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A formula for the commutator of tensor product matrices is used to shows that, for qubits,
compatibility of quantum multiparty observables almost never implies local compatibility at each
site and to predict when this happens/does not happen in a concise manner. In particular, it is
shown that two “fully nontrivial” n-qubit observables are compatible locally and globally if and
only if they are equal up to sign. In addition, the formula gives insight into the construction of
new paradoxes of the type of the Kochen-Specker Theorem, which can then be easily rephrased
into proposals for new no hidden variable experiments of the type of the “Bell Theorem without
inequalities”.
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I. INTRODUCTION

In the literature that deals with Bell theorem and its
consequences for quantum mechanics of multiparty sys-
tems, see [1–8] for an overview, a common aspect of the
tests aiming at proving/disproving the notion of local re-
alism is the use of two or more measurements along suit-
ably chosen observables. This unavoidably evokes the
notion of compatibility of observables, which is one of the
cornerstones of quantum mechanics and which affirms
that simultaneous measurements are possible for observ-
ables that commute, since they share common eigen-
states. When we have a multiparty quantum state, such
a compatibility condition is naturally referred to the ob-
servables of the compound state, at least as long as we
regard the multiparty system as one wavefunction. It is
known that global compatibility (intended as compatibil-
ity among the observables of the compound system) not
always corresponds to compatibility of the observables of
each of the (possibly far apart) parties and that this lack
of local compatibility in its turn may induce inconsisten-
cies and violations of local hidden variable models, but
there does not seem to be much awareness of how the two
compatibility conditions are related. Scope of this work is
to make the connection explicit in the case of qubits and
to start a systematic investigation of the consequences
of neglected local incompatibilities. In order to do that,
we use a formula for the commutator of multiparty ob-
servables in terms of commutator/anticommutators op-
erations at each site provided in [9] and reproduced in
the Appendix.

The “qualitative” paradoxes obtainable by means of
the “Kochen-Specker (KS) Theorem” ([4, 5]) which are
known to be due to the “counterfactual logic” follow-
ing from the simultaneous application of multiple glob-
ally compatible observables rather than to the entangle-
ment properties of a state [4–6], can then be reformulated
in terms of hidden noncommuting local observables and
studied by looking at the corresponding product of ob-
servables at each site. We will see how it is possible to
obtain an entire class of such KS no-hidden variable re-

sults for n qubits in the case of n odd, and how, in their
turn, they induce a class of paradoxes of the type of the
“Bell Theorem without inequalities” on suitably chosen
entangled states, of which the GHZ case [3] is just one
example.

A natural way to avoid inconsistencies of the KS type
is to require that globally commuting observables also
commute at each site. Just like for a single qubit two
nontrivial observables commute if and only if they are
dichotomic, for n qubits it will be shown that, provided
we restrict to fully nontrivial observables (i.e., that do
not act trivially on any of the parties), local and global
compatibility hold simultaneously only for observables
that are identical up to the sign (i.e., dichotomic). If in-
stead we require only global compatibility, then it turns
out that there is always an even number of hidden local
nonzero commutations. For a single qubit, our observ-
ables are “complementary” in the sense of [10], namely
when one measurement is well-defined the other will be
maximally uncertain. For n qubits, our result translates
then into the following: two compatible fully nontrivial
observables are always corresponding locally to a pair
of complementary measurements in an even number of
parties, and this number is zero only when the two mul-
tiparty observables are dichotomic.

II. 2-QUBIT CASE

Consider the complete set of orthogonal observables
obtained by taking tensor products of the Pauli matrices
σj , j ∈ {0, . . . , 3}. For an n-qubit state, an observable
will be denoted as σj1...jn

= σj1⊗. . .⊗σjn
[12]. Given the

1-qubit observables σj and σk, j, k ∈ {0, . . . , 3}, for their
commutator and anticommutator we have, respectively,

[σj , σk] 6= 0 for (j, k) = (1, 2), (1, 3), (2, 3) (1)
and permutations,
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{σj , σk} 6= 0 for (j, k) = (0, 1), (0, 2), (0, 3), (2)
(0, 0), (1, 1), (2, 2), (3, 3)

and permutations,

and 0 otherwise in both (1) and (2). Looking at (1)-(2)
it is easy to realize that for any pair of observables σj ,
σk, if one excludes the trivial cases (i.e., when j and/or
k are 0) the only possibility for σj and σk to commute is
that σj = ±σk, i.e., the observables are identical up to
the sign, as is well-known.

Proposition 1 There is no pair (j, k) such that both
[σj , σk] 6= 0 and {σj , σk} 6= 0, or such that both
[σj , σk] = 0 and {σj , σk} = 0 [13].

Proof. Given a pair of indexes (j, k), (1)-(2) exhaust
all their possible combinations. Hence one and only one
between [σj , σk] and {σj , σk} must be nonzero. �

There is a simple way to check whether two quantum
observables commute: since both are Hermitian matrices,
the answer is uniquely given by their matrix commuta-
tor. If the two matrices are tensor product of matrices
of compatible dimensions, then the matrix commutator
can be “destructured” into sums of tensor products of
two basic building blocks: commutators and anticom-
mutators of one-party matrices, see the Appendix. For
2-qubit observables σjk = σj ⊗ σk, this becomes:

[σjk, σlm] =
1
2

([σj , σl]⊗ {σk, σm}+ {σj , σl} ⊗ [σk, σm]) .

(3)

Proposition 2 Exactly 2 of the 4 commuta-
tor/anticommutator operations of (3) must be 6= 0.
Furthermore, at most one of the terms in (3) can be
nonzero.

Proof. The proof of the first part follows straightfor-
wardly from Proposition 1. Concerning the second part,
assume the first term is nonzero. Then the pair (j, l)
must be one of (1) and (k,m) one of (2). Therefore,
from Proposition 1, {σj , σl} = 0 and [σk, σm] = 0. �

There are 2 and only 2 possible combinations leading
to a commutation in (3).

Proposition 3 [σjk, σlm] = 0 if and only if one of the
two possibilities below is verified:

2.i [σj , σl] = [σk, σm] = 0,

2.ii {σj , σl} = {σk, σm} = 0.

Proof. Follows from Propositions 1 and 2. In order for
σjk and σlm to commute, one operation on each sum-
mand of (3) must be null and one nonnull. �

Proposition 2 obviously implies that the globally com-
muting observables of Proposition 3 are such that

2.i {σj , σl} 6= 0, {σk, σm} 6= 0,

2.ii [σj , σl] 6= 0, [σk, σm] 6= 0,

respectively [14]. Notice that whenever [σjk, σlm] = 0
the anticommutator

{σjk, σlm} =
1
2

([σj , σl]⊗ [σk, σm] + {σj , σl} ⊗ {σk, σm})

is nonzero and viceversa. Hence one always has

σjkσlm =
1
2

([σjk, σlm] + {σjk, σlm}) 6= 0. (4)

While in case 2.ii a couple of observables that commute
at global level is actually hiding local noncommutativity
on both sites, in case 2.i local and global compatibility
coexist. Excluding the 1-qubit operators (σj0 and σ0k),
it is easily seen that 2.i requires that two observables
σjk and σlm have j = l and k = m, i.e., σjk = ±σlm

dichotomic observables, just like for the single qubit case.
The hidden noncompatibilities of Case 2.ii are indeed

the source of algebraic contradictions leading to viola-
tions of local hidden variable models for instance in the
form given in Mermin [4] based on 3 globally commut-
ing observables (see also Ch. 7.1 of [5]) and not involving
statistical correlations of ensembles. Consider the last
row and column of the example in Fig. 3 in [4] involving
the following two triples of mutually globally commuting
observables: σ12, σ21, σ33 and σ11, σ22, σ33. All pair-
wise commutation relations are of the type 2.ii. Look-
ing at what happens to the single slot commutators of
each (spatially separated) party, for the first qubit there
is no difference: they are [σ1, σ2] [σ1, σ3] and [σ2, σ3]
for both triples. Looking at the second slot instead we
have [σ1, σ3] and [σ2, σ3] in common but the third one
is [σ2, σ1] for the first triple and [σ1, σ2] for the second
one. Hence the sign difference leading to the violation of
the local hidden variables model. More formally, what
we are using is the following formula valid for any triple
of mutually globally commuting 2-qubit observables:

σjkσlmσrs =
1
4
{{σjk, σlm}, σrs}

=
1
16

([[σj , σl], σr]⊗ [[σk, σm], σs]

+{[σj , σl], σr} ⊗ {[σk, σm], σs}
+[{σj , σl}, σr]⊗ [{σk, σm}, σs]
+{{σj , σl}, σr} ⊗ {{σk, σm}, σs}) .

(5)

Owing to the non-disturbing nature of such measure-
ments, nothing forbids to think of the sequence as ap-
plied simultaneously (yielding a product of observables
as in (5)) and of the corresponding joint probability be-
ing observed. In (5), since both triples of commuting
observables belong (pairwise) to case 2.ii above, they
must obey σj 6= σl 6= σr and σk 6= σm 6= σs. From
the basic commutation relations, [σj , σl] = ±iσr and
[σk, σm] = ±iσs. Therefore on each site only the sec-
ond term of (5) is nonzero and σjkσlmσrs = ± 1

4σ0 ⊗ σ0.
Hence σjkσlmσrs|ψ〉 = ± 1

4σ00|ψ〉 = ± 1
4 |ψ〉 for any |ψ〉.
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The sign varies according to the choice of indexes and
for the two triples mentioned above one gets two oppo-
site signs regardless of the value of the wavefunction:

σ12σ21σ33 = −σ11σ22σ33. (6)

The inconsistency of (6) can be rephrased as follows. As-
suming local realism holds, each triple of measurements
locally consists of a cascade of measurements along σ1, σ2

and σ3, in different orders. Globally, the compatibility of
the 3 observables guarantees that the order is irrelevant.
However, with the two triples above for the second party
we have that the two ordering σ2σ1σ3 and σ1σ2σ3 yield
opposite signs (as expected from a local point of view be-
cause of local noncompatibility and “complementarity”).
Hence local and global points of view are in conflict. No-
tice from (6) how the paradox holds also for two pairs
of commuting observables. If we drop σ33 in (6), how-
ever, the inconsistency arguments become a function of
|ψ〉 (verified almost always but not always) because the
product of two observables is not a constant as in (6).
Notice further the lack of joint (global) compatibility be-
tween the two sets of observables.

III. 3-QUBIT CASE

The extension to 3 qubits can be analyzed by similar
methods. For example, the commutator is (see (A3))

[σjkl, σmpq] =
1
4

([σj , σm]⊗ {σk, σp} ⊗ {σl, σq}

+{σj , σm} ⊗ [σk, σp]⊗ {σl, σq}
+{σj , σm} ⊗ {σk, σp} ⊗ [σl, σq]
+[σj , σm]⊗ [σk, σp]⊗ [σl, σq]) .

(7)

Since (see (A5))

{σjkl, σmpq} =
1
4

([σj , σm]⊗ [σk, σp]⊗ {σl, σq}

+[σj , σm]⊗ {σk, σp} ⊗ [σl, σq]
+{σj , σm} ⊗ [σk, σp]⊗ [σl, σq]
+{σj , σm} ⊗ {σk, σp} ⊗ {σl, σq}) ,

(8)

the product

σjklσmpq =
1
2

([σjkl, σmpq] + {σjkl, σmpq}) 6= 0 (9)

always. From (7) and (8), all 8 possible combinations of
commutators and anticommutators are present in a prod-
uct like (9). From Proposition 1, one and only one of the
8 summands is nonzero. Furthermore, up to a (pairwise)
permutation of the 3 indexes, there are 4 possible com-
binations for the commutators/anticommutators of (7):

3.i


{σj , σm} = 0
{σk, σp} = 0
{σl, σq} = 0

⇒


[σj , σm] 6= 0
[σk, σp] 6= 0
[σl, σq] 6= 0

3.ii


[σj , σm] = 0
{σk, σp} = 0
{σl, σq} = 0

⇒


{σj , σm} 6= 0
[σk, σp] 6= 0
[σl, σq] 6= 0

3.iii


[σj , σm] = 0
[σk, σp] = 0
{σl, σq} = 0

⇒


{σj , σm} 6= 0
{σk, σp} 6= 0
[σl, σq] 6= 0

3.iv


[σj , σm] = 0
[σk, σp] = 0
[σl, σq] = 0

⇒


{σj , σm} 6= 0
{σk, σp} 6= 0
{σl, σq} 6= 0.

Proposition 4 [σjkl, σmpq] = 0 if and only if we are in
the cases 3.ii and 3.iv.

In fact, 3.i implies that the fourth term of (7) is always
nonzero and 3.iii implies it is nonzero the third one. Of
the two combinations yielding global compatibility, only
3.ii hides local noncommuting observables. In this case
(7) contains:

• one 1-qubit hidden commutation in 2 of the 4 terms
(the second and the third);

• two 1-qubit hidden commutations in one of the 4
terms (the fourth).

Using the expression (9) for the product of observables,
it is easy to construct new paradoxes of the KS type in-
volving exclusively counterfactual arguments among ob-
servables. Consider the 5 mutually commuting 3-qubit
observables

σjjj , σjkk, σkjk, σkkj , σll0, j, k, l ∈ {1, 2, 3}, j 6= k 6= l.
(10)

Unlike the 2-qubit case discussed above, the correspond-
ing measurements are now, in principle, attainable by a
single experimental apparatus as the 5 observables have
a complete set of common eigenkets. When we compute
explicitly the following two triple products, we have a
dichotomy:

σll0σjjjσkkj = σ000 = −σll0σkjkσjkk. (11)

Looking at what happens at each (spatially separated)
party, (11) corresponds on the left hand side to measur-
ing σlσjσk at the first and second site and σ0σjσj at the
third one, and, on the right hand side, to σlσkσj , σlσjσk

and σ0σkσk respectively. For the third party everything
is commuting and σ0σjσj = σ0σkσk = σ0. The second
observer applies the same ordered sequence of operators,
only the first one has a difference in the two ordering.
From this follows that local realism is falsified because
globally the order is irrelevant by assumption, while lo-
cally it leads to the opposite signs in (11). Using (8),
the existence of the paradox is revealed by the odd dif-
ference of signs in the “hidden” local commutations for
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the following two multiplications:

σjjjσkkj =
1
2
[σj , σk]⊗ [σj , σk]⊗ {σj , σj} (12)

σkjkσjkk =
1
2
[σk, σj ]⊗ [σj , σk]⊗ {σk, σk}. (13)

While the KS theorem yields a logical, state independent
contradiction, it is possible to transform it into an in-
stance of the Bell Theorem without inequalities i.e., in
a paradox expressible in terms of a suitably chosen en-
tangled state. The situation described above includes as
special case (considering only the first 4 observables of
(10) with j = 1 and k = 2) the GHZ example [3], deal-
ing with the state |ψ1〉 = 1√

2
(|000〉+ |111〉). Varying

the indexes j, k, l, one obtains a number of alternative no
hidden variable tests for different entangled states. For
example:

• j = 2, k = 1 (and l = 3):

|ψ2〉 =
1√
2

(|000〉 − i|111〉) ;

• j = 3, k = 1 (and l = 2):

|ψ3〉 =
1
2

(|000〉 − |011〉 − |101〉 − |110〉) ;

• j = 2, k = 3 (and l = 1):

|ψ4〉 =
1

2
√

2
(|000〉+ |011〉+ |101〉+ |110〉)

− i

2
√

2
(|001〉+ |010〉+ |100〉+ |111〉) .

It is straightforward to verify that all of these states have
bipartite entanglement between each pair of qubits. All
of the choices of j, k, and l lead to a potential experi-
mental test of local hidden variable violation, alternative
to the standard GHZ setting of [3]. Consider for exam-
ple |ψ3〉. It is straightforward to show that |ψ3〉 is an
eigenstate of the 4 detectors σ113, σ131, σ311, σ333 and
that

σ113|ψ3〉 = σ131|ψ3〉 = σ311|ψ3〉 = −|ψ3〉 (14)

while

σ333|ψ3〉 = |ψ3〉. (15)

This combination is not compatible with any assignment
of local elements of reality, just like in the GHZ case.

IV. n-QUBIT CASE

The considerations above extend to a generic number
n of qubits. An observable σj1...jn

will be denoted fully
nontrivial when jp 6= 0 ∀ p = 1, . . . , n. Of the various
cases of compatible fully nontrivial observables arising
for n qubits, only one will ensure local and global com-
patibility.

Theorem 1 Two fully nontrivial n-qubit observables are
locally and globally compatible if and only if they are equal
up to sign. If instead they are only globally compatible,
then they are always locally noncommuting in an even
number of sites.

Proof. Call σj1...jn and σk1...kn the two observables.
They are dichotomic, σj1...jn = ±σk1...kn , if and only if

[σjp , σkp ] = 0 (16)

∀ p = 1, . . . , n, which corresponds to σjp
= ±σkp

since
they are fully nontrivial. In the proof of the first part,
one direction is obvious, the other will be shown by in-
duction. From above, the claim is true for 2, 3 qubits.
Assume it is true for the two (n − 1)-party observables
σj1...jn−1 and σk1...kn−1 , i.e., (16) holds up to p = n − 1,
and [σj1...jn−1 , σk1...kn−1 ] = 0. Then it is enough to write
the commutator as (see also the proof of Proposition 1
of [9])

[σj1...jn , σk1...kn ] =
1
2
(
[σj1...jn−1 , σk1...kn−1 ]⊗ {σjn , σkn}

+ {σj1...jn−1 , σk1...kn−1} ⊗ [σjn
, σkn

]
)

(17)

which is zero if and only if [σjn
, σkn

] = 0 (from
σj1...jn−1σk1...kn−1 6= 0, the (n−1)-qubit anticommutator
must be nonzero). Together with the induction assump-
tion σj1...jn−1 = ±σk1...kn−1 , this yields the first claim.
Concerning the second one, also use induction, but on
the twofold assumption (true for n− 1 = 2, 3):

1. [σj1...jn−1 , σk1...kn−1 ] = 0 with an even number of
hidden nonzero commutations and [σjn

, σkn
] = 0;

2. {σj1...jn−1 , σk1...kn−1} = 0 with an odd number
of hidden nonzero commutations (for 3 qubits see
cases 3.i and 3.iii above) and {σjn

, σkn
} = 0.

In both cases the conclusion follows from (17). �

A straightforward consequence is the following.

Corollary 1 Compatible fully nontrivial observables
must differ for an even number of indexes.

From the proof of Theorem 1, it also follows that
σj1...jn

σk1...kn
6= 0 always and that one and only one of

the 2n terms in the product is nonzero. When σj1...jn
and

σk1...kn
are compatible, they admit simultaneous mea-

surements. Consider as before in correspondence of the
simultaneous measurements the product of observables,
rewritten in the form

(σj1σk1)⊗ . . .⊗ (σjn
σkn

). (18)

If j1 . . . jn 6= k1 . . . kn, then in an even number of sites
(18) corresponds to noncompatible, complementary ex-
periments.

As in the 3-qubit case, new paradoxes of the KS type
can be constructued using the product of observables
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(18). Consider the following set of n + 1 mutually glob-
ally commuting observables (pairwise differing by 2 or 4
indexes)

σj1...jn
, σj1...jn−2kn−1kn

, σj1...jn−3kn−2kn−1jn
, . . . ,

σk1k2j3...jn , σk1j2...jn−1kn

(19)

where kp 6= jp. The paradox is obtained by comparing
σj1...jn

with the product of the last n − 1 observables,
which can be rewritten as

(σj1 . . . σj1σk1σk1)⊗ (σj2 . . . σj2σk2σk2σj2)⊗ . . .

⊗ (σkn−1σkn−1σjn−1 . . . σjn−1)⊗ (σknσjn . . . σjnσkn).
(20)

Assume n odd. Since σkpσkp = σ0, then at the p-th site
the products yield σjp except for the last one, which gives
−σjn . Hence σj1...jn and (20) differ only by a sign and
we have a KS paradox as no hidden variable theory is
compatible with such an assignment. Clearly, in a pair
of products of globally commuting observables counter-
factual arguments occur whenever the difference between
the two sequences consists of an odd number of permuta-
tions of local observables in one site, not balanced by an-
other odd number of local permutations at any other site
[15]. Attaching a suitable entangled state, one gets new
instances of the Bell Theorem without inequalities. For
example, choosing j1 = . . . jn = 1 and k1 = . . . kn = 2,
the standard n-partite GHZ paradox is obtained for the
state |φ1〉 = 1√

2
(|0 . . . 0〉+ |1 . . . 1〉). Different choices of

indexes yield hidden variables tests for different entan-
gled states. A few simple examples, dealing with families
of Dicke states are:

• j1 = . . . jn = 3 and k1 = . . . kn = 1

|φ2〉 =
1

n− 1

∑
m=0,2,...,n−1

(−1)m/2P (|n−m,m〉)

• j1 = . . . jn = 3 and k1 = . . . kn = 1

|φ3〉 =
1

(n− 1)
√

2

( ∑
m=0,2,...,n−1

P (|n−m,m〉)

+(−1)(n−1)/2 i
∑

m=1,3,...,n

P (|n−m,m〉)

)

where |n − m,m〉 means n − m times spin down and
m times up and P (·) means sum over all possible per-
mutations of the n spins. More complicated states are
obtained when j1, . . . , jn (and/or k1, . . . , kn) are not all
equal.

Consider for example |φ2〉. It is just a matter of re-
cursive computation to show that |φ2〉 is an eigenstate of
the n+ 1 observables (19) and that

σ3...311|φ2〉 = σ3...3113|φ2〉 = . . . = σ13...31|φ2〉 = −|φ2〉

while σ3...3|φ2〉 = |φ2〉.

implying incompatibility with any assignment of local el-
ements of reality. The n + 1 observables of (19) differ
pairwise by 2 or 4 indexes. Other families of mutually
commuting observables differing for other even numbers
of indexes lead to similar conclusions (one such family
is used in [11] to obtain the so-called Mermin-Klyshko
inequality). The “parity” conditions of Theorem 1 and
Corollary 1, as well as the construction (20), seem to in-
dicate that for n even all paradoxes are actually involving
effectively only n− 1 parties.

Notice that starting with 3 qubits, it is possible to
have a wider variety of observables commuting locally
and globally (other than just dichotomic), provided that
one considers also 2-party “nonlocal” observables i.e., ob-
servables that violate the full nontriviality assumption.
In fact, (16) is satisfied also when jp or kp are 0. For ex-
ample, σ0kl, σj0l, σjk0 and σjkl are globally commuting
observables leaving no hidden complementarity behind,
as they are mutually of type 3.iv in the classification
above. Since local and global compatibility coexist, these
observables do not seem to bear any intrinsic contradic-
tion per se.

V. CONCLUSION

If for multiparticle systems one focuses as in this work
on what a global point of view of a multiple measure-
ment is neglecting in terms of multiple local measure-
ments, the result is rather disorienting: a local observer
only aware of his side of the measurement process may
be (almost always for qubits) induced to consider the
cascade of measurements as ill-posed because of the non-
commutativity of the reduced observables, while from the
global perspective everything was set up according to the
compatibility rules of quantum mechanics. Decomposing
the compatibility condition in terms of local commuta-
tors/anticommutators of each party makes the detection
of such incompatibilities straightforward.

APPENDIX A: COMMUTATORS AND
ANTICOMMUTATORS OF TENSOR PRODUCT

MATRICES

Given A1, . . . , An, B1, . . . , Bn ∈ Mm, their commuta-
tor is (see [9] for a proof)

[A1 ⊗ . . .⊗An, B1 ⊗ . . .⊗Bn] =

=
∑ 1

2n−1
((A1, B1)⊗ (A2, B2)⊗ . . .⊗ (An, Bn))

(A1)

where in each summand the bracket ( · , · ) correspond
k times, (k odd) to a commutator and n − k times to
an anticommutator. The sum is over all possible (nonre-
peated) combinations of [ · , · ] and { · , · }, and over all
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odd k ∈ [1, n]. For n = 2, 3 this corresponds to:

[A1 ⊗A2, B1 ⊗B2] =

=
1
2

([A1, B1]⊗ {A2, B2}+ {A1, B1} ⊗ [A2, B2]) ,

(A2)

[A1 ⊗A2 ⊗A3, B1 ⊗B2 ⊗B3] =

=
1
4

([A1, B1]⊗ {A2, B2} ⊗ {A3, B3}

+{A1, B1} ⊗ [A2, B2]⊗ {A3, B3}
+{A1, B1} ⊗ {A2, B2} ⊗ [A3, B3]
+[A1, B1]⊗ [A2, B2]⊗ [A3, B3]) ,

(A3)

If instead we take k even, the same formula (A1) gives the
anticommutator of A1, . . . , An, B1, . . . , Bn ∈ Mm. For

n = 2, 3 one has:

{A1 ⊗A2, B1 ⊗B2} =

=
1
2

([A1, B1]⊗ [A2, B2] + {A1, B1} ⊗ {A2, B2}) ,
(A4)

{A1 ⊗A2 ⊗A3, B1 ⊗B2 ⊗B3} =

=
1
4

([A1, B1]⊗ [A2, B2]⊗ {A3, B3}

+[A1, B1]⊗ {A2, B2} ⊗ [A3, B3]
+{A1, B1} ⊗ [A2, B2]⊗ [A3, B3]
+{A1, B1} ⊗ {A2, B2} ⊗ {A3, B3}) ,

(A5)
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