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Following a Path of Varying Curvature as an Output
Regulation Problem

Claudio Altafini

Abstract—Given a path of nonconstant curvature, local asymptotic sta-
bility can be proven for the generaln trailer whenever the curvature can
be considered as the output of an exogenous dynamical system. The con-
trollers that provide convergence to zero of the tracking error chosen for the
path-following problem are composed of a prefeedback that input—output
linearizes the system, plus a linear controller.

Index Terms—Output regulation, path following, wheeled vehicles. Fig. 1. Generah-trailer system.

Il. KINEMATIC MODEL FOR THE GENERAL 7n-TRAILER AND
FRENET FRAMES

|. INTRODUCTION

In the several studies dealing with path following for wheeled ve- . .
hi Suppose we have a generatrailer system withn (m < n) of the
icles (see, for example, [12]-{14], or the book chapters [3], [4], and * ) . .
. trailers hooked at a distancd; from the preceding axle; see Fig. 1.
[9]), convergence is usually proven for paths of constant curvature. [n . -
. ) . ssume that each body is composed of one single axle. The non-
fact, that represents the only_cage in which the de(?o_upllng between ial L ic constraints on the point3 (below callednonholonomic
eral and longitudinal dynamics is exact for the original system an %ints originate from the assumption of rolling without slipping
constant steady state for the lateral dynamics exists. After fixing tQ¢ the wheels. If we calhy, ..., 0w, n; < njp1, nw < n the
longitudinal input to a nonnull constant, if the tracking error used isjggices of the axles having/nohnull off-hitching/,, . # 0) we can
3

scalar, the system to analyze is basically a single-input-single-outgebup together the axles between two consecutive kingpin hitchings:
(SISO) system with drift from the steering input to the tracking errorQ, 1,...,n1 .. {nj—i+1n_ 1 +2,. . ny—1ng b +
When the curvature of a path to follow can be modeled as the output af.a.,,, + 2,...,» — 1,n}. We do not consider the case of two con-
neutrally stable dynamical system, then the path following problem cgacutive axles having off-hitching. Call the orientation angle of the

be formulated as an output regulation problem in the nonlinear settiitg axle,v; its translational velocityL; the distance between thith
proposed by [8]. In fact, the curvature can be considered as a knownaxle and the hitching point of the same trailer, ahd2 6, — 6, the
ogenous disturbance and the output of the system, corresponding toste€ring angle. The-trailer system has two inputs, corresponding to
tracking error of the path following criterion, can be rendered indepetianslational and steering actions of the car pulling the trailers. At the
dent from it by input—output linearizing the system with a static chandgnematic level, we can consider these two inputs to be the steering
of input. With the error independent from the curvature, if the relativéP€edv = /1 and the translational speed of the last trailer.

degree of the system is well defined, the output zeroing manifold igUnder the assumption that the path is sufficiently smooth and that

the only invariant manifold that solves the regulation problem. ThFE'e th;vatﬁrel has ?g upper bOL;nS' a pir;lcltjlar_ly usefﬁ: Iocgl framel tg
is equivalent to saying that local asymptotic stability to the noncoﬁ-es’cIrI ethe z_aterg ynamics o the path following pro em decouple
: . from the longitudinal one is the so-called Frenet frame i.e., a frame
stant steady state is achieved by and only by the controllers composed . . - L
. - g ._moving on the path having origin on the orthogonal projection of the
of a prefeedback that input—output linearizes the system plus a Iln%%r

h be ch - imal (I tashi it h int of interest. In [2], the tracking criterion introduced consists in
part that can be chosen in an optimal (linear) fashion. If we ¢ °°§8nsideringz + 1 frames simultaneously, one for each nonholonomic

as tracking criterion the one proposed in [2] based on the so-callsgint Each of the curvilinear frames (see Fig. 2) is represented by two
off-tracking distance, whose peculiarity is that it keeps the whole VBoordinates s, ., ) wheres.. is the line integral along the path to
hicle (and not a single guidepoint on the vehicle) at a reduced distanggow, up to the actual projection of the poifft on the path itself and
from the path, then the relative degree between the steering velogjty is the orientation of the frame with respect to the inertial frame. In
and the corresponding tracking error is equal to two, whereas for i Frenet frame, the poitR; is represented by the signed distange
criteria normally used, it is either higher or it is not well defined abetween the point itself and its orthogonal projection and by the relative
all because of the kingpin hitches. For the same reason, properties bkientation angld;. The decoupling property of the Frenet frame has
input-state linearization or differential flatness do not hold [11]. already been used by several authors for the path following problem
It must be noticed that the whole analysiddsal and that, due to (see[10] and [12]). We also use it but substituting the tracking criterion
the singularities of the Frenet frame representation used here, thergdgnally used [13]
no way to formally prove a well-behaved transient even for admissible

initial conditions that are close to the limits of the region of attraction. Zn =0 (1)

or an equivalent one based on another of the distancesth thesum
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the dynamic equations of the system are

p=F(p)+Gw, peD (6)

where the input is entering only in the differential equationé.oénd

A1. In order to consider simultaneously the error distances of all the
nonholonomic pointd?; from the path, we take as output the sum of
then + 1 signed distances;

y=[0100 0100 ... 0100 OlO]pé'Hp. @)
Fig. 2. Frenet frames associated with the nonholonomic pdints

Considering multiple frames on the same rigid body leads to a redun-

o ) dant description of the system. To recover the original dynamic equa-

W const. The same observation is valid also for thgons, a number of constraints must be added. However, for our stabi-
anglesd; = 6,1 — fi,7 € {1,....n}. Therefore, itis convenient to |ization purposes they can simply be neglected and we can work with

write the dynamic equations 6f andf,; in terms off; and/j:. We can - the overparameterized system (6) and (7); see again [2] for a complete
group together all four equations relative to each péintWhen there formulation.

is off-axle hitching the equations for the noBg, 1 (first node of each
steering train, except for the driving cart) are shown in (3) at the bottom
of the pagej € {0,1,...,m}, no = 0, andn; > 1. For the other _ _ )
nonholonomic points, the corresponding, ,; are zero. Therefore, N what follows, we will assume thatly = 0, i.e., that there is no
the formulas simplify to off-axle connection on the driving unit. In fact, M, # 0 the general
n-trailer does not have a well-defined relative degree. For this and the
other concepts used in the remaining of the paper (Lie derivative, input-

the curvatures, =

I1l. I NPUT-OUTPUT FEEDBACK LINEARIZATION

[ 008 B4 7 state and input—output feedback linearization, zero dynamics, etc.), we
) 1—ry (SA,HJ_M)Z%.M remand the reader to any standard text on nonlinear control systems,
s:,»njﬁ Sin s such as [7]. . N . .
Zn i T The following proposition can be proven by direct calculation.
gn L = Uniti | tan Boji 05 O ity 'q771j+i) ) Proposition 1: The n-trailer system (6) and (7) with the tracking
an-+i Lyt . ( ) N criterion (2) has relative degree two.
s vom B 41 ' -Z:n 4 jr The low relative degree suggests that input—output feedback
| T e T linearization is easily attained for our system: in fact it is enough
’ ’ ’ to differentiate the output (7) twice and cancel the corresponding
dynamics by means of a change of input. From
j € {0,1,....,m},i € {2,3...,nj41 — nj}, nmy1 = n, Where
(5), shown at the bottom of the page, holds¢ {0,1,...,m},i € n
{1,2....n41 — n;}, andvg = v1/cos 31. Considerings,, to be a y= Z Z
given (non-null) open-loop function, for example a constant, we obtain i=0

a system with a drift component. The domain of definitidrand the

singularity locus of the generaltrailer are discussed in [1]. Calling we get the equation shown at the bottom of the next page. In order
the state vector to have a well-defined relative degree, we have already assumed that
the driving unit has no off-axle connection, i.84, = 0. For sake of
simplicity, we require here also thaf;, = 0. The case with\/; # 0

, ~ Y . . . .
P=1[Sv, z2nnBn ... Sy 210101 Sy 2000] does not differ except for the more involved formulation of the domain
r cos 6”_7""1 A
. 1—ry (Svnj+1>’nj+1
S ~
41 .
_.'”5+ sinf,, ;41
“n gl A,
L = Unp.+1 an { _ " tan £ 0 el s- 3
Hn’j_,ﬂ n;+ tan *3”_7"?’1 T tan /371]. 3 cos O”j‘f’l'\ v | s 1 ( )
. M, .
/377]._;'_1 Tlnj+1 (1+ 7171; tan fu’nj tan an+1) 1—k (’q77zj+1)2”j+1
tan ,371]. _ tan ’8”_7""1 ]\xfnj tan ,371].
L L cos Bt L1 Lnj1ln; J

Un

’Unj +i m M. n
My, . P p
k=j+1 (1 T, tan ., tan d”k‘H) Hk:nj+i+1 (cos k)

®)
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of definition and will be treated in the example of Section V. In facwith LgLHp = LgLrHp whenM; = 0. The zero dynamics of
when differentiating the above expression a second time we needsth a tracking error, given by = 6, = 0 plus a feedback similar to
isolate the terms ifi, and/3, whose derivatives introduce the input  (10), is trivially asymptotically stable with exponential rate of conver-
With My = M; = 0 they appear only in the termy sin 6,. Callingp gence for forward motion and for any admissible initial condition on
the state obtained fromexcludings, andé,, we have Z*. The state equations ofi* (to which the constraintg = § = 0

0 0% 99 : must be added) look like

§=L3Hp+ LoLrHpw = =p+ —— 31 + —Hfo 2
Op7 95 08 p=Fp) - g2 (12)
_ 0y =~ sin 34 u)bﬁon./(s o) LoL7Hp
~op 5P+ 95 cosfo e, iy (879 )30 It corresponds td (where the steering input is applied) on the path
. . and wrong initial conditions on the trailers and it asymptotically decays
+ vo (sin fo tan 31 + cos 90) w. to an equilibrium point which is unique for a path of given constant
curvature. Returning to the tracking error (2), the equilibrium point for
The term (qin 6y tan 31 + cos 90) vanishese tan(f, — ;) = (6) and (7) around which to check convergence of the zero dynamics
too < o — B = (7/2) mod . Sincefo — 41 = 6 — 6., in Z*, call itp_, is computed in detail in [2] and it still corresponds to

the singularities are function of how much the path is bendlng" bé circular concentric trajectory. Writing the output (7)yas § + ¢ =
tween the projections on the path Bf and P,. Therefore, forp in Hp+Hp, we haveLs L Hp = 0, i.e., the relative degree with respect

DN {(50,/31) st — i €] - 7r/2,7r/2[}, the input transformation tog is three or higher, thus the state-space equatiot® omill be given

by
—L%Hp+u 9 e
LgLsH =F(p) - — — ——. 12
gLFip p P) LoLrHp LoLrHp (12)
a”p + 03 cosfg [ Tl _ cos Dgr (27 +u . . . .
0 o\ T—r~y (544 )20 By comparison with (11), local asymptotic stability of (12) arognd
= follows from exponentially stability on the large of (11). |

vo (sm Bo tan 1 + cos 90) The chain of integrators (9) can now be stabilized for example using

(8) linear quadratic theory. Any output feedback of the form

is a diffeomorphism that reduces the input—output dynamics to the w=Fkiy+ kay (13)

chain of integrators with k1 < 0, k2 < 0is alocally asymptotically stabilizer for the whole

i=u ©) system.

that can be stabilized using linear control theory provided that thdV: FOLLOWING A PATH OF VARYING CURVATURE AS AN OUTPUT
system is minimum phase. The zero dynamics is obtained confining REGULATION PROBLEM
the dynamics of the system to the so-cakedput-zeroing manifold In what follows, we will try to asymptotically stabilize the system to

7' —{peDsty—gj=ij=0}. paths whose curvature is varying in agiven cIa;s of fgnctlons. We will

treat the problem as awutput regulation problenn which the error

In practice, it is obtained by adding to the original system (6) the cott:) has to asymptotically reject the variation of curvaturés.,) re-
ditionsy = 0, ¢ = 0 and the input garded as a persistent input generated by a dynamical system. In the
classical context of linear time-invariant, finite-dimensional systems,

W= ﬂ (10) this geometric control problem was first solved by Davison [5] and
LgL7Hp Francis and Wonham [6] based on the assumption that the external
and it represents the part of the system equations which is no longemmand can be modeled as the output of an autonomous system called
connected to the output after the change of input. theexosystenthe solution was then extended to the nonlinear case by

Proposition 2: The zero dynamics of the-trailer system (6) and Isidori and Byrnes [8]. The presence of a known “disturbance” acting
(7) is locally asymptotically stable along paths of constant curvatureas a persistentinputimplies that the steady state of the system is varying
Proof: If in a genericn-trailer system we take as tracking crite-depending only on the exogenous input and not on the initial conditions
rion zo — 0, then for forward motions the stability of the zero dy-of the system (that have to be in an appropriate neighborhood of the
namics on the output zeroing manifafd corresponding to the output origin). In our case, the exogenous input of the system is the curvature
§ = Hp = =z is immediate to understand as it corresponds to hafienction -, (-) of the path. To be consistent with our control problem,
the nonholonomic poinP, exactly on the path for all times. Differen- the curvature has to be upper bounded, in fact, too high a curvature im-

tiating 4 plies that a steady state for the tracking criterion (2) does not exist.
. e The properties of persistence in time and of boundedness of the ex-
y =vo sin fo ogenous input are compactly described by the notioneaftral sta-
i =LZHp+ LgLrHpw bility of the exogenous system. A system is said neutrally stable if it

n
y=LrHp= E v, sin f;
i=0
m Mij417 N

vy, sin b, 4 L.
= v J + vg sin fg.
ZJ . 21 (1 I

k7‘j+1 Lo tan 3,, tan ﬁvw-&-l) k= it (cos Bk)
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is both Lyapunov stable and Poisson stable. A necessary condition for P2) there exist a neighborhodd C II x K7 of (0, 0) such that
a system to be neutrally stable is that its first-order approximation has for each initial conditionp(0), x-(0)) € V, the solution of
all the eigenvalues on the imaginary axis. In our case, the exogenous (16) satisfies
system has to represent how the curvature is evolving along the path
~. Looking at (6), we can see that at every time instant the curvature
hasn + 1 “entries” in the equations, corresponding to the values of

L . The statement P1) is motivated by the center manifold theory. In fact,
curvature in different positions along the path. For the nonholononp%/en (16) and (17), we know that the eigenvalues of the exogenous
point P;, if the curvature function is given in terms of the curvilinea

AR ) h hink of i by ad system are on the imaginary axis and cannot be moved. Therefore, the
absc_lsslawi = #i5(s5,) then we can think of it as generated by a dy, hjem is solvable only if all the other eigenvalues of the system can
namical system be moved to the open left half of the complex plane by means of a state
ro_dRy, . , feedback on the endogenous inputlf such a feedback can be found
Y, = =7 (Ky,)» i1=0,1,...n (14) . ;

ds-, for k-, = 0, then the center manifold theory assures the existence of

where the independent variable is the curvilinear abseigsan order an invariant manifold in a neighborhood of the origin whose graph is
to couple this exogenous system with the remaining part of the equae solutl_on of an as*_souated partial differential equation. This is for-
tions, we have to rescale it as a function of time, expressingas Mulated in the following theorem.

s, (t), i.e., substituting the space derivatives of (14) with the corre- Theorem 1[7]: Giventhe neutrally stable system (17) and assuming
sponding time derivatives the existence of an endogenous feedbacklaw «(p,0),«(0,0) = 0

Ik d ds such that the equilibriump = 0 of
Lo vi o SRy B8y
T T T ds,, dt b= F(p.0)+ G(®ap,0)

The exogenous equation is the same for all the nonholonomic poipds;symptotically stable in the first-order approximation, then there
(since the reference path is the same) but the initial values 0ére  exist mappingg = = (x) andw = a(r(x,), 1) defined in a neigh-

different since they express the value of the curvature atthe initial CUryrnood 2 ¢ Kt of the origin with=(0) = 0 anda(0,0) = 0,

linear abscissa-, (0). The presence of the teré,, does not spoil \yhich satisfy ‘

the “exogenousness” of (15): it is in fact possible to rescale the whole -

system (6) as a function of the curvilinear abscissa and of the “spa- ™1 (k) = F(m(k), 54) + G (7)) alm(kiq), k)

tial” integral constraints mentioned in Section Il and reported in detall ki

in [2], yielding, in principle, a completely time-independent system i ., € Kp.

which the terms,; obviously disappear. Provided we can prove well The theorem assures also the existence of a well-defined steady-state
posedness and asymptotic stability of the problem in the time-depeasponse for every exogenous inputhif .

dent scale, then in the formulation (15) the represent terms which  Consider the Jacobian &F at the origin

are monotone, bounded and continuous (for paths of continuous cur- OF (p, x.)
vature and fo?; near the path) since they represent the projections on Feog = E)—
the path of the translational velocities of the nonholonomic points P
P;:0 < 5,, < v; . Therefore the neutral stability of (14) implies theFrom linear control theory, it is deduced that the stabilizability of the
neutral stability of (15) and vice-versa. In fact, the eigenvalues of tipair (7. . G) is also a necessary condition for the solution of P1.

first order approximation are on the imaginary axis in both cases. ForThe previous condition can be used to adapt the necessary and suffi-
all timest we haves,, (t) < s, ,(t) < -+ < s(t), but the cientcondition for the solution of the full information output regulation
delay betweers.,(t) ands.,_, () is variable according to the cur- problem provided in [7] to our case.

vature of the path in the interval,,_, () — s,,(t) and to the posi-  Theorem 2: Given (16)—(18) with (17) neutrally stable, the full in-
tion and orientation of the vehicle with respect to the path. Callinigrmation output regulation problem is solvable if and onl§/At . &)

tlim Hp(t) = 0.

K

= V7 (H’%‘) = ';;Wi')" ("7’77' ) - (15)

(0,0) .

Ky =Ky, v+ Ky Ky ands, =[s,, -+ s, s,] , is stabilizable and there exist mappings= m(ky) andw = c(ky)
the complete system is then with 7(0) = 0 and¢(0) = 0, both defined in a neighborhodd; C
b =F(p. 1)+ G(p)w (16) Ky satlsfyéng the conditions
i =5, (k) @7 STT(k) =F (x(ky),5)) + G (w(k:)) elky)  (29)
y =Hp (18) '

0 =Hn(ry) (20)

wherel'(x-) has the diagonal structure -
erel (x,) g for all k, € Kt.

7 (fiy,) 0 Conditions (19) and (20) express the fact that the mapping
- 7 (k) which is rendered locally invariant by the feedback law=
0 ' 5 () c(k~) has to be an output zeroing manifold of the composite system.
o0 In our case, due to the independence of the output (18) from the cur-
The I’Ight formulation for our case is calléadll information Output reg- Vatureﬁy’ the Output Zeroing property is not related to the exogenous
ulation problemin which the whole state of the system is measurablgystem but only to the exact input—output feedback linearization. This
Here, we follow the definition given in [7]. is formalized in the following theorem.

Given the nonlinear system (16) and the neutrally stable exogenousheorem 3: For (16)—(18) with (17) neutrally stable, the full infor-
system (17), the output regulation problem is said to be solvable if theffytion output regulation problem is solvable. All the controllers that
exists a map(p, 1, ) such that solve the problem are composed of a prefeedback (8) that input—output

P1) equilibriump = 0 of exactly linearizes the system and of a stabilizing feedback for the re-
. sulting chain of integrators.
p=F(p.0)+G(p)alp.0) Proof: Apply the input-output linearizing controller (8) to
is asymptotically stable in the first order approximation;  (16)—(18). The output functiofi(p and its first Lie derivativel »Hp
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y axis {m)

E)
xaxis {m}

Fig. 3. Following a path of sinusoidal curvature with the linear controller
proposed in [2].

constitute the first components of a change of bésis ®(p) that,
together with the feedback (8), transforms the system into normal form

G =6 i]

b2 =u il

57:-/4(57’{7)"'6(57’{%”) .:I S
y =Ei. (21) b

The subsystenﬁ = [&s... £n]T which corresponds to the zero dy_Flg. 4. Following the same sinusoidal path of Fig. 3 with the controller (22).

namics was shown to be asymptotically stable in Proposition 2. There-

fore, the whole system is locally asymptotically stabilizable around Such a property is characteristic not only of our system (16)—(18) but
¢ = 0 for v, = 0 by a linear controller and, by Theorem 1 we deof any control-affine SISO system with relative degree for which only
duce the existence of an invariant manifold characterized by the m@igturbance rejection is required, i.e., in which the exogenous system
¢ = m(x,) such that on its graph the condition (19) is satisfied. In pagonsists only of disturbances acting on the state space and not of signals
ticular, we can consider a magg-) such that it does not touch the firstto be tracked by the output. What this means is that in the case of well-

two components defined relative degree there is no need to solve a partial differential
equation to find the invariant manifole(-), since the prefeedback (8)
& = mi(ky) = m(0) =0, i=1,2 provides the unigue solution.

while perturbing all the other states. A map with such characteristics
fulfills also (20) whem: = 0. Therefore, also Theorem 2 holds and
the full information output regulation problem is solvable. Since the Consider a car pulling two trailers the first of which has off-axle
change of basi#(-) is a local diffeomorphism and the feedback (8) id100king. Here, we have thatl, # 0; therefore, the ternig L-Hp
invertible, the problem is solvable also in the original basis. instead of having the expression in the denominator of (8) has the more
By Theorem 2, a necessary condition for the solvability of the fufomplex one, as shown in the equation at the bottom of the page. In a
information output regulation problem is that:) is an output zeroing Neighborhood op = 0, cos fo is the dominant term; therefore, as in
manifold. Since the output function does not depend directly.oand (8), we can conclude that there exists a subdomain af which the
the system has a locally well-defined relative degree, &lsés inde- denominatotLg L+ Hp is nonvanishing.

V. EXAMPLE

pendent ofi-, and the feedback = c(r~) which renders each(-) The different behaviors of the linear controller used in [2] and of the

invariant in Theorem 2, is uniquely given by (10). The full controlleflPut—output linearizing controller (22) are compared for a sinusoidal
then is obtained by adding a stabilizing loop around (8). m pathin Figs. 3 and 4. The linear controller cannot achieve any steady
In particular, the simplest class of controllers that satisfies Theorei@te even though the tracking error remains bounded. For the second

3 is given by controller instead, the tracking error asymptotically converges to zero.
The reduced difference in the error dynamics between Figs. 3 and 4
_ —LEFHp + kiy + ko 99 suggests that alternative approaches to the exact linearization solution,

LgLrHp 22)  for example considering uniform boundedness of the tracking error in-
stead of asymptotic convergence, could be successfully applied also

Vk <0,k <0. to simple linear controllers. On the other hand, it is worth mentioning

cos 31 cos B2 cos 33 [sin 9~0 (tan b1 — M tan 13)) + cos 90 (1 + 7 M‘ tan 31 tan Jz)] + sin 9~1 (% tan /32)
LgLrHp = vs :

(1 + % tan (31 tan ﬂg) cos? 31 cos? 35 cos? 3
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that a major advantage of the feedback linearization technique is tR the Relationship Between the Sample Path and Moment

the feedback (10) provides the open-loop control that exactly steersthe  Lyapunov Exponents for Jump Linear Systems
system on a given path. This is normally of great help in motion plan-

ning problems. Yuguang Fang and Kenneth A. Loparo
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w(k+1) = Ara(k) «(0) =0 (1.1)

where{ A, }«>0 is a sequence af!(d, R)-valued random variables.
Here,Gl(d, R) is the general linear group of dimensidwover the real
field, R. Fixing coordinates, a representative elemenrfffd, R) is a
nonsingular! x d matrix overR. A sample trajectory of (1.1) is given
by the action of a random matrix product on a poipt € R?. Our
analysis is restricted to random matricesGi(d, R) because of the
importance ofegularity of (1.1) [3].

The asymptotic behavior of sample trajectories of system (1.1) have
been studied extensively by many researchers, most notably in the con-
text of random matrix products (see [3]). Furstenberg and Kifer [6] con-
sidered the Lyapunov exponents and the corresponding subspace filtra-
tion of the state space, and obtained an integrability condition. Arnold
[1] and Arnoldet al. [2] have been studying moment Lyapunov ex-
ponents for linear stochastic systems and discovered a formula that
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