcriptional orders. For the “cheaper”
signaling and metabolic events, instead, such a tight control may not be required, especially
since a higher frustration may induce a richer and more complex dynamical behavior.

If rather than focusing only on the energy of the optimal configuration (i.e., on the ground
state of the system) we average the state of the system over all possible perturbations, we can
observe that the more frustrated signaling/metabolic networks achieve “order” (i.e, tend to
populate their global minimum of energy) in a range of coupling strengths which is lower than
for the transcriptional networks, meaning that these networks tend to respond to perturbations
as coherently as they can even for moderate values of energy. This behavior partially com-
pensates for the higher frustration, which, as already mentioned, might be instrumental to the
achievement of more complex dynamics than those required for the transcriptional networks.
These last networks, on the other hand, only contain strong interactions and are therefore not
concerned with the lower energetic regime. Coherently, they show a topological structure richer
in tree-like subgraphs which disfavor the phase transition, and which are absent in the other
classes of networks.

That signaling and metabolic networks may require a lower energetic content to experience
a transition to ordered behavior is also confirmed by the structure of their energy landscapes
which, unlike for the transctiptional networks, lack high and neat energetic barriers around the
global optima, meaning that reconfiguration to the ground state can be easily achieved even at
modest energies.
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2 Results

The representation of a biological network as an n-dimensional signed adjacency matrix is given
by a matrix J of elements Jij ∈ {±J, 0}, i, j = 1, . . . , n. J is assumed symmetric (i.e., the
frustrated cycles we seek are in the underlying nonoriented graph), and with zero diagonal
(i.e., no self-loops), see [30] and the Supplementary Notes for details on the formulation of the
problem. Coherently with our choice of model, we assume that also the perturbations affecting
the system are of unit magnitude in each component, si ∈ {±1}, i = 1, . . . , n. In correspondence
of a vector s =

[

s1 . . . sn

]

of such signed perturbations, or “spin” variables, let us consider
the “energy” function

h(s) = −
1

2

n
∑

i,j=1

Jijsisj = −
1

2
sTJ s, (1)

which expresses the total cost associated to the perturbation s. Assuming that all couplings
of a network have the same strength, |Jij | = J , the cost of each interaction depends on the
sign of Jij : for Jij > 0 (activator) the aligned si, sj spin configuration is more energetically
favorable (−Jijsisj = −J < 0) than the antialigned one (−Jijsisj = J > 0) and viceversa for
Jij < 0. Of all 2n possible spin assignments, those respecting monotonicity will be such that
siJijsi > 0 on each edge of the graph, i.e., those contributing to minimizing h(s). A spin system
is said frustrated when not all these constraints siJijsj > 0 can be satisfied simultaneously
by any assignment. Computing how far a given network is from being monotone corresponds
to computing s that globally minimizes (1). It has been shown [6] that this is an NP-hard
problem, equivalent to the MAX-CUT problem or, in terms of the Ising model, to computing
the exact frustration index of the network [30, 2], call it δ. In [11] (see also Supplementary Notes
for a quick recap), we proposed efficient heuristic algorithms providing fairly tight upper and
lower bounds for δ of biological networks of the size of the thousands nodes. From the theory
of monotone systems [29, 30], J is monotone if and only if there exists a diagonal signature
matrix Pσ (i.e., a matrix having on the diagonal the vector σ of elements σi ∈ {±1}) such that
Jσ = PσJPσ has all nonnegative entries, see Lemma 2.1 in [29]. Jσ and J have different sign
patterns but the same frustration index δ, as Pσ is a change of sign through a cut set of the
graph of J and such “gauge transformations” [32] leave the sign of each cycle of the graph (and
hence δ) unaltered.

Let us consider first as an illustrative example the yeast cell cycle network of [16], see Fig. 1.
The number of negative signs on the original (symmetrized, without self-loops) adjacency matrix
J is 10. However, a gauge transformation on the three nodes Cib1,2 Clb5,6 and Cln1,2 yields
a Jσ with only 4 negative edges, which is a global optimum for the frustration index δ, see
Fig. 1 (a). The presence of frustrated cycles in a network leads to a lack of coherence in the
response of the system to perturbations. This can be observed in Fig. 1 (b), where the response
of the yeast cell cycle and of a monotone network built on the same graph are compared. The
behavior of the non-monotone cell cycle network is less predictable and potentially contradictory
(see also Fig. S1 for analogous considerations on the simpler feedforward loop example [20]).
It is then important to have an estimate of how close a true network is to being monotone
i.e., frustration-free. Our algorithms allow to obtain a Jσ with as low as possible negative
signs also for large scale networks. This number is typically close to δ, meaning that it is
now much easier to localize on the graph of Jσ the potentially frustrated bonds (or, more
properly, the frustrated cycles). Another consequence is that the candidate ground state for
Jσ is now straightforward to identify, as it corresponds to the “all spins up” configuration, call
it 1. Hence, the candidate ground state for the original J can be found reversing the gauge
transformation: sground = Pσ1. Approximate values for the frustration index δ and for the
corresponding energy minimum h(sground) = −sT

groundJ sground not very far from the true ones
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can therefore be computed.

Frustration in large scale biological networks For 8 large-scale biological networks, 4
transcriptional (E.coli, Yeast, B.subtilis and Corynebacterium), 2 signaling (EGFR and Toll-like)
and two metabolic (E.coli and Yeast networks), we considered the corresponding signed graphs
(see Tables S1-S2 for details on the networks and the Supplementary Notes for the construction
procedure followed) and estimated δ through the algorithms mentioned above. The theory of
signed graphs provides us with an upper bound on the frustration index (see Supplementary
Notes), call it δmax, which is a function only of the number of nodes, edges and cycles of the
networks. The ratio δ/δmax, Fig. 2 (a), shows a marked difference between transcriptional
networks and signaling/metabolic networks, with the former exhibiting a consistently lower
level of frustration than the latter. The upper bound δmax, however, disregards completely the
topological structure and the sign arrangements of a network. To take into account also these
parameters, we constructed a null-model of the networks, obtained by randomly reshuffling the
signs of the edges, while maintaining the same number of positive and negative edges of the
original graph, see Supplementary Notes for details. For the Z-score of this null model, a negative
value means that the edges are arranged in order to decrease frustration. We can observe in
Fig. 2 (b) that all the transcriptional networks have a negative Z-score, and only them (p-
values of the Z-score in Table S5). The characteristic property of the transcriptional networks
that enhances monotonicity is the tendency of many nodes to have a skewed distribution of
signs in their edges, see Fig. 3. Up to a gauge transformation, in fact, highly asymmetric
sign distributions correspond to highly positive sign concentrations, hence closer to monotone
than random sign distributions. The “packing” of signs on certain nodes is primarily due
to the mode of action of the transcription factors. Although dual role (i.e., both activator
and repressor) transcription factors exist in both prokaryotes and eukaryotes [26, 17], most
transcription factors seem to be playing only one role on their target genes. The nature of this
single role is sometimes associated to the regulatory domains found on the proteins, especially
for activator domains, which are usually enriched in proline, glutamine or acidic amino acid
residues [9, 25, 31]. The dual role transcription factors are usually able to perform opposite
functions according to possible different positions of their binding sequence with respect to the
gene sequence, or according to different cellular contexts, or simply enhancing only the formation
of the closed complex DNA-RNA polymerase [26]. For example, 71% of the E.coli transcription
factors function only as activators or repressors, Fig. 3 (b). The ontological analysis of the dual
role transcription factors is significantly enriched for categories such as interfacing the cell with
its extracellular environment and for the elaboration of external stimuli (see Table S6). Hence
mixing role transcription factors are more often mediating signaling events than their single role
counterpart. It is shown in Fig. 3 (a) that all transcriptional networks (and only them) have
sign arrangements on the edges that are more skewed than expected (with respect to a binomial
distribution model, see Supplementary Notes and Table S7) and also this property contributes
to their monotonicity (Fig. S3).

Another structural difference between transcriptional and signaling/metabolic networks is
the overrepresentation in these last classes of short frustrated cycles. As explained in the
Supplementary Notes, this characteristic is encoded in the level of detail (stoichiometric) that we
choose to represent our networks, and expresses the lack of global monotonicity of a biochemical
reaction involving multiple reagents, see also [30, 6, 18, 11].

Average frustration and ordered response The values of δ and h(sground) alone are not
enough to characterize how monotonically the system behaves in average. In fact, the energy
landscapes of frustrated Ising spin systems are known to be usually rugged [4, 27], and the
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presence of a single deep minimum in (1) is not enough to guarantee that the energy averaged
over all configurations s (corresponding to all possible multinode perturbations) is indeed more
negative than in other systems whose energy landscape is characterized by valleys which are
maybe less deep but with larger basins. In other words, to characterize how monotone is the
response of the system to arbitrarily complex perturbations we have to consider the average
value that h(s) assumes over all possible spin assignments, weighted by the probability of each
s. This “internal energy”, call it 〈h〉, is an indicator of how coherently the system is behaving in
average: the more negative 〈h〉 is, the less the responses of the system to perturbations are “con-
tradictory” at some fan-in node or along oriented cycles. Denote with Z(β) =

∑

si∈±1 e−βh(s)

the partition function of the system, β ∈ R. For spin systems, β has the meaning of an inverse
temperature. In the context of biological networks, the temperature is taken as ∼ 298 K and it
is not a varying parameter. However, we can use β to describe the strength of the coupling of a
network. Recall that in forming the energy (1), J was taken as a signed adjacency matrix with
all couplings equal to J , regardless of the nature of the network studied. As a matter of fact,
metabolic, signaling and transcriptional interactions are characterized by widely different ener-
getic costs. In particular, if a metabolic reaction or a signaling event might have a comparable
energetic content, a link in a gene regulatory network describes the entire cascade of events
in which the transcription of a gene can be broken down and overall its cost is much higher
than in the other networks1. Hence, in our fixed temperature context, taking into account the
coupling strength β (dimensionally still an inverse temperature) rescales h(s) to the “absolute”
energy βh(s). The probability of a given configuration s, p(s) = e−βh(s)Z(β)−1, is a function
of β and is maximized in the (usually degenerate) ground state sground. Using β as a Lagrange
multiplier, the expectation value of h(s), defined as

〈h〉 = −
∂ lnZ(β)

∂β
,

expresses this simultaneous weighting of the configurations by their degeneracy and energetic
content. The more negative 〈h〉 is, the more we expect the system to respond coherently to
a generic perturbation. For any β > 0, 〈h〉 > 0 and, as β increases, 〈h〉 reaches a stationary
value, see Fig. 1 (c). For spin systems, small values of β represent a regimen where thermal
fluctuations are dominant and all states tend to be equally populated. As β increases, a spin
system usually undergoes a phase transition characterized by the appearance of long range
correlations. For our biological networks, when β (i.e., the energetic content of an edge of
the network) is too small, the behavior of the network tends to be random (and all states s

equiprobable) regardless of the monotonicity of the network, a clear obstacle to carrying out
any meaningful task. On the other hand, when β → ∞, the probability concentrates exclusively
on the ground states (Z(β) becomes a Dirac delta function) and the behavior of the system
becomes as ordered as its frustration index allows, i.e., the system response is as coherent
and coordinated as possible, regardless of the type of perturbation, see Fig. 1 (c). It is then
important to see how the probabilities of the various states and the internal energy vary as a
function of β on the various categories of networks under exam. Computing p(s) and 〈h〉 exactly
is impossible for systems larger than a few tens of nodes. For larger networks we shall make
use of a mean field approximation for heterogeneous networks [15, 3]. This approximation, see
the “Methods” Section for details, allows to estimate the mean field “magnetization” 〈sσ〉 in
the gauge transformed basis, and the corresponding mean field energy hmf (a gauge invariant).
Fig. 4 shows the behavior of 〈sσ〉 and hmf for a transcriptional, a signaling and a metabolic
network as function of β. In all three cases, the population concentrates in the ground state

1The corresponding time constants are even more widely separated: ∼ msec for metabolic and signaling
events, sec ÷ min for transcription [7, 23].
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when β grows, and, correspondingly, hmf achieves its minimum, which results as negative as
the frustration of the network allows. The true characteristic value of β at which each of the
classes of networks should be computed is unknown, except for βtranscr ≫ βsignal ∼ βmetab.
Interestingly, as β grows, the transcriptional network is slower to reach its energetic minimum
than the other two networks, and likewise for the other 5 networks, see Table S4 and Fig. S5.
We can interpret this result by saying that since βtranscr is high, it is much less plausible for a
transcriptional network to be operating in a regimen of low β than it is for signaling/metabolic
networks. On the contrary, for these last two classes of networks, it is not unlikely to have
couplings of medium-low strength. Hence it gets much more important that 〈sσ〉 → 1 even in
correspondence of moderate values of β, because this helps in maintaining a coherent behavior
in response to perturbations, as required in order to carry out correctly a biological task. This
shift of the coherence barrier towards the low energetic regions is a consequence of the topology
of the networks. In fact, as can be seen on Fig. 4, also the completely monotone networks
built on the same graphs (blue curves) as well as other networks with random sign assignment
to the same edges as our J (green curves) present the same characteristic patterns in spite
of different δ. A feature behind this difference is the already mentioned overrepresentation of
closed nonoriented cycles of short length in the structure of metabolic and signaling networks.
Also the lower dispersion in the number of degree classes k in these networks contributes to
the quick convergence of 〈sσ〉 to 1. However, the main reason behind the different thresholds
for β is the presence or less of leaves in the graph. For example, the E.coli transcriptional
network has 38% of the nodes that are not involved in any (nonoriented) cycle. Dropping
these nodes, we obtain mean field plots in which the threshold for order is lower, and similar
to those of the signaling/metabolic networks. All of our transcriptional networks have a high
percentage of nodes that are leaves, much higher that the signaling/metabolic networks, see
Table S2. The complete lack of feedback, characteristic of tree-like subnetworks, disfavours the
achievement of a globally ordered behavior, which is instead maximized by short cycles, like
the 3-node motifs of signaling/metabolic networks. This is expected from the theory of spin
systems, where long-range correlations are more easily achieved in dense graphs than in sparse
ones. Of course adding leaves to a graph does not change its monotonicity properties (a tree is
always monotone).

Sampling the energy landscape Further information, from a different perspective, can be
obtained studying the structure of the energy landscape of the different networks [4]. In order
to have a picture of how this landscape looks like, we have applied our frustration minimization
algorithms to uniformly distributed initial conditions and registered the local and global minima
achieved in the process (see Fig. S2 and Table S3). Fig. 5 shows these distributions as a function
of the relative Hamming distance. For the transcriptional network of E.coli and the Yeast

metabolic network, the global minima are localized in a small region, while EGFR has two
broader valleys of global minima. In all three cases, the global minima are surrounded by many
local minima, thus confirming the ruggedness of the landscapes. As can be seen on Fig. S8,
unlike EGFR and the metabolic network, the local minima of the transcriptional network of
E.coli tend to have an energetic difference from the global ones which grows linearly with the
distance. In addition, the separation between the well of global minima and its surroundings
is much more neat in E.coli than in the other two networks, as can be seen on the Montecarlo
trajectories of Fig. 6 and even more clearly on their average gradient. See also Figs. S7-S10 for
analogous consideration on the remaining 5 networks. Overall, it appears that global and local
minima in the transcriptional networks are separated by high and steep energetic barriers, while
on the other networks there always exist low-energy routes between random spin configurations
and global minima, possibly passing through low-energy local minima. This of course facilitates
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the achievement of the ground state and the creation of global order even in a regime of moderate
values of β.

3 Discussion

For a gene regulatory network, the couplings represent the cost of the entire action of tran-
scription of a gene. This includes many important molecular steps, from the binding of a
transcription factor to the promoter region of a target gene to the final release of the newly
synthesized mRNA molecule. Energetically, such complex process is various times more relevant
than a signaling event or a metabolic reaction. Also the corresponding time scales differ by sev-
eral orders of magnitude [7, 23]. Hence it is natural to expect that in a transcriptional network
the genes behave in concert and that the fraction of the gene-gene interactions that contribute
to decreasing the energy is substantially larger than in a metabolic or signaling network, as
a frustrated bond costs much more to the cell and its effect lasts much longer. In particular,
frustrations manifest themselves on the cycles of the underlying nonoriented graph of the net-
work as contradictory transcriptional orders. While changing the transcriptional commands is
necessary to cope with e.g. different environmental conditions, encoding them as frustrated
cycles can easily lead to unpredictable or erroneous dynamical behavior. Both the topology and
the sign assignments to the nodes of the transcriptional networks contribute to achieve a degree
of monotonicity which is higher than expected from null models. On the contrary, incoherent
signaling or metabolic actions are energetically much less relevant than a single transcriptional
event and can be easily tolerated by the cell, especially since nonmonotone patterns favour a
richer dynamical behavior. While the level of detail at which we model our networks (functional
for transcriptional networks, stoichiometric for signaling and metabolic networks, see Supple-
mentary Notes) contributes to the systematic differences in the frustration index, other factors
such as the tendency of the transcriptional network to have skewed sign distributions are also
crucial in attaining a low frustration. It is interesting, then, to notice that the transcription
factors violating this rule are primarily involved in the mediation of external signaling, rather
than in regulatory or structural functions.

For spin systems, the tendency to satisfy pairwise all bonds grows when the temperature
decreases, meaning that even distant spins become correlated, although in a frustrated Ising
spin system all the conditions can never be satisfied simultaneously. In this paper, we consider
the strength of the couplings as the key factor that determines the onset of “long range cor-
relations”. If we parametrize the networks by the coupling strength and study the probability
of finding the system response in the ground state (i.e., in the state that maximizes mono-
tonicity and minimizes the energy), as a function of this coupling strength, we observe that
for signaling/metabolic networks it is higher than for transcriptional networks in the region of
medium/low values of the couplings. This behavior, which is due to the topological structure
of the networks and to the energy landscape it determines, could reflect the tendency of sig-
naling/metabolic networks to attain long-range correlations and a globally ordered response in
spite of the weaker energetic content of their interactions. As such, it helps maintaining coher-
ence of the response in spite of the higher level of frustration of these networks (which, again,
favors a richer dynamical behavior). For transcriptional networks, on the other hand, owing to
the strong couplings, the regime of low energies is less important, hence tree-like motifs, which
hinder the establishment of long-range correlations are abundant.

A Montecarlo investigation of the energy landscape of the networks [4, 33] suggests that tran-
scriptional networks have a more funneled landscape than the other networks (at least around
the global optima), with a single deep well of global minima delimited by high barriers, while
in signaling and metabolic networks the optima are surrounded by local minima of comparable
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energy. Order in these classes of networks is favored also by the lack of neat energetic barriers
separating local and global optima, which enables the reconfiguration to the global optimum
through low-energy paths.

In conclusion, we have observed that distinct classes of biological networks seem to be char-
acterizable by different features when responding to perturbations. Transcriptional networks
are less frustrated than expected and much less frustrated than signaling and metabolic net-
works, meaning that they admit highly coherent responses to perturbations. On the other hand,
the signaling/metabolic networks have the ability to achieve an average ordered response in a
lower range of coupling strengths than the transcriptional networks. We explain the first fea-
ture as the need to avoid as much as possible erroneous or contradictory transcriptional actions
which would cost much more to the cell than analogous incoherent signaling/metabolic events.
The second feature partially compensates for the higher frustration of these last networks, by
lowering the interaction strength needed for a phase transition to order, and thereby ensuring
the effectiveness of this reduced coherent behavior in an energetic range more critical for these
classes of networks.

4 Methods

Mean field approximation in heterogeneous signed networks For a given signed net-
work J , apply first the gauge transformation Pσ required to minimize the overall number of
negative signs on the edges, while maintaining the frustration index δ invariant. Denote then
k(1), . . . , k(ξ) the ξ different degrees of the nodes of Jσ, of probabilities pk(1), . . . , pk(ξ), and
〈k〉 the average degree of J . The nodes having degree k will have a certain distribution of posi-
tive and negative edges. Let kpn(1), . . . , kpn(ξ) be the differences between positive and negative
edges averaged over all nodes of each degree class. As after preprocessing with Pσ each node
has more positive than negative edges, we are guaranteed that kpn > k/2. Following [15], the
self-consistency equation on each degree class k is given by

〈sσ〉k = tanh (βkpnJ〈u〉) (2)

where

〈u〉 =
∑

k

kpnpk

〈k〉
tanh (βkpnJ〈u〉) (3)

is the effective “field magnetization” of each node from its neighboring nodes and the subindex σ
in s indicates that the value is computed in the gauge transformed basis. The use of kpn instead
of the degree k corrects the equations (2)-(3) for the frustration of the system. In practice,
for our preprocessed networks the number of negative signs is at most 20% (often much less),
meaning that kpn ∼ k for most degree classes. From (2) and (3), we have an expression for the
mean field weighted with respect to the degree classes:

〈sσ〉 =
∑

k

pk〈sσ〉k

and, neglecting fluctuations around each 〈s〉k, the mean field Hamiltonian is

hmf = −n
∑

k

kpnpk〈sσ〉
2
k. (4)

As P 2
σ = I, the energy is invariant to the gauge transformation Pσ. In fact, from sσ = Pσs, we

have −sTJ s = −(Pσs)
T PσJPσ(Pσs) = −sT

σJσsσ. Hence the mean field calculations for Jσ are
valid also in the original J . In addition, however, as sσ,ground = 1, in the gauge transformed
system we have that, as β → ∞, 〈sσ〉 → 1, a property which is in general not verified in the
original basis (which will concentrate at its own ground state sground = Pσ1).
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(b) simulation for original and monotone network
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Figure 1: Yeast cell cycle signed network of [16]. In (a) the application of a gauge transformation
to the three nodes in black reduces the number of negative edges (in red) and sσ = 1 becomes
a ground state. In (b) a typical response to a perturbation is shown for the yeast cell cycle
network and for a monotone network on the same graph: in the second system the order is always
maintained in the response (blue trajectories are monotone states). In (c) the probability of
being in a ground state (upper plot) and the average internal energy 〈h〉 (lower plot) are shown
for the yeast cell cycle network (red) and for the monotone network (blue) as a function of β.
The monotone network achieves order (here p(sground) > 0.8) earlier with growing β and the
energy minimum reached is lower.
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Figure 2: Frustration index of the 8 biological networks used in this study. In (a) the ratio δ/δmax

is based only on the number of nodes and edges of a network and shows that the frustration
index is much lower for transcriptional than for signaling/metabolic networks. The Z-score in
(b) takes into account also the topology of a network. Again, the transcriptional networks are
more monotone (i.e., less frustrated) than expected from a null model, while metabolic and in
particular signaling are less monotone (i.e., more frustrated) than expected.
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(a) Z-score for the sign packing index

(b) Sign arrangement in E.coli-transcr
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Figure 3: (a) Z-score for the sign packing index (see Supplementary Notes for a definition). The 4
transcriptional networks have sign arrangements on the nodes that are significantly asymmetric,
hence improving their frustration index. (b) Representation of the sign packing property on the
E.coli transcriptional network. The nodes significantly enriched in either positive or negative
edges are shown in green (the size is proportional to their connectivity). The distribution of
negative edges (dashed) is shown in (c). This graph should be compared with the random sign
assignment of Fig. S4.
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(b) EGFR-signal
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Figure 4: Computation of the mean field “magnetization” 〈sσ〉 (in the gauge transformed basis)
and energy hmf for a transcriptional (E.coli-transcr, left panel), a signaling (EGFR-signal,
middle), and a metabolic (Yeast-metab, right) network as a function of β (coupling strength).
The values for the three true networks are depicted in red. In blue and green the same 〈sσ〉
and hmf for two alternative networks built on the same graph: the exactly monotone network
(i.e., with all Jij > 0), and a network with random sign assignments. The gray shaded areas
in the upper plot delimit the region 〈sσ〉 6 0.8, i.e., the region in which the response of the
system to a generic perturbation results in a low-medium 〈sσ〉. 〈sσ〉 > 0.8 means that in
the gauge transformed basis the state sσ “concentrates” sufficiently well at the ground state,
and, correspondingly, the energy is in average sufficiently close to the minimum (lower plots).
For the E.coli-transc network the threshold 〈sσ〉 > 0.8 is achieved in correspondence of β =
0.71, higher than the β = 0.46, 0.45 of EGFR-signal and Yeast-metab. Similar differences are
observed in the other networks, see Table S4 and Fig. S5, and are also confirmed in Metropolis-
Montecarlo simulations, see S6. The difference between transcriptional and signaling/metabolic
networks expresses a tendency of these last to attain the highest possible 〈sσ〉 even for moderate
values of β, motivated by the necessity of these networks to maintain order in the response to
perturbations in a region of coupling strengths lower than for transcriptional networks (where
the “true” β is typically much higher).
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Figure 5: Relative Hamming distance (number of spin flips over the number of nodes) between
pairs of minima found by the algorithms for a transcriptional, E.coli-transc, (a), a signaling,
EGFR-signal, (b), and a metabolic, Yeast-metab, (c), network. The top plots refer to pairs of
global minima; the middle row to pairs global-local minima and the bottom row to pairs of
local minima. In all three networks the red line delimits the global symmetry axis of the spin
assignment (the locations of the minima have a global spin flip symmetry; the different height of
the peaks means that an area has been explored less by the random searches of the algorithm,
not that they have different “probabilities”). While for E.coli-transcr and Yeast-metab the
minima are concentrated in a single well, which is quite tight and located near the right margin
of the histograms (i.e., short interminimum distances), in EGFR-signal there are two such wells
and they are disjoint and quite broad. In all 3 networks, adding the local minima, the landscape
of minima becomes diffuse, with many different local minima located at varying distances from
the global ones.
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Figure 6: Montecarlo trajectories connecting a global minimum to its surrounding local minima.
The spin configurations of a global and a local minimum are randomly chosen among those
provided by our minimization procedure. The first is mapped in the second by a number of moves
(single spin flips) equal to the Hamming distance between the two minima. For visualization
purposes, the trajectories are depicted as emanating from a unique point and radially distributed
according to a polar coordinate. The vertical axis (and color code) represents the energy, the
two remaining axes a relative Hamming distance between spin configurations. The three plots
essentially confirm the landscape described in Fig. 5. For E.coli-transcr, global and local minima
seem to be always separated by a high and steep barrier. In EGFR-signal and Yeast-metab, the
landscape is scattered with different local minima, many of which have energies similar to the
global ones, see Fig. S8. This results in some trajectories never emerging from the ordered phase
while moving from a minimum to the optimal frustration. The lower row shows the average
gradient over 1000 Montecarlo trajectories originating in a global minimum. For E.coli-transcr

the barriers of the well of global optima is precisely observable in correspondence of the peak
of the gradient. For Yeast-metab such kinetic traps are less steep. For EGFR-signal no clear
boundary at all is observable. This, together with Fig. S8, suggests that in the last two networks
also spin configurations that are distant from the optimum have cheap routes to converge to
the optimal frustration through intermediate low-energy local minima.
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