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Abstract

Diagonally equipotent matrices are diagonally dominant matrices for which domi-
nance is never strict in any coordinate. They appear e.g. as Laplacian matrices of
signed graphs. We show in this paper that for this class of matrices it is possible
to provide a complete characterization of the stability properties based only on the
signs of the entries of the matrices.
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1 Introduction

At the boundary of the set of diagonally dominant matrices lies a special
class of matrices which we call diagonally equipotent, meaning that for them
the diagonal dominance is never strict in any coordinate. This class includes
as special cases the Laplacian matrices of directed graphs used in studying
the consensus problem (Mesbahi & Egerstedt, 2010; Ren et al., 2007) but
also those that can be obtained when the consensus problem is relaxed to
include competing interactions (modeled as negative weights of the adjacency
matrix), see Altafini (2012). It also occurs for example in chemical reaction
network theory, where biochemical reactions are represented as mass-action
ODEs (Jayawardhana et al., 2012) (although in this case only the positive
orthant is usually of interest). More generally, it occurs whenever in a lin-
ear system the off-diagonal terms (of any sign) are exactly compensated (in
absolute value) by the diagonal entry of each row.

The scope of this paper is to show that the class of diagonally equipotent ma-
trices admits a complete classification for what concerns their stability prop-
erties. In particular, irreducible diagonally equipotent matrices with negative
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diagonal entries are H-matrices (Berman & Plemmons, 1994; Horn & John-
son, 1991), and as such they are at least diagonally semistable (Hershkowitz &
Schneider, 1985; Hershkowitz, 1992). For them, nonsingularity corresponds to
asymptotic stability, while singularity corresponds to critical stability. In or-
der to discriminate the two cases, it is not possible to use any of the standard
criteria for diagonally dominant matrices (Huang, 1998; Hershkowitz, 1992;
Kaszkurewicz & Bhaya, 2000), nor arguments inspired by Geršgorin theorem
(Horn & Johnson, 1985). In fact, diagonally equipotent matrices have always
singular comparison matrices, because by construction the latter have always
zero row sums. However, this does not imply that diagonally equipotent ma-
trices are singular. In Kolotilina (2003) a necessary and sufficient condition for
nonsingularity of such matrices is provided. Combining this condition with di-
agonal stability, for the case of negative diagonal entries (most common in the
applications mentioned above) we show in this paper that diagonally equipo-
tent matrices are asymptotically stable if and only if all the cycles of length
> 1 formed by their graph have positive sign (i.e., have an even number of
negative edges).

Such a condition on the sign of the cycles appears under different names in
different domains. For example it is used in linear algebra (Fiedler & Ptak,
1969; Engel & Schneider, 1973), in the theory of signed graphs (Zaslavsky,
1982), in systems and control (Sezer & Siljak, 1994; Willems, 1976) and in
the theory of monotone dynamical systems (Smith, 1988). It is also used in
different contexts in other disciplines, spanning from social network theory
(where it is known under the name of “structural balance”, see Cartwright &
Harary (1956)) to statistical physics (where it has to do with the presence or
less of “frustration” in spin glasses (Binder & Young, 1986)).

The use of this cycle sign property in the context of stability analysis is how-
ever new. Most remarkably, for the diagonally equipotent matrices, asymptotic
stability does not depend on the numerical value of the entries of a matrix
but only on their sign. As such it can be considered a “qualitative” condi-
tion (Brualdi & Shader, 1995; Maybee & Quirk, 1969), i.e., it determines the
(singularity and stability) properties of the entire class of matrices having the
same sign pattern, under the additional constraint of diagonal equipotence.
When compared to the classical results for sign-pattern matrices (Brualdi &
Shader, 1995; Hall & Li, 2006; Maybee & Quirk, 1969), the resulting quali-
tative conditions are remarkably different. For example, if for unconstrained
matrices sign non-singularity (i.e., non-singularity of the class of matrices car-
rying a given sign pattern) corresponds to having all negative cycles on the
graph of the matrix, for diagonally equipotent matrices this reduces to at
least one negative cycle of length > 1. The same condition is necessary and
sufficient for qualitative stability (i.e., asymptotic stability of the entire class
of matrices carrying a given sign pattern), under the constraint of diagonal
equipotence.
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The extension of the conditions to generalized diagonally equipotent matrices
(i.e., matrices that are diagonally equipotent up to a right multiplication by
a positive diagonal matrix) is straightforward.

2 Basic notations and properties

2.1 Graphs associated to a matrix

Given a matrix A ∈ Rn×n, consider the directed graph Γ(A) of A: Γ(A) =
{V , E , A} where V = {v1, . . . , vn} is the set of n nodes, E = {(vj, vi) s. t. aij 6=
0} is the set of directed edges (we use the convention that vi is the head of the
arrow and vj its tail) and A is its weighted adjacency matrix. A directed path
P is a sequence of edges in Γ(A): P = {(vi1 , vi2), (vi2 , vi3), . . . , (vip−1 , vip)} ⊂ E ,
its length is the number of nodes it touches (i.e., p), and its sign is the sign
of ai1,i2 . . . aip−1,ip . The paths are always considered directed and simple, i.e.,
all nodes are distinct. When needed we indicate Pi1,ip the path having vi1 as
starting node and vip as terminal node, and VP the set of nodes touched by a
path P . The concatenation of two paths Pi,j and Pj,k is denoted Pi,j ∪ Pj,k.
A matrix A is said irreducible if there does not exist a permutation matrix Π
such that ΠT AΠ is block triangular. On Γ(A), irreducibility of A corresponds
to strong connectivity of Γ(A), i.e., for each pair vi, vj ∈ V ∃ a path Pij of Γ(A)
connecting them. A path Pi1,ip for which vip = vi1 is a directed cycle. A length-
1 cycle is called a loop (and corresponds to a diagonal element of A). A cycle
C = {(vi1 , vi2), (vi2 , vi3), . . . , (vip , vi1)} ⊂ E is negative if ai1,i2 . . . aip,i1 < 0.
It is positive if ai1,i2 . . . aip,i1 > 0. Unless otherwise specified, also all cycles
are considered directed and simple, i.e., all nodes except for vip and vi1 are
distinct. Let VC be the set of nodes touched by C.

Lemma 1 A strongly connected graph Γ(A) has all cycles of length > 1
positive if and only if ∃ a diagonal signature matrix Σ = diag(σ1, . . . , σn),
σi ∈ {±1}, such that ΣAΣ has all nonnegative off-diagonal entries.

For undirected graphs the equivalence of the two conditions of Lemma 1 is
well-known in the theory of signed graphs (Zaslavsky, 1982). Both conditions
are in fact equivalent to what is called structural balance in Cartwright &
Harary (1956) (see also Altafini (2013)). The case of directed graphs treated
in Lemma 1 is discussed e.g. in Fiedler & Ptak (1969); Engel & Schneider
(1973). Although the version given in the Lemma can be readily deduced
from these references, we provide an independent proof in the Appendix A.
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Operations like the transformation

A → Â = ΣAΣ, Σ = diag(σ1, . . . , σn), σi ∈ {±1}. (1)

are called signature similarities in linear algebra (Hershkowitz & Schneider,
1988), switching equivalences in the theory of signed graphs (Zaslavsky, 1982)
and gauge transformation in the theory of Ising spin glasses (Binder & Young,
1986; Altafini, 2013). They also correspond to changes of orthant order in
Rn and they are used for this purpose in the theory of monotone dynamical
systems (Smith, 1988), see also Willems (1976). The matrices A for which (1)
holds are also sometimes called Morishima matrices (Sezer & Siljak, 1994).

2.2 Linear agebraic properties

A matrix A ∈ Rn×n is said Hurwitz stable if all its eigenvalues λi(A), i =
1, . . . , n, have Re[λi(A)] < 0. It is said critically stable if Re[λi(A)] 6 0,
i = 1, . . . , n, and λi(A) such that Re[λi(A)] = 0 have an associated Jordan
block of order one. For any A = (aij) ∈ Rn×n, its comparison matrix is given
by Ã = (ãij) ∈ Rn×n where

ãij =

|aij| if i = j

−|aij| if i 6= j.

Matrices A1 and A2 such that Ã1 = Ã2 are said equimodular. When A is such
that aij 6 0 ∀ i 6= j, it is said a Z-matrix. It is said a (nonsingular) M-matrix
if it is a Z-matrix and the real part of its eigenvalues is positive. When the
real part of its eigenvalues is instead nonnegative, then A is said a singular
M-matrix. A matrix A whose comparison matrix is a (singular or nonsingular)
M-matrix is said an H-matrix. As we will see below, for the singular comparison
matrices of this paper, the H-matrices can be singular or nonsingular (i.e., they
belong to the “mixed class” of general H-matrices in the terminology of Bru
et al. (2008)).

The matrix A is said diagonally stable if ∃ a diagonal matrix D = diag(d1, . . . , dn),
di > 0, s.t. DA + AT D < 0. It is said diagonally semistable if DA + AT D 6 0.

For H-matrices we will need the following results.

Theorem 1 (Hershkowitz (1992), Theorem 5.6) Let A be an H-matrix. Then
A is diagonally stable if and only if A is nonsingular and aii 6 0.

Theorem 2 (Hershkowitz (1992), Theorem 7.1) (also Hershkowitz & Schnei-
der (1985), Theorem 3.19) Let A be an irreducible H-matrix with aii 6 0. Then
A is diagonally semistable. Furthermore, the following are equivalent:
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(1) A is singular;
(2) A is not diagonally stable;
(3) ∃ Σ = diag(σ1, . . . , σn), σi ∈ {±1}, such that −A = ΣÃΣ and Ã singular;
(4) A has a unique Lyapunov scaling factor (up to a scalar multiplication),

i.e., ∃ unique positive diagonal D for which DA + AT D 6 0;
(5) ∃ unique (up to a scalar multiplication) positive diagonal matrix D such

that ker(AT D) = ker(A).

Given A, consider the (reduced) row sums Ri =
∑

j 6=i |aij|, i = 1, . . . , n and
the (reduced) column sums Ci =

∑
j 6=i |aji|, i = 1, . . . , n. A matrix A is said

diagonally dominant (by rows, omitted hereafter) if

|aii| > Ri, i = 1, . . . , n. (2)

It is said strictly diagonally dominant when all inequalities of (2) are strict,
and weakly diagonally dominant when at least one (but not all) of the in-
equalities (2) is strict. An irreducible weakly diagonally dominant A is often
called irreducibly diagonally dominant in the literature. A is said diagonally
equipotent if

|aii| = Ri, i = 1, . . . , n. (3)

We also call A doubly diagonally equipotent if it is simultaneously rows and
columns diagonally equipotent: |aii| = Ri, i = 1, . . . , n and |aii| = Ci, i =
1, . . . , n. This obviously means Ri = Ci, i = 1, . . . , n, a property which is called
weight balance of Γ(A) in Altafini (2013); Gharesifard & Cortés (2009) (and is
called simply “balanced” in the rest of the literature on distributed consensus
problems, see Mesbahi & Egerstedt (2010); Ren et al. (2007)). We indicate D
the set of diagonally dominant matrices, withDE that of diagonally equipotent
matrices and with DDE that of doubly diagonally equipotent matrices.

The following Proposition shows that diagonally equipotent matrices are H-
matrices.

Proposition 1 A ∈ DE irreducible is such that Ã is a singular M-matrix
with

0 = λ1(Ã) < Re[λ2(Ã)] 6 . . . 6 Re[λn(Ã)].

If in addition aii 6 0, i = 1, . . . , n, then Re[λi(A)] 6 0, i = 1, . . . , n and
rank(A) > n− 1.

Proof. For A ∈ DE , Ã is singular by construction and Ã1 = 0, 1 =
[
1 . . . 1

]T
∈

Rn i.e., 1 is a right eigenvector relative to the eigenvalue λ1(Ã) = 0. Irreducibil-
ity implies that for Ã the 0 eigenvalue has multiplicity 1. To see it, observe that
Ã is a singular irreducible M -matrix, hence from Theorem 6.4.16 of Berman
& Plemmons (1994) rank(Ã) = n− 1. As for the second part, for A ∈ D (and
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hence also for A ∈ DE), the Geršgorin theorem affirms that the eigenvalues of
A are located in the union of the n disksz ∈ C s.t. |z − aii| 6

∑
j 6=i

|aij|

 . (4)

Irreducibility, combined with diagonal equipotence, implies that aii 6 0 is in
reality aii < 0. Diagonal dominance and aii < 0 guarantees that the disks are
located in the left half of the complex plane and intersect the imaginary axis
only in z = 0, which cannot be in the interior of any of the disks because of
diagonal equipotence, see Horn & Johnson (1985), § 6.2. Hence Re[λi(A)] 6 0.
Since A is an irreducible H-matrix, all its principal minors of order less than n
are positive (see e.g. Lemma 3.20 of Hershkowitz & Schneider (1985)), hence
the 0 eigenvalue of A is at most simple.

The classical results of the literature, combining diagonal dominance with irre-
ducibility, are summarized by the Levy-Desplanques theorem (and its variants,
see Horn & Johnson (1985)).

Theorem 3 (Taussky, 1949) If A is strictly diagonally dominant or irre-
ducibly diagonally dominant then it is nonsingular. If in addition aii < 0,
then A is Hurwitz stable.

For the specific case of diagonally equipotent matrices, we also have the fol-
lowing condition (whose existence was pointed out to the author by one of the
reviewers of the first version of the manuscript).

Theorem 4 (Kolotilina (2003), Theorem 2.5) A ∈ DE irreducible is nonsin-
gular if and only if ∃ at least a cycle C = {(vi1 , vi2), (vi2 , vi3), . . . , (vip , vip+1)}
(p + 1 = 1) of lenght p > 2 such that (−1)p∏p

j=1 a−1
ijijaijij+1

< 0.

3 Hurwitz stability of diagonally equipotent matrices

Formally, the problem investigated in the paper is the following.

Problem 1 Determine the stability character of A ∈ DE irreducible and with
negative diagonal entries.

It follows from Proposition 1 that such A ∈ DE irreducible with negative
diagonal entries is at least critically stable. However, as the following example
shows, A ∈ DE may or may not be singular.
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Example Consider the two matrices

A1 =



−1 0 0 −1

1 −1 0 0

0 3 −3 0

0 0 −2 −2


, A2 =



−1 0 0 −1

1 −1 0 0

0 3 −3 0

0 0 2 −2


.

Even if A1, A2 ∈ DE are equimodular, their spectra are

sp(A1) = {−0.49± 0.99i, −3.01± 0.91i}

sp(A2) = {0, −2.71± 1.35i, −3.57}
hence A1 is Hurwitz stable, while A2 is only critically stable.

By construction, the Geršgorin disks (4) depend on the absolute values of the
off-diagonal entries of A, hence for equimodular matrices they cannot discern
properties depending on the signs of the aij. Similar considerations hold for
the Cassini ovals and for all other known inclusion regions generalizing the
Geršgorin disks. For example Brualdi’s diagonal dominance for cycles (Brualdi,
1982) states that if all cycles C ⊂ Γ(A) are such that∏

i s.t. vi∈VC
|aii| >

∏
i s.t. vi∈VC

Ri

with strict inequality holding for at least one cycle, then A is nonsingular.
This is clearly never verified for A ∈ DE .

For the case of A ∈ DE with negative diagonal entries, the following Theorem
provides a necessary and sufficient condition for discriminating between crit-
ically and Hurwitz stable diagonal equipotent matrices. Unlike Lemma 2 of
Altafini (2013), it covers all possible cases of A ∈ DE with negative diagonal
(including negative cycles of length 2).

Theorem 5 Consider A ∈ DE, irreducible with aii < 0, i = 1, . . . , n. A is
Hurwitz stable if and only if its graph Γ(A) has at least a negative cycle of
length > 1.

The proof of Theorem 5 can be obtained by combining Theorem 1 and Theo-
rem 4. We provide however an independent proof in Appendix B.

Notice that testing the sign of the cycles of a graph is an easy computational
problem, see Iacono et al. (2010).

Since, from Proposition 1, A is at least critically stable, by applying Lemma 1,
Theorem 5 has the following corollary.
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Corollary 1 A ∈ DE irreducible with aii < 0, i = 1, . . . , n, is critically stable
but not Hurwitz stable if and only if it is equivalent to a negated singular
M-matrix via a change of orthant order (1).

Corollary 1 links Theorem 5 to one of the conditions of Theorem 2. Hence
also the other conditions of Theorem 2 can be used for matrices having only
positive cycles.

Corollary 2 A ∈ DE irreducible with aii < 0, i = 1, . . . , n, is critically stable
but not Hurwitz stable if and only if any of the following hold:

(1) A is diagonally semistable but not diagonally stable;
(2) ∃ a unique positive diagonal matrix D such that ker(A) = ker(AT D).

From Theorem 1, Theorem 5 also implies the following:

Corollary 3 Consider A ∈ DE irreducible with aii < 0, i = 1, . . . , n. The
following conditions are equivalent:

(1) A is nonsingular;
(2) Γ(A) has at least a negative cycle of length > 1;
(3) A is diagonally stable.

Clearly, from Lemma 1 and Theorem 5 whenever A is Hurwitz stable it cannot
be equivalent to a negated M-matrix via a change of orthant order (1).

The diagonal matrix D of Corollary 2 is also the scaling factor for the di-
agonal semistability (see Hershkowitz & Schneider (1985) Theorem 3.25). A
straightforward consequence is the following:

Proposition 2 Given a singular irreducible A ∈ DE, aii < 0, i = 1, . . . , n, ∃
a unique (up to a scalar multiplication) positive diagonal matrix D such that
DA ∈ DDE.

Proof. Since A ∈ DE implies ker(Ã) = span(1), from the last part of Corol-
lary 2 (applied to −Ã) we have ker(ÃT D) = span(1), which can be rewritten
as ÃT D1 = 0 or 1T DÃ = 0, i.e., 1 is the left eigenvector relative to the
eigenvalue 0 for DÃ. Hence for DÃ we have 1T DÃ = 0 and DÃ1 = 0 i.e.,
DA ∈ DDE .

As already mentioned, double diagonal equipotence corresponds in the dis-
tributed consensus literature to weight balance (Gharesifard & Cortés, 2009),
which in its turn corresponds to the symmetric part of the matrix being nega-
tive semidefinite. By definition of diagonal semistability, this is always the case
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for DA: DA + AT D 6 0. Notice from the proof of Theorem 5 in Appendix B
that this is not true in general for A ∈ DE (A ∈ DE but A /∈ DDE means
A−AT = R−C +Ao−AT

o 6= 0, where Ao is the off-diagonal part of A). In the
context of the distributed consensus problem, the Lyapunov scaling factor D
is therefore the unique (up to scalar multiplication) right weight that renders
an adjacency matrix A weight balanced.

4 Hurwitz stability for generalized diagonally equipotent matrices

A matrix B is said generalized diagonally equipotent (by rows) if ∃ P =
diag(p1, . . . , pn), pi > 0, i = 1, . . . , n, such that BP is diagonally equipotent.
In components, this can be expressed as

|bii|pi =
∑
j 6=i

|bij|pj, i = 1, . . . , n. (5)

Denote GDE the set of generalized diagonally equipotent matrices.

Proposition 3 Consider B ∈ GDE irreducible with bii < 0, i = 1, . . . , n,
and A = BP ∈ DE, for some P diagonal positive. Then the following are
equivalent.

(1) Γ(A) has all cycles of length > 1 positive;
(2) Γ(B) has all cycles of length > 1 positive;
(3) ∃ Σ = diag(σ1, . . . , σn), σi ∈ {±1}, such that ΣBΣ has all nonnegative

off-diagonal entries;
(4) B is singular;
(5) B is critically stable but not Hurwitz stable;
(6) B is diagonally semistable but not diagonally stable;
(7) B has a unique Lyapunov scaling factor (up to a scalar multiplication),

i.e., ∃ unique positive diagonal D for which DB + BT D 6 0;
(8) ∃ a unique positive diagonal matrix D such that ker(B) = ker(BT D).

Proof. Notice first that since P is positive diagonal, B irreducible if and

only if A irreducible, hence Γ(B) is strongly connected. If p =
[
p1 . . . pn

]T
,

then (5) corresponds to B̃p = 0 i.e., p is a right eigenvector relative to the
eigenvalue 0. This implies that B̃ is a singular, irreducible M-matrix. Hence,
analogously to the proof of Proposition 1, rank(B̃) = n−1. If we now show that
condition 1 is equivalent to condition 2, then the other characterizations follow
from Lemma 1, Corollary 1 and Corollary 2. But showing this equivalence is
straightforward, since P diagonal positive and A = BP implies Γ(B) has the
same signs on the weights as Γ(A).
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Also in the case of A nonsingular the equivalence between the properties of
diagonally equipotent matrices and of their generalizations in GDE is totally
straightforward to establish.

Corollary 4 Consider B ∈ GDE irreducible with bii < 0, i = 1, . . . , n, and
A = BP ∈ DE, for some P diagonal positive. Then the following are equiva-
lent.

(1) Γ(A) has at least a negative cycle of length > 1;
(2) Γ(B) has at least a negative cycle of length > 1;
(3) B is nonsingular;
(4) B is Hurwitz stable;
(5) B is diagonally stable.

For irreducible A ∈ DE with negative diagonal and such that Lemma 1 holds,
then the generalized diagonally equipotent B = AP−1 with P diagonal posi-
tive, is such that the eigenspace relative to the 0 eigenvalue of B is span(P1).

5 Sign pattern properties of diagonally equipotent matrices

Recall (see e.g. Brualdi & Shader (1995)) that a matrix A ∈ Rn×n determines
a qualitative class of all matrices in Rn×n having the same sign pattern as A,
denoted Q[A]. A square matrix A is sign nonsingular if every matrix in Q[A]
is non-singular, and sign singular if every matrix in Q[A] is singular. It is said
qualitatively stable if every matrix in Q[A] is Hurwitz stable. A classical result
concerning sign nonsingularity is the following.

Theorem 6 (Brualdi & Shader (1995), Theorem 3.2.1) Consider A ∈ Rn×n

with aii < 0, i = 1, . . . , n. Then A is sign nonsingular if and only if every
cycle of Γ(A) is negative.

Let us define the qualitative class of matrices which are given by sign pat-
terns but which also obey the constraint of being diagonally equipotent (and
irreducible). Denote DEQ[A] the class of diagonally equipotent matrices in
Q[A]. A is said Diagonally Equipotent (DE) sign nonsingular if every matrix
in DEQ[A] is sign nonsingular. It is said DE sign singular if every matrix
in DEQ[A] is sign singular. Analogously, we will say that A is DE qualita-
tively stable if every matrix in DEQ[A] is Hurwitz stable. The necessary and
sufficient conditions for qualitative stability are known since the Seventies
(Maybee & Quirk, 1969) and essentially amount to the lack of directed cycles
of length greater than 2 and to the negativity of all cycles of length 2. More
precisely, denoting β a subset of the indexes {1, . . . , n} and β̄ its complement,
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letting A[α, β] be the submatrix of A obtained selecting the α rows and the
β columns, we have the following theorem.

Theorem 7 (Brualdi & Shader (1995), Theorem 10.2.2) A ∈ Rn×n is quali-
tatively stable if and only if each of the following holds:

(1) aii 6 0 ∀ i = 1, . . . , n;
(2) aijaji 6 0 ∀ i 6= j;
(3) Γ(A) has no cycle of length > 2;
(4) det(A) 6= 0;
(5) @ β ⊆ {1, . . . , n}, β 6= ∅, such that each diagonal element of A[β, β] is

zero, each row of A[β, β] contains at least one nonzero entry and no row
of A[β̄, β] contains exactly one nonzero entry.

For the qualitative class DEQ[A] the nonsingularity condition is in stark con-
trast with Theorem 6.

Theorem 8 Consider A ∈ DE irreducible with aii < 0, i = 1, . . . , n. Then
A is DE sign nonsingular if and only if Γ(A) has a least a negative cycle of
length > 1.

Proof. Given A ∈ DE irreducible with aii < 0, i = 1, . . . , n, then Theorem 4
holds, and A is nonsingular if and only if Γ(A) contains at least a negative
cycle of length > 1. Since A and any B ∈ DEQ[A] have graphs with the same
sign pattern, Theorem 5 must hold for any B ∈ DEQ[A].

Similarly B ∈ DEQ[A] is DE sign singular if and only if Γ(B) has all cycles
of length > 1 positive.

Also for what concerns qualitative stability, the analysis of the DEQ[A] class
is completely straightforward, given Theorem 5 and 8.

Theorem 9 Consider A ∈ DE irreducible with aii < 0, i = 1, . . . , n. Then A
is DE qualitatively stable if and only if Γ(A) has a least a negative cycle of
length > 1.

Whenever the condition of Theorem 9 does not hold, then the entire class
DEQ[A] is composed of critically stable matrices. Both Theorem 8 and Theo-
rem 9 extend straightforwardly to the qualitative classes of matrices generated
by A ∈ GDE .
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6 Conclusion

Diagonally equipotent matrices admit a complete classification for what con-
cerns the stability property. While the classical arguments of diagonal domi-
nance and of location of the Geršgorin disks are inadequate in determining the
asymptotically stable cases, a purely graphical criterion, the sign of the cycles
of the graph associated with the given matrix, provides instead necessary and
sufficient conditions. These conditions are “qualitative” i.e., they hold for the
entire class of matrices having the same sign pattern, provided we impose on
them the extra constraint of diagonal equipotence.

As for all matrices for which diagonal stability conditions hold, also the di-
agonally equipotent matrices considered in this paper are of interest in the
context of decentralized systems and of distributed control, (Kaszkurewicz &
Bhaya, 2000; Siljak, 1978), especially in view of their Laplacian-like structure.
In addition, the signed matrices of the diagonally equipotent class still en-
joy most of the properties of positive systems, such as the Perron-Frobenius
theorem. It can therefore be expected that also recent decentralized synthesis
results such as Rantzer (2011) can be extended beyond positively dominated
systems.
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A Proof of Lemma 1

Let us first show that the sign of a directed cycle of length > 1 is invariant
to the transformation (1). Assume without loss of generality that σi = −1
and σj = +1 for j 6= i. On the graph Γ(A), the operation (1) corresponds to
changing sign to all edges adjacent to the node vi. Since each cycle intersects
vi in 0 or 2 edges, the parity of the cycle is unaltered by such an operation. It
follows therefore that if ∃Σ such that ΣAΣ has all nonnegative off-diagonal
entries then all cycles of A of length > 1 must be positive. Conversely, for
strongly connected graphs, when all cycles are positive the existence of Σ
can be shown through the following explicit construction. Consider a cycle C
containing a nonzero (even) number of negative edges and two of its nodes
vi, vj ∈ VC. Consider the paths Pij and Pji such that Pij∪Pji = C. Assume for
example that sgn(Pij) = sgn(Pji) < 0. Call V1 = {vi} and V2 = {vj}. Consider
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vk 6= vi, vj. Since Γ(A) is strongly connected, in E ∃ Pik, Pki, Pjk and Pkj such
that Pik ∪ Pki and Pjk ∪ Pkj are positive directed cycles. Assume without
loss of generality that sgn(Pik) = sgn(Pki) < 0. Then it must be necessarily
sgn(Pjk) = sgn(Pkj) > 0, otherwise the (possibly nonsimple) directed cycles
formed by Pik∪Pkj ∪Pji and by Pki∪Pij ∪Pjk must be negative. If the cycles
Pik ∪ Pkj ∪ Pji and Pki ∪ Pij ∪ Pjk are not simple then they must be unions
of directed cycles, e.g. Pik ∪Pkj ∪Pji =

⋃
r Cr for some r > 1. But also in this

case sgn(Pik ∪ Pkj ∪ Pji) < 0 implies that at least one of the cycles C1, . . . , Cr

must be negative. The condition must be identical for each choice of Pik, Pki,
Pjk and Pkj. In fact, assume by contradiction that ∃ alternative paths Qik and
Qki such that Qik ∪Qki is a positive cycle and that sgn(Qik) = sgn(Qki) > 0.
Combining with Pik, Pki, we have the two (again possibly nonsimple) directed
cycles Pik ∪Qki and Pki ∪Qik of negative sign, which is a contradiction. The
argument is identical for Pjk and Pkj. We can therefore add vk to one and
only one of the two sets V1 and V2 (in the case above V2 = V2 ∪ vk). The
construction can be iterated for all remaining nodes: for a node vr it will be
either:

sgn(Pir) = sgn(Pri) > 0 ∀vi ∈ V1

sgn(Pjr) = sgn(Prj) < 0 ∀vj ∈ V2

 =⇒ V1 = V1 ∪ vr

or

sgn(Pir) = sgn(Pri) < 0 ∀vi ∈ V1

sgn(Pjr) = sgn(Prj) > 0 ∀vj ∈ V2

 =⇒ V2 = V2 ∪ vr.

Eventually we obtain a bipartition of the nodes V = V1 ∪V2, V1 ∩V2 = ∅. By
constructing Σ = diag(σ1, . . . , σn) where σi = +1 if vi ∈ V1 and σi = −1 if
vi ∈ V2, it is straightforward to verify that ΣAΣ has to have all nonnegative
off-diagonal entries.

B Proof of Theorem 5

From Proposition 1, Re[λi(A)] 6 0 and A is at least critically stable.

“⇐=”: Assume by contradiction that A is not Hurwitz stable, i.e., that 0 is an
eigenvalue of A of eigenvector x 6= 0. Lemma 6.2.3 of Horn & Johnson (1985)
implies that for the components of x, |xi| = |xj| = ξ 6= 0 ∀ i, j, = 1, . . . , n, and
that all Geršgorin disks pass through 0. We can then write Ax = 0, xT AT = 0
and

xT Asx = 0, (B.1)

where As = A+AT

2
denotes the symmetric part of A. Consider the row sums Ri,

i = 1, . . . , n and the column sums Ci, i = 1, . . . , n. Assume aii < 0. A ∈ DE
implies −aii = Ri, i = 1, . . . , n (while in general |aii| 6= Ci, unless we have

13



weight balance). Denote R = diag(R1, . . . , Rn) and C = diag(C1, . . . , Cn) and
let Ad and Ao be respectively the diagonal and off-diagonal parts of A. Then

A = Ad + Ao = −R + Ao and As = −R + Ao+AT
o

2
. If we rewrite As in the

following form

As = −R− C

2
− R + C

2
+

Ao + AT
o

2
,

then (B.1) becomes

0 =−xT
(

R− C

2

)
x− xT

(
R + C

2

)
x (B.2)

+xT

(
Ao + AT

o

2

)
x.

Expanding the first term of (B.2) and using the fact that x2
i = ξ2 ∀ i = 1, . . . , n

n∑
i=1

x2
i (Ri − Ci) =

n∑
i=1

x2
i

∑
j 6=i

(|aij| − |aji|)


= ξ2

n∑
i,j=1
j 6=i

(|aij| − |aji|) = 0.

The rest of (B.2) can be written as

0 =
1

2

n∑
i=1

∑
j>i

(
−x2

i (|aij|+ |aji|)

−x2
j(|aij|+ |aji|) + 2xixj(aij + aji)

)
.

In the case aijaji > 0 ∀ i, j = 1, . . . , n (i.e., all length-2 cycles of Γ(A) are
positive), then |aij|+ |aji| = |aij + aji|, which implies

0 =−1

2

n∑
i=1

∑
j>i

(
x2

i (|aij + aji|)

+x2
j(|aij + aji|)− 2xixj(aij + aji)

)
=−1

2

n∑
i=1

∑
j>i

|aij + aji|
(
x2

i + x2
j − 2xixjsgn(aij + aji)

)

=−1

2

n∑
i=1

∑
j>i

|aij + aji| (xi − sgn(aij + aji)xj)
2 . (B.3)

This has the form of a sum of squares, implying that each term of the summa-
tion must be equal to 0 in correspondence of the eigenvector x. On the graph
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Γ(A), consider a negative cycle C = {(vi1 , vi2), (vi2 , vi3), . . . , (vip , vi1)} ⊂ E .
Denote S+ = {(vj, vi) ∈ C s. t. aij > 0} its subset of positive edges and S− =
{(vj, vi) ∈ C s. t. aij < 0} that of negative edges. Since sgn(aij+aji) = sgn(aij)
in (B.3) we have for the subset of edges in C

0 =−1

2

∑
(vj ,vi)∈S+

|aij + aji| (xi − sgn(aij + aji)xj)
2

−1

2

∑
(vj ,vi)∈S−

|aij + aji| (xi − sgn(aij + aji)xj)
2

which implies xi = xj (vj, vi) ∈ S+

xi = −xj (vj, vi) ∈ S−.

We claim that this system has no nonzero solution of the type |xi| = ξ 6= 0, i =
1, . . . , n, when S− contains an odd number of edges. Since, in correspondence
of (vj, vi) ∈ S+, xi = xj, it is possible to reduce the cycle dropping all edges in
S+ and merging the corresponding node variables. If k is the number of edges
in S−, then we are left with the subset of equations

xi1 =−xi2

xi2 =−xi3

... (B.4)

xik =−xi1 ,

from which we have, since k is odd,

xi1 = xi3 = . . . = xik

xi2 = xi4 = . . . = xik−1
.

However, from the last eq. of (B.4), we also have xi1 = −xi1 , |xi1| = ξ 6=
0, which is a contradiction. It implies that the terms of (B.3) belonging to
a negative cycle cannot be all equal to 0 and hence that 0 cannot be an
eigenvalue of A. In the case aijaji < 0 for at least a pair of edges in E , then
|aij + aji| < |aij|+ |aji|, i.e., in place of (B.3) we have

0 =−
∑

ik,jk∈K
εk(x

2
ik

+ x2
jk

)

−1

2

n∑
i=1

∑
j>i

|aij + aji| (xi − sgn(aij + aji)xj)
2 (B.5)
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where K is the set of index pairs ik, jk for which aik,jk
ajk,ik < 0 and εk > 0.

Clearly (B.5) can never be true for x such that |xi| = ξ 6= 0, i = 1, . . . , n
unless K is empty. Therefore even in presence of a single length-2 negative
cycle 0 cannot be an eigenvalue of A.

“=⇒”: Assume A Hurwitz stable and by contradiction that Γ(A) has no
negative cycle of length > 1. Then from Lemma 1 ∃ Σ = diag(σ1, . . . , σn),
σi ∈ {±1}, such that Â = ΣAΣ has all non-negative off-diagonal entries and
âij = |aij| ∀i, j = 1, . . . , n, i 6= j. Since âii = aii < 0, it is Â = −Ã. From
Proposition 1, however, Ã must be singular, hence we have a contradiction.
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