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Path Following With Reduced Off-Tracking for Multibody Wheeled Vehicles
Claudio Altafini

Abstract—Our purpose is to provide a formulation of the They all have in common the need of maintaining tieole
path following problem for multibody kinematic wheeled vehicles vehicle at a reduced distance from the path and they can be
aiming to keep the whole vehicle at a reduced distance from a onresented by a different tracking error condition, based not
given path, i.e., to reduce the off-tracking distance of the vehicle g . .
from the path. In the proposed setting, the stabilization problem on the erro_r distance of one_smgle p_0|nt but on the sum of
for paths of constant curvature is locally solvable by a simple the error distances of the middle points of all the axles of
linear feedback law. In order to quantify how much cumbersome the vehicle. We call this theff-tracking distance For the
a vehicle is along a given path, we provide two different estimates go-calledgeneral n-trailer, in order to keep track of, + 1
of the off-tracking bound, i.e., of the minimal clearance that has distances, we use + 1 moving frames, also called Frenet

to be left around the path in order for the vehicle to pass through f 181 Such lateral dist tto b bl
in case of perfect tracking. Experimental results on a miniature rames [18]. Such lateral distances are meant to be measurable

multibody vehicle are reported. quantities (see, for example, the case of the underground
Index Terms—Feedback linearization, multibody wheeled mining truck [10] where wall detecting sensors are available).
vehicle, off-tracking distance, path following. In other applications, multiple edge-detection sensors, like

cameras, can be available. The use of multiple sensors for
the lateral distance is documented for example in [15] for
different purposes.

HE MAIN difference between the trajectory tracking and The off-axle hooking of a generattrailer seems to spoil the
T path following problems for wheeled vehicles is in the idenice properties of the standardtrailer like flatness [12] and
of tracking error that they induce, see [9, Ch. 8] or [8] for &hained form [21], making also the problem of stabilizing to a
survey. In the trajectory tracking, a reference value of the entpath more complex, as full state feedback linearization cannot
state of the system is given [16], [22], while in the path followingpe achieved. Stabilization problems for genetatailers are
problem only a curve in the plane is provided as reference itidied for example in [6] and [17]. In particular, in [6] a vir-
not a function of time. This implies that there is no concern dmal reference vehicle is used in which the “ghost” vehicle is
the longitudinal dynamics, i.e., on how fast the path is coverdtie corresponding-trailer without kingpin hitching, for which
but only on the lateral dynamics specified by an appropriate nexact feedback linearization holds.
tion of error distance For kinematic wheeled vehicles, several In our case, for paths of constant curvature, local asymptotic
different path tracking criteria have been proposed. A possildgability can be achieved by means of linear controllers based
approach is, for example, to study the problem as a variant@i Jacobian linearization. In particular, for forward motion the
the trajectory tracking problem, where a virtual vehicle is placegimplest control law is a first-order high gain output feedback.
on the path to follow. This leads to define the tracking error &@nly the proof of stability is hard because the simultaneous use
the distance between a point on the real vehicle and the comémany reference frames implies that there is no explicit ex-
sponding point on the virtual vehicle and to prove convergenpeession for the linearization. In fact, we need to resort to the
of the real robot to the virtual one. In [13], for example, thisnput-optput feedback linearization techniques used in [3]. It
distance is a look-ahead distance, obtained by means of anigpgmportant to emphasize that, unlike for example in [20], the
propriate sensor like a camera. Alternatively, in [11] a speciebmplexity of the controller remains the same regardless of the
parameterization based on velocity scaling is used. number of trailers.

However, all the research that we are aware of, deal withwe show that for the case of perfect tracking the distances that
the problem of path following for one single given pointye obtain for the midpoints of the axles, corresponding to the
of the vehicle: either the middle point of the front wheelsotion of the system on the output zeroing manifold, provide an
or the middle point of the last axle (like in the flatness ogff-tracking boundli.e., an estimate of what is tiheinimal width
chained form based methods) or some intermediate poigfithe roadthat has to be left on both sides of the planned path
like the center of gravity of the vehicle (see, e.g., [14]}n order to have the vehicle passing through the obstacles (see
For multiaxis vehicles, a number of situations in which ong] for a similar pr0b|em formu|ation)_ This Oﬁ-tracking bound
single guidepoint is not enough were presented in [1] and [4ased on the zero dynamics is compared with a simpler one

corresponding to the steady-state off-tracking of the maximum
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Fig. 1. Generah-trailer and the Frenet frames.

We would like to stress the fact that the whole analydisdal is that it naturally decouples the lateral dynamics from the
and to point out that, due to the singularities of the Frenet frarfengitudinal one, providing a measure of the error from the
representation, there is no way to formally prove a well-behavedth in terms of the (signed) distaneg a disadvantage is
transient even for admissible (wrong) initial conditions that atbat the parameterization used is intrinsically not global for

too close to the limits of the region of attraction. paths of nonnull curvature. In the Frenet frame, the point
P; is represented by; and by the relative orientation angle
Il. KINEMATIC MODEL FOR THE GENERAL N-TRAILER éi. In our case, we considet + 1 Frenet frames moving
AND FRENET FRAMES on v and anchored af’;. The tracking criterion proposed
Notation, modeling assumptions and equations are the sapgsists in taking thesum of the signed distances
as [3] and are briefly recapitulated here. The legenda for the n
symbols used is (see also Fig. 1): y= Z 2 — 0. (1)
n Number of trailers. =0
m Number of off-hitching {» < n). Of the two inputs of the kinematia-trailer, the steering
ni, ..., n, - Indexes of the axles having off-hitching { < speedw = 3, and the translational speed of one of tRg
Njt1s M < 0, My, # 0). for examplev,,, only w is considered for the path following
P; Midpoint of theith axis problem, thus obtaining a system with drift. Calling =
L; Distance betweet; and the hitching pointin [s. 2, 4, 3]7, the whole configuration state is represented by
frontof it (L; > 0). p=1[p,, Pn_1 ---»Po]T, €D, and the dynamic equations
M; Distance betweer; and the hitching point be- of the system are
hind it (M; > 0).
v; Longitudinal velocity ofP;. [, ] 0
0; Absolute orientation angle.
Bi i1 — 0. :
~y Reference path. .
Firy Curvature of the path. p=lg | t|0|w=F@)+0w )
T Orthogonal projection of’; on~ ) Gy
Sny; Arclength coordinate of theth curvilinear
frame. | Fo | LYo
6., Orientation angle of théth frame with respect
to the Cartesian axes together with the output equation
Zi Distance betweerr; andl’;.
bi bi = b y = [01000100 - - -0100010]p £ Hp. (3)

It was shown in [18] and [19] that a frame moving on the ) o ) . )
path can be useful to locally describe a point moving on tﬁl@edomamofdeflnltlorDandthe singularlocus are discussedin
plane, instead of a fixed frame. This moving frame, called tHgl- The drift termsFy. = F.(py., Brr1, £y (5+,), vn) (Where
Frenet frame, only requires to describe the distance betwedeh = [0k -+~ n]) have different expressions depending on
the path and the vehicle, whereas the length covered alomigether the axle has off-hitching or not. Calling £ (1+
the path can be neglected. An advantage of the Frenet frapié, /L) tan Oy tan Br11), they can be summarized
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~ ~ Li+M;
as b=t B [ w0 @

~7:n_,-+i = vnj+i

L;+M,; ~
- cos énj—l-‘i - Zi1 =2 + /0 sin GE(l)dl (10)
11—k, (3% _+i) Zn i
o ’ wheredl = v;dt with v; acquiring the meaning of the “velocity”
sin b, i with which the pointE moves along the body of the vehicle. If
My i ~ the path to follow is a straight line, for example thexis on the
ban B4 — Ly sit tan Bt cos O ik (s%j 14) Cartesian coordinatés., = z), then the Frenet frames reduces

I . ‘ to Cartesian frames. Equations (8)—(10) then trivialize to
nitiCn;ti=1 1_K’Y (S’szj+i) Znti

tan By tanfn g My tan By Sv,_, =8, + Lj cosb;
L Lnj-l-‘i—l COS /an-l-‘i LnJ—',-‘i LnJ—H Ln_j—l-‘i—l J
(4) e =0
Zi—1 =2; + L;sinb;
JjE {0, 1, ..., m},L S {1, e, TL]'+1—TL]'},TLO =0,nmt1 =
n, where and the extra variables can be eliminated in a straightforward
manner. In general, when, varies, the constraints are not any-
Un . . . .
Vn+i = —m - (5) more integrable, but also with, = const # 0 their explicit
II e, II (cospr) expression is very difficult to calculate.
k=j+1 k=n;+it+1
) Ill. FOLLOWING A PATH OF CONSTANT CURVATURE
je{0,1,...,m},ie€{l,2..., nj41 — n;}. For the points

P, and P, the equations are function also of the steering input " this section, we will focus on paths of constant curvature
w. Assumingn; > 1, we get Ky = const # 0. In this case, from (4), the variables, can

be dropped from the model and the steady state corresponds to
; have the angleg; = const Vi € {1, 2, ..., n} and such that
y = 0. Also thef; tend to a constant value (the origin): in fact, at
steady state, the poinf3 rotate around circles concentric with
the pathy. Linearizing (2), in a neighborhood of the origin the
derivative of the distanceg, can be thought of as

cos
1- Ky (S’Yl ) 21

sin 01

Fi=w . (6)

cos By ki (54,)
1- ’{7(5% )Zl . .
0 Z, = U; sin 61’ ~ v,ﬂi.

tan ﬂl _
L,

- o O O

11)

This fact allows us to locally identify a partial state feedback
based on both; and#f; with a dynamic controller based only
on the distances;.

In Py, there is no equation fa# (i.e.,p = [s+, 2o fo]”)

COSH~
ﬁ 0 Since the constraints (8)—(10) cannot be easily handled, not
7570/ <0 even withx., = const, we will simply drop them and study
Fo =0 sin 6o Go= |0 stability on the augmented configuration space. If stability is
sinffi  cosfyriy (s4,) 1 found_o_n this bigger manifqld, _then stability will also hold in
-1 the original submanifold satisfying the constraints.
Ly 1 Ky (s’Yo> 20

Again,v; andwvg are calculated using (5).
The number of states is thefn + 1) — 1 while the number of the forward direction than in the other one. Here only the firstis

independent variables in thetrailer problem is» + 3. There-

()

We need to distinguish between forward and backward mo-
tion. Notoriously, the path following problem is much easier in

analyzed; for the second case we refer to [5]. Locally, the sign

fore, we must impose constraints on the state space expressihg, univocally identifies the direction of motion.

the redundancy introduced by the use.af1 frames. Except for

the trivial cases, these constraints cannot be written in a purdly Forward Motion

algebraic form, since they depend on line integralsZIfs a
generic point of the body segmefi®;, P, ;] andd! is the in-

crement along the body, they can be written as

L;+M;
Syic1 = Sy +/
0

cosAg()dl
T=#, (52, () 700

(8)

If we exclude the subsysted = w which is only criti-
cally stable, for the forward motions the rest of the system is
open-loop asymptotically stable. In this case, a dynamic output
feedback is enough to achieve local asymptotic stability. Since
the system has relative degree equal to 2 (see Section 1V), the
feedback has to include a derivative term of the output.
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Calling g the3(n + 1) — 1 state vector obtained fromne- F. = (0F/9q)|q=q, allows only tonumerically verifythat the
glectings.,, we can rewrite the system (2) and (3) as reduced system (12) and (13) is Hurwitz stabilizable around the
following equilibrium point:
q=F(q)+Guw (12)

~ ~ - T
y = Hag. (13) q. = [Zn On. Bn. -+ 21, 01, Pr. 206906} (18)

Proposition 1: Whenw,, > 0, there exist constant gaikg <  Where

0 andk, < 0 such that the dynamic output feedback Lok M 1
0i., = arctan (%) + arctan (#) (29)
w = kly + ]i,z’y (14) KyZi, R~yZi—1,
Zi, = 7‘7 — T
locally asymptotically stabilizes the system (12) and (13) to &, —.
path of constant curvature, # 0, with ., such that the alge- ’

braic equation If v;, are the velocities of the poinfg atgq,, the matrix

n n-1 w1 g _[L 0 01 0 0100
2 2 _ 2\ =
Tk D\ |Th D (L = M) = | (15) 2710 v, 000 vy, O - 0 w, O
i=0 j=1

) ) can be used to transform the control law (14) into the (locally
admits a solution for some, > 0. - equivalent) partial state feedback = [k; k;]Hoq by using
The most straightforward way to prove local stability is NOre11) and to numerically compute the valueskofandk; such
mally through the Lyapunov indirect method. At the equilibgyat fork; < k¥ < 0andks < kj < 0 the matrixF. +
rium, each of the point®; follows a circle concentric with the Glk1 ko] Hs is Hurwitz. In Section IV it will be shown that such

circular pathry. The radiusr; of the corresponding circle de- 5 oytput feedback law admits the interpretation of high gain
pends ork., and on the configuration of the vehicle. We ha"%utput feedback.

the following recursive relation between the radiiandr;;1:
r; = \/7"1‘2+1 + Lzerl — M? or, in terms of the radius of the lastB. Comparison With the Standard Path Following Technique

trailer: The system (2) and (3) is a single input—single output (SISO)
— system from steering input to tracking errorMfy = 0, its rel-

= 9 12— M2 16) ative degree is well-defined and equal to two for any number

" "t ]2::1( t+l ;) (16) of off-axle connections. If instead we take as guidepoint the

midpoint of the rear axle of the vehicle and as corresponding
If , = 1/|x,] is the radius of the path, the steady-state condi-acking error

tion
n n y = Zn - 0 (20)
Ye= 2, =p (ry—r)=0 (17) like in [20], the relative degree of the systemuis— m + 1,
i=0 =0 which says that the input-state feedback linearizability is lost,

implies thatr,, can be found by solving the algebraic relatiofflue to the kingpin hitching. This implies that the nice properties

(15). For the common cage, > M;, the midpoint of the last Of flatness and chained form are also lost for the system. The
trailer P, is the one that “cuts” the curve the most. Therefordlifferent relative degree reflects a difference in the structure of
a well-defined equilibrium fog exists only ifr, > 0.r, = 0 the simplest possible controller needed to stabilize the system.
is the extreme situation of the-trailer rotating in circles with In fact, for (20) a dynamic output feedback of order m + 1

P, standing still. Although the existence and uniqueness of tiferequired

equilibrium point is guaranteed under the above conditions, it ne—mt1
is an elementary algebraic fact that in an equation like (15) the W= Z kiy(i). (21)
square roots cannot be eliminatedif> 3. The consequence is o

that one has to resort to a numerical solution in order to find the
value ofr,,. From (16), the same type of compatibility reasoning
asr, > 0implies that the arguments of all thesquare roots
have to be positive. Due to the lack of analytic solution for (15), The material of this Section overlaps with [3], Section Ill. To

it is not possible to obtain a formal proof of the claim made imput-output feedback linearize the system itis enough to derive
the proposition at this stage by using the Jacobian linearizatitime output (3) twice and cancel the corresponding dynamics by
as an explicit expression of the state matrix (and, therefore,mgans of a change of input. Assug = M; = 0 and callp

its determinant) is lacking. A formal proof of Proposition 1 willthe state obtained fromexcludings; andf,.

be obtained in Section IV after analyzing the zero dynamics The zero dynamics is obtained confining the dynamics of the
associated with the tracking error (1). The Jacobian linearizatisypstem to the Output-Zeroing Manifol* = {p € D s.t. y =

IV. INPUT-OUTPUT FEEDBACK LINEARIZATION



602 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 11, NO. 4, JULY 2003

y = 4 = 0} and it is obtained, for example, eliminating theTherefore, we can build an “envelope” around the path by taking

variablesz, andf, by means of the maximum and minimum of the for eachs.. The explicit
analytic expression of the dynamics of theon Z* is quite in-
n volved also for the low dimensional cases. However, a numerical
zo =— Z Z (22) simulation showing the off-tracking envelopes is quite easy to
1 produce. Assume we can model = . (s.,) as the output of
an exogenous dynamical system by taking as independent
R m Mi1—n; v sinf. L variable
Ay = arcsin —Z Z — L n;“ .
= b k:1;1+1 e k:nH—i-l—l cos B I@fyi = Z& =7 (K+y,) 1=0,1,...n. (26)
8“/1'
(23)
The curvature has + 1 entries in the system equations,
Any output feedback of the form all described by the same differential equation (26) but
with different initial conditions. The complete exogenous
_ " system in the time independent scale i§ = TI'(x
u=hytky (24) where k, = [k, ...k, k)T The rﬁatrix F(~)( ﬁ

. . . " I(ky) = diag[y(k,,) -+ (k)] and the indepen-
with ky <0,k < Ois alocally asymptotically stabilizer for the gent variable iss,. The entire system (2) and (3) can
resulting chain of integrators obtained applying the prefeedbagk transformed into the time-independent scale by taking
of [3, eq. (8)]. _ y _ the projection of the (known) velocityw, on the path:

Now the local asymptotic stability of the zero dynamics Cap. — 5, = v,cos én/(l — k(84)2n). The system can be
be proven for a path of constant curvature. _ rescaled accordingly in terms of the increment in the new

Proposition 1: For forward motion, the zero dynamics of th@ndependent variablels, = v, dt. The maximum of the

n-trailer system (2) and (3) is locally exponentially stable along_tracking envelope is calculated by the following problem:
paths of constant curvature.

See the Appendix for a proof alternative to that appearing in
3]. Zmax, = max {|z|i=0,1,...,n} (27)

With the result of Proposition 2, we can now straightfor-

wardly obtain the proof of Proposition 1. , Q(E)ngﬂg

Proof of Proposition 1: The zero dynamics of the original 8-t p=r (2’ K“V) B LoLrHp
nonlinear system being locally exponentially minimum phase , -
together with the well-defined relative degree- 2 is a suffi- iy =T (ky)

cient condition for the existence of a high-gain dynamic output

feedback that locally asymptotically stabilizes the systeRghere the underlined symbols replace the corresponding sym-
Hence, also for the linearized system there exists < 0 pols of the system (2) and (3) in the time-independent scale.
andk; < 0 such that fork; < ki andk, < k3 the matrix Solving this optimization problem can be computationally

Fe+ Glk1 ko]Ho is Hurwitz. B expensive. We suggest here a numerically simpler procedure,
The property vanishes for backward motion, because the zgigsed on seeking the maximum of curvatkre, computing
dynamics is not anymore locally minimum phase. the corresponding equilibrium point as in (17) and taking the
maximum (in absolute value) of the corresponding lateral
V. ZERODYNAMICS AND OFFTRACKING BOUNDS distance]z;|. It is assumed that among thg such maximum

We would like to have a way to calculate the minimal widttS achieved in one of the two extremities of thetrailer:
of aroad, i.e., how much clearance has to be left around a givaa*1|2n| [20[}. Consider, for examplejz,| > [z]. The
path in order to make sure that the robot can pass through the g@2stant value that gives an upper bound to the off-tracking
stacles, at least in the very simplificative case of perfect outgeRVeloPes is
tracking and of no error for the initial conditions éff. On Z*, 1—r o
n of the dynamic equations of the zero dynamics are described Zmax, = ———mex_Tmax (28)
by the evolution of the orthogonal distancgsi = 1, ..., n. Fmax
The missing distance, can be recovered from (22). We take, hare
the maximum ofz; as measure of off-tracking.

The integral curves o™ that we obtain are only function of
the curvatures, and of the geometry of the vehicle. The valu
of thez; ats, is then only function of the curvature, between
the curvilinear abscissa, ands.,,:

Jmax = MaX, (o, 5,] K(5y) andr,,  is obtained
solving the algebraic equation (15). From above, the bound
Zmax, IS reached if., stays atx,,_ for at least an interval of
‘?ength[sm./ s+,.] wheres,, ands,, are the curvilinear ab-
scissae at the equilibrium corresponding to seme [0, S, ],
otherwise the bound becomes conservative. For a path of
constant curvature, the two off-tracking bouneds.,, and
2i(8y) = 2i [y (84), Fiy,, (89)] = 2i (Ky[555, 54,]) . (25)  2Zmax, coincide.
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and 4 is the high gain output feedback (14). Having used instead
the tracking criterion (20), the controller (21) would have kept
the whole vehicle outside the reference path in Fig. 3.

APPENDIX
PROOF OFPROPOSITIONZ2

Just like is Section IlI-A, also the zero dynamics lacks an an-
alytically computable Jacobian linearization. However, we can
use the physical insightin the process to draw conclusions about
its stability. Consider the system obtained by choosing 0 in
(2): if the initial condition for3; is # 0 andwv,, > 0, then this
corresponds iD to then-trailer moving forward with constant
steering angle sincé, = 0. Regardless of the initial condition
in D, the systenp = F(p) tends to move along circular trajec-
tories whose radius is uniquely decided by the initial value of
(1. Restrict to circles that are concentric with the reference tra-
jectory~; if not, translatey opportunely. Furthermore, since the
path following problem is concerned with stabilization along
a path and not around a point, the rate of convergence to the
equilibrium is exponential (see [9] and [20]). In fact, assuming
the contrary means saying that the linearization (which, again,

Fig. 2. Multibody vehicle used in the experiments.

2001

g w0 cannot be computed explicitly) is only stable but not asymptoti-
L cally stable. Then different initial conditions in states other than
(1 would correspond to different equilibrium points, which is
800 against the uniqueness of the solution of an equation similar to
- 17)
1000 ‘ . ) X n "
ol Y = Zz:; zi, = ; (ry — 1) = const

2200 2000 1800 1600 -146_0 q200 1000 800 600 400 . . . . . .
xaxis (mm) valid for circular equilibrium trajectories concentric 40 Re-

placingp = F(p) with the zero dynamics of the system means
considering the input-output linearizing nonlinear state feed-
back in place ofv = 0 and pairing the closed loop system
p = F(p) — G (L%Hp/LgLxrHp) with the constrainty =

The experimental platform shown in Fig. 2 is equipped with = 0. Sincew is entering only in the differential equations for
optical encoders on both wheels of the second and fourth agleand 3, we need to check the asymptotic character of these
(i.e., on P and P3), which allow for an incremental measuretyg only. If we can prove this, then the modified dynamicgin
ments of the distances andz3, and potentiometers to measurgyndg, due to the feedback can be thought of as a perturbation on
the relative orientation angles, > and ;. The signals were the n-subsystem, not altering its exponentially convergent char-
read at a frequency of 2 kHz. This frequency and the 500 pulgser.
shaft ensured a maximum speed of about 0.2 m/s which was SUfConcerning%, it could be concluded directly from (23) and by
ficient for our application. Due to the lack of odometry informargoking at the expression (18) for the equilibrium point: locally
tion on F, and P, we replace the tracking criterion (1) with theg, ~ ( while 3; andz; lie in neighborhoods of nonzero values.
simpler oney = 21 + z3. None of the consideration concerningrpys, a¥; — 0,i = 1, ..., n, alsof, must converge to zero
the off-tracking is essentially modified by such change. withthe samerate. Concernifig itsdifferential equationig; =

The vehicle of Fig. 2 has a very limited steering angie| < —LQpr/LgL;Hp. The denominatof.g LHp = cosfy +
25°, which limits the curvature of the paths that can be followeg,, B, cos B is locally well-defined and it is positive; the numer-

with zero steady state tracking err_or|_toy| < 0.0022 mm—l_ ator, from the expression ¢fin [3, p. 1553], is
(i.e., 7, > 450 mm). Also for admissible paths, the transient

is very often influenced by the saturationf. This is clearly < n )

Fig. 3. Multibody vehicle of Fig. 2 following an arc of circle.

VI. EXPERIMENTAL SETUP

visible in the experiment shown in Figs. 3 and 4, where the stB3 Hp = Ly ( Y v;sinf;

bilization to an arc of circle is reported. The radius of the ref- i=1

erence arc of circle is approximately 500 mm i.e., very close to ) ~

the limit for which an admissible equilibrium exists. The initial 02 cos sinff1 cosfokiy(S+,)
off-set is recovered very slowly because of the saturatigh in Ly 1 — Ky (84)20

In this case the off-tracking value is easily computed from the

steady-state values of andzs. The controller used in Figs. 3 wherev; are given by (5). Expanding and isolating the terms
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Fig. 4. Lateral distances and relative angles for the maneuver of Fig. 3. (a) Tracking €wp) and lateral distances andz; (bottom). (b) Relative angles
B1, B2, and ;.

containingf : The L (v;) have a “triangular” structure
n ~ ~ ~
ZHp=Y" (L]:(Ui) sin f; + v; cos aiei) n C m ~
=2 Z L]:(vi) sin 91' = Z L}'(Unj+i) sin 0”j+i
+ L}-(vl)sinél =t J=0 =t
~ n +1—TL n
~ [tanf;  cosf ki (Ss,) LA ! Oy i - -
2 Y \°7 j .
+ vy cos by - = ———— 0 | sinf, 4,
Ly 1 — Ky (54,) 21 jzz:o P l=njz--;t+1 p nj+i

< [sinf cosBoky (5,)
+ vE cosh — 1k - (29
0 ‘L 1= £y (54,) 20 (29) where




IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 11, NO. 4, JULY 2003

o if [ = n; for somek > j (axle preceding the kingpin

hitching) and > n; + ¢

M
tan 3 — T+ tan 44

1+ ]\L—[l’ tan (3; tan [314_1

avnj +1 _
25

nj+1

o if [ = ni, + 1 for somek > j (axle following the kingpin
hitching) andl > n; + 4

M, _
a’l}nj_;” ta‘nﬂl - Lll_ll taﬂﬂl_l
: = VUp 4
(r),Hl T 1+ ]}‘[ll:ll tan ﬂl tan ﬂl,1

eifl#£n;andl #n; +1V;5j=0,...,m

8’”71,]‘ +1
a5

= Vp,+i tan f.

. _ [
ThusLx(v;) introduce terms whose denominators are all lo-

(1
(2]
(3]

[4]

(3]

(6]

(71

(8]

[9]

cally nonull. Furthermore, all these terms appear multiplied by

somesin ;. Therefore, the zero output condition computed in
pe, L%Hp = 0, (corresponding here to the equilibrium point

[11]

for the steering anglg; ) gives all zero terms in (29) except the [12]

last two. Concernindy, if L2-Hp = 0 then from (7)

cos Bokiy (5+9)

1- ky (S’Yo) 20

§OZO<:> Slnﬂl —

=0
Ly

and, thereforeg; . is obtained from the only term remaining

tan ﬂl
Ly

Ky

=0
1— kK21,

which is exactly the valuerctan(L s~ /(1—k- 21, )) computed

(13]

(14]

(18]

(16]

(17]

in (29). To see that such equilibrium is a stable attractor, CONpg)

sider the equation

L3 Hp

= " LgLrHp

p=p., fo=00, =0
i.e., when all is at the equilibrium exceft. In this case

Ky

_ tan,[ﬁ)

Z . _ .2
ﬂ1|P=Pe,90=906=0 =u ( L

1 — K21,

which is asymptotically stable. [ |

(19]

(20]

[21]

[22]
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