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Abstract

Background In the past years devicing methods for discovering gene regulatory mechanisms at

a genome-wide level has become a fundamental topic in the field of system biology. The aim is

to infer gene-gene interactions in a more sophisticated and reliable way through the continuously

improvement of reverse engineering algorithms exploiting microarray technologies.

Motivation This work is inspired by the several studies suggesting that co-expression is mostly

related to ”static” stable binding relationships, like belonging to the same protein complex, rather

than other types of interactions more of a ”causal” and transient nature (metabolic pathway or

transcription factor–binding site interaction). Discerning static relationships from causal ones on

the basis of their characteristic regulatory structures and in particular identifing ”dense modules”

with protein complex, and ”sparse modules” with causal interactions such as those between tran-

scription factor and corresponding binding site, the performances of different network inference

algorithms in artificial and real networks (derived from E.coli and S.cerevisiae) can be tested and

compared.

Results Our study shows that methods that try to prune indirect interactions from the inferred

gene networks may fail to retrieve genes co-participating in a protein complex. On the other hand

they are more robust in the identification of transcription factor–binding sites dependences when

multiple transcription factors regulate the expression of the same gene. In the end we confirm the

stronger co-expression regarding genes belonging to a protein complex than transcription factor–

binding site, according, also, to the effect of multiple transcription factors and a low expression

variance.
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Introduction

In the field of systems biology, high throughput measurements are giving the possibility to investi-

gate the mechanisms that regulate the behavior of the cells in a genome-wide manner. The ability to

use such broad information to infer interaction between genes is the first step towards a comprehen-

sive understanding of a biological system, in terms of genes functions, “partner genes”, conditions

for activation and dynamical behavior. The reconstruction of a gene network [2, 6, 10] is a very

challenging problem since biological systems are difficult to perturb and perturbations/experiments

are tipically much less than the number of dynamical variables composing the system. If we also

consider the highly non-linear content characterizing the transcriptional expression it is easy to

understand why the problem of reverse engineering collections of experimental data is underde-

termined, and why such a big effort has been put in proposing new algorithms to overcome these

limitations.

Last but not least, the process of bringing a DNA sequence into its corresponding final gene

product is made by several steps. The different regulation layers are neglected by the vast majority

of the reverse engineering algorithms, which instead consider only expression coregulation as an

index of general “functional” relationship. Many studies [27, 26, 22] underline the lack of correla-

tion between protein abundance and mRNA level, and only with reliable technologies to measure

simultaneously gene expression, protein profiles and metabolite quantities, an accurate description

of cell behaviour can be achieved [12]. Despite these considerations, recent works demonstrate

that gene expression correlation is the most significant index among several others like ontologi-

cal information, sequence similarity, protein localization and domain structure, to infer putative

protein–protein interactions [30].

In this paper, we try to understand what are the topologies that reverse engineering algorithms

are able to reconstruct when applied in a completely unsupervised manner. Several methods exist to

treat the observed data relying on more or less sophisticated statistical analysis of gene expression

profiles and modeling frameworks, like Bayesan networks [33, 17, 14] and boolean networks [19, 34],

or linear and non-linear ordinary differential equations (ODEs) [39]. We focus here on two other

classes of algorithms, called relevance networks and graphical models. They are computationally

more treatable than most of the methods mentioned above and can therefore be applied in a

truly genome-wide context. They consist essentially in computing a two-point similarity measure

between gene pairs, similarity which is then used to weight the edges of a graph. The highest

is the weight, the most likely the two genes interact in some way. The simultaneous usage of

different information sources/technologies, like gene annotations, chromatin immunoprecipitation

chips [41] (to unveil direct protein–DNA interactions) or yeast-two-hybrid experiments (to detect

protein–protein interactions) can reduce the error rate and give hints on how to choose the “best”

weight cutoff [15, 38], even if such information is affected by multiple error types, uncertainty and

is far from being exhaustive. The similarity measures used to asses co-expression between gene
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pairs are Pearson correlation (P) [4], mutual information (MI) [5], partial Pearson correlation (CP)

[7], conditional mutual information (CMI), and graphical gaussian model (GGM) [8]. The first

two metrics account respectively for a linear and non-linear relationship, while the remaining ones

prune the inferred network from the putative false positives generated by the first two. The pruning

is performed by means of a conditioning operation on the two-point measure. Conditioning which

can depend on a single third gene (CP and CMI) or on the remaining n− 2 genes (GGM), see [36]

for details. Relevance networks and graphical gaussian models have been extensively used in recent

years [23] and their results have been validated experimentally, for example in [3] where putative

MYC interacting genes have been identified processing expression profiles of human B cells. This

analysis was based on a similarity index related to CMI [24]. In this paper a comparison between the

two classes of similarity metrics, direct and conditional, is performed within the aim of analyzing

their ability to infer regulatory networks characterized by different connectivity degrees, that for

simplicity we denote: ”sparse module” and ”dense module” in both artificial and real networks. In

the first one multiple genes are interconnected with sparse edges, while in the second all the nodes

of a set are mutually connected (Fig. 1(c,d)). These two different regulatory motifs are meant to

represent two gene interactions macrocategories: one describing a cause–effect relationships, like

the direct transcriptional activation due to transcription factors, the other linked to a more “static”

associations like coparticipation in a protein-complex, where gene products have to be expressed

in a constant stoichiometric ratio to perform their proper functions [28, 29]. The artificial network

is meant to enable the evaluation under controlled conditions, like a well defined topology and

known kinetics governing the system (see Methods). In the two cases of real data the identification

of true positive (TP) edges relies on the real physical networks of protein complexes (PCs) and

transcription factor–binding site (TF–BS) relationships collected from the literature. We choose

two simple organisms, a prokaryote and an eukaryote, in order to test the consistency of the two

regulatory structures for the different algorithms. For these two organisms most of the PC and TF–

BS have been annotated and large collections of gene expression profiles can be gathered from online

repositories. To compare the inference powers of the different algorithms in respect to the two types

of regulatory modules, we ranked the weights of each similarity matrix and look at the percentage

of TPs in the most significant percentile. For protein complexes we iterate the comparison while

increasing their size, whereas in the case of TF–BS we increase the number of TFs acting on the

same BS. In addition we apply a simple clustering algorithm to the inferred graphs and analyze

how well the clusters match the PCs. This procedure allows us to make an unbiased comparison

between different metrics, overcoming the problem of choosing the “best” threshold.

The two different regulatory structures are related to the stability and to the dynamical variation

of an interaction between nodes. The contribution to the average connectivity degree of the gene

network from the two regulatory motifs is also different. The prediction of PC memberships emerged

with the advent of large scale experiments and the publication of several biological networks.
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Most of these studies use protein–protein interaction databases to identify subsets of proteins

having many more interactions among themeselves than with the rest of the network. Inferred

multimolecular proteins rely on the identification of highly connected subgraphs [37]. Searching

for defective cliques has been shown to be a good predictor [40], although computationally very

intensive. Starting from this observation, the complexity of an organism can be deduced not only

by the regulation complexity at the level of transcripts (see Fig. 1 (b)) [21, 20], but also looking

at how the size of the dense modules, representing PCs (see Fig. 1 (a)), increases. Going from

unicellular prokaryote (E.coli) and eukaryote (S.cerevisiae) to mammals (human, rat and mouse),

the distribution of annotated PCs shows an heavier tail towards bigger complexes. The same

happens looking at the combinatorial effect of multiple TFs. In Yeast for example the largest

complex is the cytoplasmic ribosome accounting for 81 genes, while in E.coli it is the flagellum

complex composed of 24 genes, suggesting that a complex organism can show an higher contribution

of dense modules in their regulatory structure. For complex organisms, this particular aspect, in

addition to the observation that co-expression stands often times for stable binding [16, 35], becomes

an important issue when reverse engineering expression data, in particular in light of the fact that

inference requires large compendia of expression profiles.

Materials and methods

The model we used to generate artificial gene expression datasets is the reaction kinetics-based

system of coupled non-linear continuous time ODEs introduced in [25]. The sparse module, repre-

senting influence on the transcription of each gene due to the other genes, is described by a random

matrix of adjacencies, superimposed to a matrix of densely connected subsets of nodes representing

the stable modules (see Fig. 5 SUPPLEMENTARY??). The rate law for the mRNA synthesis of a

gene is obtained by multiplying together the sigmoidal-like contributions of the genes identified as

its inhibitors and activators. Consider the i-th row of A, i = 1, . . . , n, and choose randomly a sign

to its nonzero indexes. Denote by j1, . . . , ja the indexes with assigned positive values (activators of

the gene xi) and with k1, . . . , kb the negative ones (inhibitors of xi). The ODE for xi is then

dxi

dt
= Vi

∏

j∈{j1,...,ja}

(

1 +
x

νi,j

j

x
νi,j

j + θ
νi,j

i,j

)

∏

k∈{k1,...,kb}

θ
νi,k

i,k

x
νi,k

k + θ
νi,k

i,k

− λixi, (1)

where Vi represent the basal rate of transcription, θi,j (respectively θi,k) the activation (resp. inhi-

bition) half-life, νi,j (resp. νi,k) the activation (resp. inhibition) Hill coefficients (in our simulations:

νi,j, νi,k ∈ {1, 2, 3, 4}), and λi the degradation rate constants. In the multiple in silico experiments

the perturbations of the system are performed by means of random initial conditions, plus “gene

knockouts” (obtained setting to 0 the expression of the selected gene in the corresponding differ-

ential equation). A gaussian measurement noise is added to corrupt the output. The number of
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experiments has been chosen to be comparable with the real case, where we have a ratio experi-

ments/genes of approximately one to six, while the number of complexes and their size have been

sampled from a log-normal distribution with a maximum size of 50 genes composing a complex.

This choice is consistent with what observed in the real organisms and gives rise to a manageable

number of genes in the simulation of gene expression profiles (2154).

Data collected We downloaded the M3D “Many Microbe Microarrays Database” (build E coli v3 Build 1)

[9] for E.coli (445 experiments for 4345 genes). For S.cerevisiae we compiled a collection of mi-

croarrays containing experiments performed with cDNA chips (958 experiments for 6203 ORF).

Both datasets were preprocessed and normalized prior to network inference. PC network for yeast

was downloaded from the MPACT subsection of the CYGD database at MIPS [11]. Only the

complexes annotated from the literature and not those obtained from high throughput experiments

(according to the MIPS classification scheme these last are labeled “550”) were considered to limit

the high rate of false positive. PC sizes for human, rat and mouse were downloaded from CORUM

database [31], while for E.coli from the EcoCyc website [18]. We obtained TF–BS networks from

the RegulonDB database, version 5.6, for E.coli [32], and from a recent collection [1] for S.cerevisiae.

Similarity measures Let m be the number of experiments available and n the number of genes.

Assume Xi and Xj , i, j = 1, . . . , n, are random variables representing the genes, and xi(ℓ), xj(ℓ),

ℓ = 1, . . . ,m, their sample measurements. The matrices of edges weights are computed using the

following five algorithms, see [36] and references therein for details:

• Pearson correlation:

R(Xi,Xj) =

∣

∣

∣

∣

E[(xi − x̄i)(xj − x̄j)]√
vivj

∣

∣

∣

∣

, (2)

where x̄i, vi and x̄j , vj are means and variances of xi and xj over the m experiments and E[·]
denotes expectation.

• Partial Pearson correlation

RC1
(Xi,Xj) = min

k 6=i,j

∣

∣

∣

∣

∣

R(xi, xj) − R(xi, xk)R(xj , xk)
√

(1 − R2(xi, xk))(1 − R2(xj , xk))

∣

∣

∣

∣

∣

. (3)

• Graphical gaussian method

RCall
(Xi,Xj) =

∣

∣

∣

∣

ωij√
ωiiωjj

∣

∣

∣

∣

, (4)

where Ω = (ωij) is R−1 if R−1 exists, it is the small-sample estimate of [33] when R is not

full-rank. De facto, RCall
is computed by means of the R package GeneNet version 1.0.1,

available from CRAN (http://cran.r-project.org).
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• Mutual information

I(Xi; Xj) =
∑

φi, φj∈H

p(φi, φj) log
p(φi, φj)

p(φi)p(φj)
, (5)

where p(φi) is the probability mass function p(φi) = Pr(Xi = φi), φi in the alphabet H, and

likewise for the joint probability function p(φi, φj).

• Conditional mutual information

IC(Xi;Xj) = min
k 6=i,j

∑

φi, φj , φk∈H

p(φ, φj , φk) log
p(φi, φj |φk)

p(φi|φk)p(φj |φk)
. (6)

Clustering Only the edges in the most significant percentile are retained and the resulting graph

is decomposed using a simple hierarchical clustering algorithm, with weighted average linkage as

cost of merging, and taking as number of clusters the number of cuts of size 1 (i.e. of bipartite

partitions of the graph joined by a single edge). This procedure should allow to identify the most

connected components. These are further tested against dense modules/PCs.

Results

Artificial dataset This procedure used to construct the artificila network is such that dense

regulatory modules are numerous enough to compare the inference power among the different

algorithms in a statistically relevant manner. Our results (Fig. 2(a)) show that small dense modules

are similarly reconstructed by all the metrics up to a critical size, beyond which conditioned metrics

perform worse. According to the graph illustrating the percentage of TP, dense modules with more

than ten nodes are better identified by P and MI while the worst metric is CP. The clustering

procedure (performed on the similarity matrix) reflects the same behaviour and in fact the best

results are obtained for direct measures (P, MI). The main reason is the different topology emerging

from the application of the 5 metrics (Table. 1 (SUPPLEMENTARY ???)). The graphs deriving

from CMI, CP and GGM are sparser, with fewer connected components and almost all genes have

at least one edge. On the contrary, the number of nodes without edges in the top percentile is

drastically increasing using P and MI while the number of clusters follows an inverse relation. In

Fig. 4 the percentage of complexes completely contained in: one cluster, two clusters, 3 clusters

and more than 3 are shown.

E.coli dataset Owing to the different genome organization and architecture, in prokaryotes

regulatory mechanisms are much simpler than in eukaryotes. Genes are organized in transcriptional

units, with one promoter for many consecutive genes, a feature absent in monocystic eukaryotic

DNA. E.coli has only a few large complexes and also the combinatorial regulation of transcription

is lower, so we expect the different algorithms to have more similar performances. We calculate for
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both ”templates” the matrices of pairwise similarities with the five different metrics and plot the

percentage of TPs for the most significant percentile, for increasing sizes of the PCs (Fig. 2(b)) and

combinatoriality of TFs (Fig. 3(a)). PCs are identified slightly better by the two direct metrics,

although the number of relatively large complexes is too low to have statistical significance. What

really changes is the ability to recover PCs with a clustering algorithm. The different performances

emerging from the clustering (Fig. 4(b)) indicate that the highest correspondence between PCs and

clusters are provided by P and MI. An example of that is given by the flagellum complex accounting

for 24 genes. If the clustering procedure is performed by means of P and MI, the complex belongs

entirely to a single cluster, which contains also other genes functionally related to the flagellum,

like chemotactic genes and other genes involved in flagellar biogenesis and motility. Instead for

CMI, CP and GGM the complex belongs respectively to 14, 6 and 24 clusters. Regarding TF–BS

relationships, we expect the ability in recovering true interactions to be inversely proportional to the

multiplicity of TFs. This is particularly true for the algorithms performing well on low multiplicity

TF (P, MI and GGM) while CMI has a counterintuitive positive trend for multiregulated targets.

S.cerevisiae dataset In S.cerevisiae fig. 2(c) shows clearly that for small complexes the perfor-

mances of conditioned correlations are comparable with those of P and MI, up to a critical size

above which the inference power of CMI, GGM and CP remains almost constant while the direct

metrics increase their percentage of TPs. The results are consistent with the ones obtained for the

artificial data. Qualitatively the results on the two organisms are the same, although the percent-

ages of TP are higher in the simpler one. In addition, the critical size of the dense modules for

which conditioned similarities start to fail is similar to the one obtained in the artificial network and

E.coli, suggesting an intrinsic peculiarity of such similarity metrics. The clustering performances

(Fig. 4(c)) for the five algorithms are coherent with those of the E.coli and artificial networks and

once again give better results for the P and MI metrics. If we move to the network of TF–BS

(Fig. 3(c)) we immediately notice that all the three conditioned metrics perform better than the

direct ones, although in absolute terms results are worse than for E.coli. The reason for the low

inference power regarding TF–BS can be that a single gene is regulated by multiple TFs acting in

a differently combinatorial way in different environmental conditions, or that TFs do not show the

large variations in expression, that can be seen for the corresponding regulated genes, but instead

keep their expressions at low basal levels (Fig. 7 SUPPLEMENTARY???).

Discussion

Comparing genome-wide networks inferred by means of different similarity metrics is not a simple

task. Relying on the most significant percentile for the five similarity matrixes is a reasonable

choice, suitable for our purposes. The reported results show that indeed different reverse engineering

algorithms have performances which are tailored to different ”characteristic” regulatory modules.
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PCs are characterized by a very stable binding and give rise to a sort of post-transcriptional

regulation, where gene products have to be expressed in a constant stoichiometric ratio and are

mutually dependent one from each other, features absent in cause–effect relationships such as

transcriptional activation. For the network generated with the model and the two real ones we tested

the ability to recover dense modules/protein complexes of different size. The two real datasets has

been tested also in respect to the TF–BS networks. Several important observations emerge from

the results:

The critical size of a dense module for which direct similarity measures begin to perform bet-

ter than the corrispective conditioned ones, for the dense modules, is about 10 on both artificial

and real data. The dense modules that characterize PC are better cpatured by direct similarity

measures, especially for large dense modules. This is almost the same in both organisms, in spite

of the different complexity and the low experiments/genes ratio . On the contrary the conditional

similarity measures are more suited to deal with causal dependecies such as TF–BS interactions,

especially when the combinatorial complexity of the regulation increases. The ability to recover

TF–BS interactions is roughly inversely proportional to the number of TF regulating a gene. Con-

ditioned metrics are more robust (in ......) this multiplicity effect of TFs. eNeedless to say the

inference power of all the algorithms is higher in the simpler organism, for both PC and TF–BS

networks. This reflects the more complex eukaryote regulation, as deducible also from Fig. 1(a,b).

The expression levels of TFs are often characterized by a lower variance than the corresponding

BSs thereby complicating the problem further.

Conclusion

The predictive power of a reverse engineering algorithm is clearly a function of several aspects. First

of all system complexity, data quality and numerosity. In addition inference power depends on the

type of interaction and the associate topology. Showing as we do in this paper that indeed the

algorithms yield different performances coherently with the features they are meant to extrapolate

from the data (direct for static and stable interactions, conditional for causal interactions) is already

a significant and encouraging observation.
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Figure 1: Regulatory motifs and PC size density. Log scale distribution of PC size (a), and
number of TFs per gene (b) for different organisms. Scheme of the two regulatory motifs: (c)
dense module, where all nodes are mutually connected (many feedback loops), (d) sparse module,
accounting for only a few feedback loops and multi regulated genes.
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Figure 2: Dense modules and PCs. Percentage of TP edges for the five different correlation
metrics for increasing size of the PCs, in: a) artificial dataset b) E.coli and c) S.cerevisiae. In all
three cases, considering the percentage of TPs for the whole PC network the five different metrics
can be ranked in the same order: P, MI, CMI, CP, GGM.
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Figure 3: Combinatorial transcription regulation. Percentage of TPs for TF–BS network
increasing the number of TF for the same BS, in: a) E.coli and b) S.cerevisiae. In E.coli the
direct measures seem to be getting less effective as the multiplicity of TF increases (data are not
conclusive however). In S.cerevisiae, although small in absolute terms, the conditioned measures
outperform the direct ones regardlessof the combinatorial size of the TF.
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Figure 4: Clustering dense modules/PC. For (a) artificial network (b) E.coli and (c) S.cerevisiae

the green scale represents the percentage of PCs belonging to a single cluster (dark green), two
clusters, three clusters and more than three (yellow). This statistic highlights the drastic difference
in clustering for the five similarity metrics, with the best unique correspondence in all datasets
given by P and MI.

15



0 1000 2000

0

500

1000

1500

2000

Topology

0 1000 2000

0

500

1000

1500

2000

P

0 1000 2000

0

500

1000

1500

2000

MI

0 1000 2000

0

500

1000

1500

2000

CMI

0 1000 2000

0

500

1000

1500

2000

CP

0 1000 2000

0

500

1000

1500

2000

GGM

Figure 5: Reconstruction on the artificial network: sparse versus dense modules. The
topology of the artificial network is shown in the left upper panel. In magenta are edges forming
the sparse module, in red those of the dense modules. The reconstruction of the dense modules is
fairly accurate, unlike for the sparse module. The other panels represent the TP edges for the two
regulatory modules (green and magenta), and red for the missed dense module edges, for the five
different similarity metrics.
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Figure 6: Connectivity degree distribution of the reconstructions. The percentage of nodes
(y-axis) for the respective connectivity degree, in log scale, for the top percentile in 5 metrics for
(a) artificial network (b) E.coli and (c) S.cerevisiae.
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Figure 7: TF versus BS variance. Scatter plots representing the TF against BS expression
variance. In both organisms ((a) E.coli and (b) S.cerevisiae) BS expression is, most of the times,
broader than corrisponding TF. Notice how especially in S.cerevisiae all TF have low variance and
how most paires TF–BS edges live in the low variance corner.
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Table 1: Staitistics for the clusterization of dense modules/PC shown in Fig. 4.The
number of disconnected nodes (e.g. nodes having zero edges in the top percentile) and clusters,
according to the number of bipartite partitions joined by a single edge, are represented in the first
two columns. The remaining columns report the statistics shown in Fig. 4 (e.g. ”1-2” shows the
number of PC associated to two different clusters). The final column contains the number of dense
modules/PC used

Clusters versus PC in artificial network

disconnected nodes clusters 1 - 1 1 - 2 1 - 3 1 > 4 PC

P 659 167 55 35 20 57 167

MI 983 348 53 21 21 53 148

CMI 263 1794 17 32 18 107 174

CP 1 333 8 37 24 105 174

GGM 1 2141 0 37 19 118 174

Clusters versus PC in E.coli

disconnected nodes clusters 1 - 1 1 - 2 1 - 3 1 > 4 PC

P 644 537 126 56 24 19 225

MI 1684 682 113 56 30 4 203

CMI 597 2053 74 84 41 21 220

CP 0 129 102 75 35 19 231

GGM 142 3805 52 75 55 45 227

Clusters versus PC in S.cerevisiae

disconnected nodes clusters 1 - 1 1 - 2 1 - 3 1 > 4 PC

P 2085 1101 92 65 26 60 243

MI 2359 1618 87 59 22 62 230

CMI 1668 1833 79 71 25 73 248

CP 52 1229 61 66 46 94 267

GGM 0 5275 55 64 44 104 267

19


