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Tensor of coherences parametrization of multiqubit density operators
for entanglement characterization
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SISSA-ISAS, International School for Advanced Studies, via Beirut 2-4, 34014 Trieste, Italy
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For multiqubit densities, the tensor of coherences~or Stokes tensor! is a real parametrization obtained by the
juxtaposition of the affine Bloch vectors of each qubit. While it maintains the tensorial structure of the
underlying space, it highlights the pattern of correlations, both classical and quantum, between the subsystems
and, due to the affine parametrization, it contains in its components all reduced densities of all orders. The main
purpose of our use of this formalism is to deal with entanglement. For example, the detection of bipartite
entanglement is straightforward, as it is the synthesis of densities having positive partial transposes between
desired qubits. In addition, finding explicit mixtures for families of separable states becomes a feasible issue
for few-qubit symmetric densities~we compute it for Werner states! and, more important, it provides some
insight into the possible origin of entanglement for such densities.

DOI: 10.1103/PhysRevA.69.012311 PACS number~s!: 03.67.Mn, 03.65.Ud
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I. INTRODUCTION

The main purpose of this work is to discuss a parame
zation of a multiqubit~pure or mixed! density operator and
to show its usefulness in dealing with classical and quan
correlations. The principle behind the parametrization is
same as the so-called vector of coherences of widesprea
in modeling N-level density operators@1–5#. It consists in
choosing a complete orthogonal set of Hermitian opera
and in considering the corresponding real vector of expe
tion values in place of the density matrix. Here we use
same idea, but respecting the tensorial structure of the
sity, hence working with a~real! tensor of coherences. Each
qubit is parametrized as an affine Bloch vector, and the
sor is just the juxtaposition of affine Bloch vectors. Mai
taining the tensorial structure has several advantages; fo
ample, it makes the pattern of the ‘‘total’’ correlatio
between subsystems totally straightforward to see. For
tal’’ correlation we mean both the classical and quant
ones. As a matter of fact, we will see that the correlat
between subsystems is encoded in the terms of the te
Crucial to the understanding of this point is the role of t
affine component and of how it enters into the compound
of the different qubits. In fact, as we use homogeneous
ordinates to deal with the affine term, the key simplificati
is that tracing over one of the qubits simply corresponds,
to a scale factor, to choosing the ‘‘0’’~i.e., affine! component
for the corresponding index. Hence, because of the af
parametrization, reduced densities are naturally represe
by means of the tensor of coherences parametrization an
tensor itself consists of the entire hierarchy of correlatio
Also the scale factor has a natural interpretation: it corre
the trace norm of the completely random state when pas
from a density to a reduced density. Further advantages
in the simplicity of the geometric picture for multipartit
systems and in the possibility of using multilinear algeb
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ideas in a more straightforward manner.
Obviously the parametrization we consider is not rea

new; it was treated in detail in@6#, used extensively, for
example, by Mahler and co-workers@7,8# ~where the basis
elements we use are referred to as cluster operators! or in
@9–11# ~where it is referred to as the Stokes tensor! and more
or less implicitly in many other papers, cf.@3,12# for related
material. For example in the NMR literature@13# it goes
under the name of product of operators basis. What is ne
its use in understanding multiparty entanglement, see@14–
17# for an overview of research in this field.

The simplest~to detect! type of entanglement is bipartit
entanglement, for which there exists a necessary and s
cient condition, the so-called positive partial transpose~PPT!
criterion of @18,19#. In the tensor of coherences parametriz
tion, the PPT criterion has a very simple formulation an
more important, it becomes completely trivial to constru
densities satisfying PPT between all pairs of subsyste
Hence one can focus on the class of entangled PPT dens
which are characterized by the more subtle bound entan
ment @20#. On the other hand, also the construction of s
tems having certain patterns of bipartite entanglement
satisfying the PPT criterion~NPT entanglement! is rather
simple.

If the total correlation, classical plus quantum, is direc
depicted in the tensor of coherences, the distinction betw
the two types of correlation remains, however, an elus
issue, although as we will see in the examples, the par
etrization allows one to suggest what is happening in
entangled state. Consider a one-parameter family of dens
ending in the maximally mixed state. Close to such an
treme the state is certainly separable@17#. Using the tensor of
coherences it is not too difficult to construct an explicit~one-
parameter! convex mixture of product states for it. In all th
examples of entangled families we have tested, the con
combination found is such that it induces cancellations
tween the corresponding mixtures of reduced densities
close enough to the complete mixing, these cancellations
harmful; far from it, it may happen that the one-parame
density is well-defined while some of the reduced densi
©2004 The American Physical Society11-1
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~which, again, being canceled do not explicitly appear unl
one wants to construct the mixture explicitly! are not any-
more well-defined densities in the sense that their trace n
is too big ~some of its eigenvalues become greater than!.
Hence one source of entanglement is that not well-defi
components give rise to a well-defined compound syst
The complication is obviously that due to the nonuniquen
of the mixture representing a given density, it is an ha
problem to exclude that any other convex combination w
suffer from the same ‘‘unfeasibility’’ problem. For low-ran
systems, the tensorial notation helps in finding such con
combinations. For example we could easily compute a m
ture for the Werner states valid in the whole separabi
interval.

The parametrization into vector~and tensor! of coher-
ences is natural only for qubits. For ak-level system, in fact,
the vector of coherences of the density operator is not fre
evolve on the corresponding~affine! ball in Rk221, see@3,4#
for hints on this point. Of course qubits are by far the m
popular systems in quantum information processing.

One may argue that the dimension of the state ten
grows as 22n with the numbern of qubits and hence tha
expanding densities explicitly into a complete basis becom
rapidly cumbersome. The exponential growth of the num
of degrees of freedom available concerns, however, all d
sities, regardless of the representation used. While this fa
immediately evident using our notation, it may go unnotic
using some standard parametrization. Of course in a prob
like detecting entanglement all degrees of freedom of
state may come into play; therefore, we find it convenien
have them all explicitly expressed.

In the next section the tensor of coherences is introdu
and correlations, both classical and quantum, are discu
in its terms. For the sake of notation simplicity, we consid
in some detail the geometry of the 2-qubit case. The ex
sion ton-qubit densities is straightforward. In Sec. III seve
examples are treated. We construct explicit mixtures
Werner states and for a tripartite family ending into t
bound entangled state of@21#. An example of how to con-
struct~and analyze! NPT tripartite entanglement is also pro
posed.

II. TENSOR OF COHERENCES PARAMETRIZATION
FOR r

Given n qubits living on the Hilbert space (H 2) ^ n of
dimension 2n, the corresponding density operator is
2n32n positive semidefinite Hermitian matrixr such that
tr(r)51 and it has 22n21 degrees of freedom. We constru
for r a basis borrowed from the literature on NMR spectr
copy where it is normally referred to as the product opera
basis@13#. Similar bases are discussed for example in@6,8–
10#. In terms of this basis, studying densities is equivalen
studying tensors of directly observable real parameters.

A word on the notation: we use the symbol ‘‘r ’’ for den-
sity matrices and ‘‘% j ’’ ~possibly with a multi-index! for the
components of the tensor of coherences. The superinde
always a tensor~multi-!index; for powers of% j we use extra
round brackets. For the tensor, we also use the summa
01231
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convention over repeated indexes, always in the ra
$0, . . . ,3%.

A. One qubit

The rescaled Pauli matricesl j5(1/A2)s j , j 51,2,3,

l15
1

A2
F0 1

1 0G , l25
1

A2
F0 2 i

i 0 G , l35
1

A2
F1 0

0 21G ,
plus the rescaled identity operatorl05(1/A2)1232 form a
complete orthonormal basis@in the sense that tr(l jlk)
5d jk] for 232 Hermitian matrices. Fixing the trace mea
fixing the component alongl0. Hencer can be expressed a
the affine 3-vector:

r5%0l01%1l11%2l21%3l35% jl j ,

where% j5tr(rl j ), j 51,2,3, and the component alongl0 is
%05tr(rl0)5tr(r)/A251/A2. Since%0 is a constant, it is
normally neglected and only the Bloch vector%W
5@%1 %2 %3#T is considered. However, here it is conv
nient to keep the constant part and to represent the a
vector in terms of a set of homogeneous coordinates—
by means of the 4-vector%̄5@%0 %1 %2 %3#T. From
tr(l jlk)5d jk , j ,k50,1,2,3, tr(r1r2) induces an inner
product on the parameter space (R4) given by tr(r1r2)
5 ^̂ %̄1 ,%̄2&&5%1

0%2
01 ^̂ %W 1 ,%W 2&&5

1
2 1 ^̂ %W 1 ,%W 2&&. The norm of

%̄ is then given by i%̄i5A^̂ %̄,%̄&&5Atr(r2)5A 1
2 1i%W i2

5A 1
2 1r 2. Purity corresponds to tr(r2)51, i.e.,i%W i25 1

2 or

%W belonging to the sphere of radiusr 51/A2, call it S1/A2
2 ,

while the 4-vector (%0 %1 %2 %3)T belongs to the affine
sphere (%0,S1/A2

2 )5(1/A2) , S1/A2
2 ),S1

3 . Complete mixing,
given byr5 1

2 12325(A2/2)l0, has norm tr(r2)5(%0)25 1
2

and corresponds to%W 50W , i.e., to a ‘‘sphere’’ of 0 radius. All
degrees of mixing are in between the two extremes just p
sented and in general the Bloch vector%W PSr

2 for 0<r

<1/A2. Hence we have 2 1
2 <^̂ %W 1 ,%W 2&&<

1
2 and 0

<^̂ %̄1 ,%̄2&&<1, ; %W 1 ,%W 2PSr
2 .

B. Two qubits

Call L jk5l j ^ lk , j ,kP$0,1,2,3%. Up to a normalization
constant, theL jk form the so-calledproduct operator basis
~see@13#! and are subdivided into

0-qubit operators L00,

1-qubit operators L01,L02,L03,L10,L20,L30,

2-qubit operators L11,L12,L13,L21,L22,

L23,L31,L32,L33.

Similarly to the 1-qubit case, the set ofL jk, j ,kP$0,1,2,3%
forms an orthogonal basis for all 434 Hermitian matrices
~as r is now!. It is still normalized, i.e., such tha
tr(L jkL lm)5tr(l jl l ^ lklm)5tr(l jl l)tr(lklm)5d j l dkm for
1-2
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TENSOR OF COHERENCES PARAMETRIZATION OF . . . PHYSICAL REVIEW A 69, 012311 ~2004!
all j ,k,l ,mP$0,1,2,3%. Except forL00, every L jk has two
eigenvalues6 1

2 , each with multiplicity 2. An equivalent de
scription of r is given by the 2-tensor% jk, j ,k50, . . . ,3,
where% jk5tr(rL jk), i.e.,

r5% jkL jk5% jkl j ^ lk . ~1!

The tensor of coherences% jk can still be seen as the 16
vector@%00%01 . . . %03%10 . . . %33#T, which is still a homo-
geneous representation of an affine 15-vector since%00 is a
constant. In fact, asL jk is traceless for$ jk%Þ$00% andL00
5 1

2 1232^ 1232 has trace 2, tr(r)51 implies that %00

5tr(rL00)5tr(r)/251/2. Again the % jk parametrization
lives onR16 endowed with the Euclidean inner product o
gets from the following:

tr~r2!5tr„~% jkL jk!2
…5 (

j ,k50

3

~% jk!25const<1. ~2!

Following the terminology of@3#, the norm tr(r2) is a qua-
dratic Casimir invariant ofr. Following instead, for ex-
ample,@22#, tr(r2) is a Tsallis entropy corresponding to th
choice of parameterq52 in Sq(r)5„tr(rq)21…/(12q).

Unlike the single-qubit case, the subset ofR16 in which
the parameters% jk are such that% jkL jk is a well-defined
density operator is not at all cleara priori and a hierarchy of
nested subsets exists:

uncorrelated, separable, entangled, ‘‘nondensity’’

, R16.

If the density operatorr is uncorrelated~i.e., r is a prod-
uct state:r5rA^ rB), then also% jk can be intended as th
tensor product~which for scalar quantities becomes ordina
multiplication!:

% jk5%A
j

^ %B
k 5%A

j %B
k , ~3!

with %A
j describing the state of the first spin and%B

k the state
of the second. By ‘‘fully stretching’’%A

j
^ %B

k , one obtains
still the 16-dimensional vector. Equation~3! is not true for

correlated states: for example,%̄5@ 1
2 0 . . . 0%33# has no

expression of the form~3!. Notice that since%A
05%B

0 are
nonzero constants, if% jk50 for all pairs $ jk% such thatj
Þ0 andkÞ0, thenr is uncorrelated. From the same arg
ment, it follows that, even for correlated densities, it is
ways possible to write% j 0 and%0k in the form

% j 05%A
j

^ %B
05

1

A2
%A

j , %0k5%A
0

^ %B
k 5

1

A2
%B

k . ~4!

The corresponding%A
j 5A2% j 0 and %B

k 5A2%0k are univo-
cally determined. Therefore%005%A

0
^ %B

05 1
2 , regardless of

the uncorrelation ofr.
The main difference with respect to other papers like@6,8#

is that we include the 0-qubit and 1-qubit terms in the dya
tensor structure. As a consequence, in the basis~1!, the re-
duced density operator is very natural to obtain as the pa
01231
-

c

al

trace operation consists simply in selecting the componen
index ‘‘0’’ in the qubit to be traced over.

Proposition 1.Givenr5% jkL jk , the reduced density op
erator is given by

rA5trB~r!5%A
j l j5A2% j 0l j ~5a!

rB5trA~r!5%B
k l j5A2%0klk . ~5b!

Proof. Since tr(lk)5dk ,

rA5trB~r!5%A
j l j5% jk trB~L jk!

5% jkl j ^ tr~lk!5A2% j 0l j

or %A
j 5A2% j 0 from Eq. ~4!. Similarly for rB .

In general~also for noncorrelated or nonseparated den
ties! the numbers tr(rA

2) and tr(rB
2) in Eq. ~7! are partial

quadratic Casimir invariants—i.e., the quadratic Casimir
variants of the two reduced densities. The scale factorA2 on
all components of the reduced density plays a double ‘‘n
malization’’ role: it takes care of the trace and it modifies t
quadratic Casimir invariant of the completely mixed sta
~which changes with the number of qubits!.

For an uncorrelatedr, from the tensor product structure
% jk5%A

j
^ %B

k is living on the tensor product of two affin
spheres inR4:

%A
j

^ %B
k PS 1

A2
,Sr A

2 D ^ S 1

A2
,Sr B

2 D , 0<r A , r B<
1

A2
,

~6!

and therefore Eq.~2! becomes

tr~r2!5 (
j ,k50

3

~%A
j

^ %B
k !25 (

j ,k50

3

~%A
j !2

^ ~%B
k !2

5S 1

2
1i%W Ai2D ^ S 1

2
1i%W Bi2D

5S 1

2
1r A

2 D S 1

2
1r B

2 D5tr~rA
2 !tr~rB

2 !. ~7!

Under local orthogonal transformations,r A5const andr B
5const. Under nonlocal rotations instead Eq.~7! is not any-
more valid. Likewise, the factorization is not valid for corr
latedr.

Equation~6! is useful to have a geometric picture of th
manifold on which% jk lives. Expanding into its 16 compo
nents, we have

~i! %005 1
2 is the affine part,

~ii ! @%10%20%30#PSr A/A2
2 ,

~iii ! @%01%02%03#PSr B/A2
2 ,

~iv! the remaining nine-dimensional vecto
@%11%12%13%21%22%23%31%32%33#PSr A

2
^ Sr B

2 .

With the parametrization chosen, testing correlation
comes an almost tautological issue. For example, a neces
condition for uncorrelation ofr is that % j 0Þ0 and%0kÞ0
1-3
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; % jkÞ0, j ,k51,2,3. In fact, assume thatr is uncorrelated
and% jkÞ0 for some pair$ jk%, j ,k51,2,3. If, for example,
% j 050, then from% j 05%A

j
^ %B

0 we must have that%A
j 50

and hence% jk5%A
j

^ %B
k 50. Another necessary conditio

for uncorrelation ofr is that tr(rA
2)tr(rB

2)5tr(r2). That
these conditions are not sufficient for uncorrelation is ea
shown by examples, see Sec. III A. Following@6#, it is con-
venient to describe the correlation betweenA and B by
means of acorrelation tensorC5cjkL jk ~homogeneous, i.e.
such thatc0k5cj 050) and rewriter as

r5rA^ rB1C5~%A
j l j ! ^ ~%B

k lk!1cjkL jk , ~8!

wherecjk5% jk2%A
j %B

k , j ,k51, . . . ,3.Hence the necessar
and sufficient condition for the uncorrelation ofr is that C
50. On the other extreme, when the reduced densitiesrA
andrB are completely mixed the tensor of coherences c
tains only correlations:% jk5cjk, j ,k51, . . . ,3. From Eq.
~8! we can computei%̄i25i%̄Ai2i%̄Bi21( j ,k51

3 (cjk)2, ob-
taining the classical inequality

tr~r2!<tr~rA
2 !tr~rB

2 !. ~9!

A classically correlated orseparablestate is written as a
linear convex combination@29#

r5wprA,p^ rB,p , wp>0, (
p51

s

wp51. ~10!

If for pure states separability is equivalent to uncorrelati
for mixed states the simultaneous presence of both clas
and quantum correlations complicates considerably the
ture.

The convex combination reduces under partial trace
eration and the statement of proposition 1 implies

Proposition 2.Given r5wprA,p^ rB,p , wp>0, (p51
s wp

51, the reduced density operators are given by

rA5trB~r!5wprA,p5A2wp%A,p
j 0 l j , ~11a!

rB5trA~r!5wprB,p5A2wp%B,p
0k lk . ~11b!

Proof. The result is well known and the proof is reporte
here as an exercise in computing with the tensor of coh
ences. Consideringr,

r5~w1%A,1
0 %B,1

0 1¯1ws%A,s
0 %B,s

0 !L00

1~w1%A,1
0 %B,1

1 1¯1ws%A,s
0 %B,s

1 !L01

1¯1~w1%A,1
3 %B,1

3 1¯1ws%A,s
3 %B,s

3 !L33,

and tracing overB,

rA5trB~r!5A2@~w1%A,1
0 %B,1

0 1¯1ws%A,s
0 %B,s

0 !l0

1~w1%A,1
1 %B,1

0 1¯1ws%A,s
1 %B,s

0 !l1

1¯1~w1%A,1
3 %B,1

0 1¯1ws%A,s
3 %B,s

0 !l3#

5A2@w1~%A,1
0 l01¯1%A,1

3 l3!%B,1
0

01231
y
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1¯1ws~%A,s
0 l01¯1%A,s

3 l3!%B,s
0 #

5w1rA,11¯1wsrA,s , ~12!

since%B,p
0 51/A2, ; p51, . . . ,s.

It is possible to expandr5wprA,p^ rB,p emphasizing its
affine structure as follows:

r5
1

2
L001

1

A2
wp%A,p

j L j 01¯1
1

A2
wp%A,p

3 L30

1
1

A2
wp%B,p

1 L011¯1
1

A2
wp%B,p

3 L03

1wp%A,p
1 %B,p

1 L111¯1wp%A,p
3 %B,p

3 L33

5
1

2
L001rA^

1

A2
l01

1

A2
l0^ rB1wp%A,p

1 %B,p
1 L11

1¯1wp%A,p
3 %B,p

3 L33. ~13!

The expression~13! allows us to easily provide a geometr
picture of the state space ofr, extending the one for uncor
related densities. Ifr A5wpr A,p and r B5wpr B,p , then from
Eq. ~13!:

~i! 1
2 is the affine component,

~ii ! @%10%20%30#5 (1/A2)%W APSr A /A2
2 5wpSr A,p /A2

2 ,

~iii ! @%01%02%03#5 (1/A2)%W BPSr B /A2
2 5wpSr B,p /A2

2 ,

~iv! @%11 . . . %33#5@wp%A,p
1 %B,p

1 . . . wp%A,p
3 %B,p

3 #
PwpSr A,p

2
^ Sr B,p

2 .

Notice how in the last item the ‘‘multiplicative’’ part ofr
lives on a convex sum of tensor products of spheres. Vary
r A,p , r B,p , andwp, all convex combinations of tensor prod
ucts of spheres of all possible radii can be obtained. Si
any point in the Bloch ball is a good vector of coherences
a qubit and since a convex combination of compact con
sets is compact and convex, the ‘‘multiplicative’’ part of
separabler,%11, . . . ,%33, lives on a compact, convex, infi
nitely generated set@30#.

For r separable,r5wprA,p^ rB,p , we have

tr~r2!5 (
p,q51

s

wpwq^̂ %̄A,p ,%̄A,q&&^̂ %̄B,p ,%̄B,q&&

5~wp!2i%̄A,pi2i%̄B,pi2

1 (
p,q51,
pÞq

s

wpwq^̂ %̄A,p ,%̄A,q&&^̂ %̄B,p ,%̄B,q&&. ~14!

^̂ %̄A,p ,%̄A,q&& is an inner product between vectors of possib
different lengths:̂^%̄A,p ,%̄A,q&&5

1
2 1 ^̂ %W A,p ,%W A,q&& with %W A,p

PSr A,p

2 ,%W A,qPSr A,q

2 . Since 0<r A, j<1/A2, j 5p, q, we have

by the Cauchy-Schwarz inequality2 1
2 <2r A,pr A,q

<^̂ %W A,p ,%W A,q&&<r A,pr A,q< 1
2 and hence 0<^̂ %̄A,p ,%̄A,q&&

<1.
1-4
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For r separable, beside Eq.~9! we also recover the nec
essary condition of@23# ~itself a consequence of the parti
disorder criterion, see@24#! on the traces of the reduced de
sities:

Proposition 3. Given r5wprA,p^ rB,p , wp>0, (p51
s wp

51, we have that

tr~rA
2 !>tr~r2!, ~15a!

tr~rB
2 !>tr~r2!. ~15b!

Proof. From Proposition 2,

tr~rA
2 !5 (

p,q51

s

wpwq^̂ %̄A,p ,%̄A,q&&

5~wp!2i%̄A,pi21 (
p,q51,
pÞq

s

wpwq^̂ %̄A,p ,%̄A,q&&.

~16!

Equations~14! and~16! have the same number of terms, b
each term of Eq.~16! is greater or equal than the correspon
ing one in Eq. ~14!, since i%̄B,pi2<1 and ^̂ %̄B,p ,%̄B,q&&
<1.

Equation~15! could be rewritten in terms of the tensor
coherences as

i%̄Ai2>i%̄i2, i%̄Bi2>i%̄i2. ~17!

From Eq. ~17!, the geometric interpretation of Eq.~15! is
straightforward: i%̄Ai2>i%̄i2 implies 1

2 1r A
2> 1

4 1r 2, i.e.,
the radius of the sphere of the compound system is boun
above by those of the reduced densities: 0<r 2

<min$r A
2 ,r B

2%1 1
4 . The coefficient1

4 takes care of the dis
placements of the centers of ther and rA ~or rB) spheres
due to the different affine terms. Such a property is invari
to convex combinations. Notice that this is a necessary
not sufficient condition for separability~indeed it is not even
sufficient for uncorrelatedness! of r. It becomes a necessar
and sufficient condition ifr is pure, see@23#.

Also the partial transpose operation of@19# rT1

5(T^ 12)(r) and rT25(12^ T)(r) ~where T denotes the
single qubit transposition! becomes a very straightforwar
operation in the chosen basis.

Proposition 4. The partial transpositions ofr become the
sign changes on the corresponding index ‘‘2’’:

rT15%0kL0k1%1kL1k2%2kL2k1%3kL3k , ~18a!

rT25% j 0L j 01% j 1L j 12% j 2L j 21% j 3L j 3 . ~18b!

The proof is by direct computation. As is well known@18#,
the PPT criterion provides a necessary and sufficient co
tion for separability in the 2 qubit case:r is separable if and
only if rT1 ~andrT2) is a density. We say in this case thatr
is PPT. Proposition 4 provides the following constructi
separability condition.
01231
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Corollary 1. A sufficient condition for PPT is that al
terms of indices ‘‘2’’ in the tensor% jk are 0.

For the tensor% jk, the partial transposition is a linea
norm preserving operation: tr(r2)5tr„(rT1)2

…5tr„(rT2)2
….

Hence entanglement violating PPT does not modify the q
dratic Casimir invariants of the density and the necess
conditions~15! are insensible to it.

C. n qubits

The notation for a density operator composed ofn qubits
~labeledA1 , . . . ,An) is completely analogous to the 2-qub
case:

r5rA1¯An
5% j 1¯ j nL j 1¯ j n

5% j 1¯ j nl j 1
^¯^ l j n

, j 1 , . . . ,j n50,1,2,3.

If L j 1¯ j n
hask<n non-null indexes, then it is an operator o

k qubits. The object% j 1¯ j n can still be seen as ann-tensor or
as a 22n21 affine vector having constant component%0¯0

5%A1

0
^¯^ %An

0 5(1/A2)n @check that indeed tr(L0¯0)

5tr(l0)n5(A2)n; hence tr(%0¯0L0¯0)51]. Reduced den-
sity operators are obtained analogously to the bipartite c
by collapsing each index being traced over to 0 and resca
by A2 each time. For example, the reduced density oper
of the kth qubit is obtained by tracing over the othern21
qubits:

rAk
5trA1¯Ak21Ak11¯An

~rA1¯An
!5%Ak

j k l j k

5~A2!n21%0¯0 j k0¯0l j k
, j k50, . . . ,3.

Similarly to the bipartite case, we have thatr is said to be
uncorrelated if

r5rA1
^¯^ rAn

5%A1

j 1 ^¯^ %An

j n l j 1
^¯^ l j n

5%A1

j 1 %A2

j 2
¯%An

j n L j 1 j 2¯ j n
,

and forr uncorrelated we have

tr~r2!5tr~rA1
!tr~rA2

!¯tr~rAn
!

5S 1

2
1i%W A1

i2D S 1

2
1i%W A2

i2D¯S 1

2
1i%W An

i2D .

A necessary and sufficient condition for uncorrelation ofr is
that for all n-tuples of indexes $ j 1¯ j n%, j 1 ,¯, j n
50,1,2,3,

% j 1¯ j n5%A1

j 1 ^¯^ %An

j n 5%A1

j 1
¯%An

j n . ~19!

Obviously the test~19! can be restricted ton-tuples$ j 1¯ j n%
such that at least two indices are nonzero.

The densityr is said separable if

r5wprA1 ,p^¯^ rAn ,p , ~20!
1-5
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where(p50
s wp51, wp>0. Unlike the 2-qubit case, no nea

necessary and sufficient condition for separability is know
although for a few qubits complete classifications in vario
entanglement classes have been proposed—for examp
@25#. Qualitatively, one distinguishes between entanglem
due to violation of the PPT test for some of the indexes
$ j 1¯ j n% and a more subtle type of entanglement, cal
bound entanglement, which cannot be detected by mean
PPT. The first type of entanglement is bipartite and will
referred to as NPT entanglement.

Proposition 5. r is NPT entangled if for somek
P$1¯n% the partial transpose

rTk5% j 1¯ j k210 j k11¯ j nL j 1¯ j k210 j k11¯ j n

1% j 1¯ j k211 j k11¯ j nL j 1¯ j k211 j k11¯ j n

2% j 1¯ j k212 j k11¯ j nL j 1¯ j k212 j k11¯ j n

1% j 1¯ j k213 j k11¯ j nL j 1¯ j k213 j k11¯ j n
~21!

has negative eigenvalues.
Also corollary 1 still holds.
Corollary 2. A sufficient condition for PPT is that al

terms of indices ‘‘2’’ of the tensor% j 1¯ j n are 0.
Similarly, if p(•) is a permutation of 1,̄ ,n, the neces-

sary condition of proposition 3 generalizes to the sequenc
inequalities@23#

tr~rAp(1)

2 !>tr~rAp(1)Ap(2)

2 !>¯>tr~r2!

; permutationsp~• !. ~22!

III. EXAMPLES

A. Partial quadratic Casimir invariants and classical
correlations: An example

The aim of this example is to show that given a 2-qu
densityr, the condition tr(r2)5tr(rA

2)tr(rB
2) is not a suffi-

cient condition for uncorrelation. Consider the bipart
density r5%00L001%01L011%03L031%10L101%30L30
1%13L131%31L31. Once%01, %03, %10, and%30 are fixed,
then%A

1 , %A
3 , %B

1 , and%B
3 are determined. Choose%13 and

%31 such that

%A
1%B

3Þ%13,

%A
3%B

1Þ%31,

but such that

~%A
1 !2~%B

3 !21~%A
3 !2~%B

1 !25~%13!21~%31!2.

Then tr(rA
2)tr(rB

2)5tr(r2) but CÞ0, implying that this state
is correlated. Since%2k5% j 250, from corollary 1 the cor-
relation is classic.
01231
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B. Bell state

The Bell stateuc&5(1/A2)(u0&1u1&) has density opera
tor

rBell5
1

2F 1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

G .

In the tensor of coherences, it corresponds to

rBell5% jkL jk5
1

2
L002

1

2
L112

1

2
L221

1

2
L33.

Since% j 05%0k50 ; $ jk%Þ$00%, this state has both reduce
densitiesrA and rB, which are completely mixed, tr(rA

2)

5tr(rB
2)5 1

2 . Hence the Bloch vectors%W A and %W B live on
‘‘spheres’’ of 0 radius and, in Eq.~8!, % jk5cjk, j ,k
51,̄ ,3. The condition tr(rBell

2 )51 implies that the en-
tangled state instead is pure.

C. Werner states

Consider the one-parameter family of states

rWer~x!53
12x

4
0 0 0

0
11x

4
2

x

2
0

0 2
x

2

11x

4
0

0 0 0
12x

4

4 , ~23!

which is known to be maximally entangled whenx51 and
uncorrelated whenx50. Using the computations of the Ap
pendix, we get the following non-null components:%005 1

2 ,
%1152x/2, %2252x/2 the and%3352x/2. Hence

rWer~x!5
1

2
L002

x

2
L112

x

2
L222

x

2
L33. ~24!

For x50, tr„rWer
2 (0)…5 1

4 and, for x51, tr„rWer
2 (1)…51.

From Eq.~24!, the reduced density operatorsrA andrB are
both completely mixed states; xP@0,1#, since % j 05%0k

50 ; $ jk%Þ$00%, so, once again, the homogeneous part
rWer contains only ‘‘pure’’ correlations:C5rWer2

1
2 L00.

For this highly symmetric density, the explicit comput
tion of a linear combination of tensor products which is se
rable in the whole domain 0<x< 1

3 is rather easy with the
insight given by the tensor of coherences. For example,
can construct 2-qubit terms% j j such that the correspondin
reduced terms% j 0 and%0 j are identically 0 in the following
way. Choose the 12 one-qubit densities:

rA,15%0l01%A,1
1 l1 , rA,25%0l01%A,2

2 l2 ,
1-6
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rA,35%0l01%A,3
3 l3 ,

rA,45%0l02%A,1
1 l1 , rA,55%0l02%A,2

2 l2 ,

rA,65%0l02%A,3
3 l3 ,

rB,15%0l01%B,1
1 l1 , rB,25%0l01%B,2

2 l2 ,

rB,35%0l01%B,3
3 l3 ,
b

s

r

In

F

01231
rB,45%0l02%B,1
1 l1 , rB,55%0l02%B,2

3 l2 ,

rB,65%0l02%B,3
3 l3 .

If we use equal weightsw15¯w65 1
6 , the resulting density

r5wprA,p^ rB,p is
r5
1

2
L001

1

3
%A,1

1 %B,1
1 L111

1

3
%A,2

2 %B,2
2 L221

1

3
%A,3

3 %B,3
3 L33

53
1

4
1

%A,3
3 %B,3

3

6
0 0

%A,1
1 %B,1

1 2%A,2
2 %B,2

2

6

0
1

4
2

%A,3
3 %B,3

3

6

%A,1
1 %B,1

1 1%A,2
2 %B,2

2

6
0

0
%A,1

1 %B,1
1 1%A,2

2 %B,2
2

6

1

4
2

%A,3
3 %B,3

3

6
0

%A,1
1 %B,1

1 2%A,2
2 %B,2

2

6
0 0

1

4
1

%A,3
3 %B,3

3

6

4 . ~25!
as
s

d
by
While the ‘‘multiplicative’’ part of r is nontrivial, the corre-
sponding reduced densities are always completely mixed
cause of the cancellations occurring. The eigenvalues ofr in
Eq. ~25! are

H 1

4
1

1

6
~2%A,1

1 %B,1
1 2%A,2

2 %B,2
2 2%A,3

3 %B,3
3 !,

1

4
1

1

6
~2%A,1

1 %B,1
1 1%A,2

2 %B,2
2 1%A,3

3 %B,3
3 !,

1

4
1

1

6
~%A,1

1 %B,1
1 2%A,2

2 %B,2
2 1%A,3

3 %B,3
3 !,

1

4
1

1

6
~%A,1

1 %B,1
1 1%A,2

2 %B,2
2 2%A,3

3 %B,3
3 !J . ~26!

All four eigenvalues are>0 for all admissible%W A,p ,%W B,p

PS<1/A2
2 . In particularr of Eq. ~25! is equal torWer provided

one chooses %A,1
1 5%A,2

2 5%A,3
3 , %B,1

1 52%A,1
1 , %B,2

2

52%A,2
2 , and %B,3

3 52%A,3
3 . In this case, the eigenvalue

never reach the critical points for a density (0 and11). If
x52 2

3 (%A,1
1 %B,1

1 )5 2
3 (%A,1

1 )2, then the allowed paramete

span isxP@0,1
3 #, as is known for a separable Werner state.

fact, x>0 by definition @since x5 2
3 (%A,1

1 )2>0], and x

5 2
3 ( 1

2 ) when %A,1
1 reaches61/A2. It is interesting to see

what happens to the single terms of the convex sum.
example,
e-

or

rA,1^ rB,15~%0l01%A,1
1 l1! ^ ~%0l01%B,1

1 l1!

5%0%0L001%0%B,1
1 L011%A,1

1 %0L10

1%A,1
1 %B,1

1 L11

5
1

2
L001

%B,1
1

A2
L011

%A,1
1

A2
L101%A,1

1 %B,1
1 L11

is a well-defined density within the same boundary
rA,1 ,rB,1 . Instead, if one considers the sum of two term
which cancels the 1-qubit terms~for example, ‘‘1’’ and ‘‘4’’
with equal weightsw15w4),

w1rA,1^ rB,11w4rA,4^ rB,452w1~%0%0L001%A,1
1 %B,1

1 L11!

52w1S 1

2
L002

3

2
xL11D

52w1~ r̃AB!,

thenr̃AB is a well-defined density when14 1(2 3
2 x)2<1; i.e.,

in the larger interval 0<x<1/A3. The same bound is foun
on the other pairwise sums. This is also the bound found
the trace-square inequalities~15!.

Notice that choosing%A,1
1 5%A,2

2 5%A,3
3 but instead%B,1

1

5%A,1
1 , %B,2

2 52%A,2
2 , %B,3

3 5%A,3
3 , and x5 2

3 (%A,1
1 %B,1

1 )
52 2

3 (%A,2
2 %B,2

2 ), in the same range ofx one gets the differ-
ent family
1-7
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which can also be obtained fromrWer by local unitary trans-
formations and which leads torBell considered before forx
51.

D. Tripartite family

The one-parameter densityr5%000L0001%111L111

51/(2A2)L0001xL111, or written explicitly,
~27!
has tr(r2)5 1
8 1x2 and eigenvalues$ 1

8 61/(2A2) x% each
with multiplicity 4. Here r is a density for21/(2A2)<x
<1/(2A2). From corollary 2, this state is certainly PPT. Fu
thermore, the necessary conditions~22! are satisfied as wel
as the realignment criterion@26–28#. Still one may wonder if
r is separable and if an explicit mixture can be found a
how. Forx50 ~and near it! it is obviously separable. Onc
we have an explicit linear combination forr, then this will
provide an estimate of its separability interval, valid at le
with respect to the mixture used. All 1-qubit and 2-qu
reduced densities are in the completely random state.
trick of pairwise canceling reduced densities does not ge
alize in a straightforward manner to multipartite qubits, b
some variants of it can still be used. For example the follo
ing nine triples of operators,

rA,15%0l0 , rB,15%0l01%B,1
1 l1 ,
d

t
t
he
r-
t
-

rC,15%0l01%C,1
1 l1 ,

rA,25%0l0 , rB,25%0l02%B,1
1 l1 ,

rC,25%0l02%C,1
1 l1 ,

rA,35%0l01%A,3
1 l1 , rB,35%0l0 ,

rC,35%0l01%C,3
1 l1 ,

rA,45%0l02%A,3
1 l1 , rB,45%0l0 ,

rC,45%0l02%C,3
1 l1 ,
1-8
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rA,55%0l01%A,5
1 l1 , rB,55%0l01%B,5

1 l1 ,

rC,55%0l0 ,

rA,65%0l02%A,5
1 l1 , rB,65%0l02%B,5

1 l1 ,

rC,65%0l0 ,

rA,75%0l01%A,7
1 l1 , rB,75%0l01%B,7

1 l1 ,

rC,75%0l01%C,7
1 l1 ,

rA,85%0l02%A,7
1 l1 , rB,85%0l02%B,7

1 l1 ,

rC,85%0l0 ,

rA,95%0l0 , rB,95%0l0 ,

rC,95%0l02%C,7
1 l1 ,

with the choices of weightsw15w2, w35w4, w55w6, and
w75w85w9 such thatw11¯1w951 gives

r5
1

2A2
L0001

1

A2
~2w1%B,1

1 %C,1
1 1w7%B,7

1 %C,7
1 !L011

1
1

A2
~2w3%A,3

1 %C,3
1 1w7%A,7

1 %C,7
1 !L101

1A2~w5%A,5
1 %B,5

1 1w7%A,7
1 %B,7

1 !L110

1w7%A,7
1 %B,7

1 %C,7
1 L111.

In order to cancel the terms alongL011, L101, L110, we fix
the parameters of the reduced operators as follows:

%B,1
1 5A~x!2/3~w7!1/3

2w1
, %C,1

1 52%B,1
1 ,

%A,3
1 5A~x!2/3~w7!1/3

2w3
, %C,3

1 52%B,3
1 ,

%A,5
1 5A~x!2/3~w7!1/3

w5
, %B,5

1 52%A,5
1 ,

%A,7
1 5%B,7

1 5%C,7
1 5S x

w7D 1/3

,

hence reobtaining Eq.~27! for all x. What is left to do is to
control for whichx there exist admissible weightswr such
that all the reduced operators are well-defined densities—
u%K,r

1 u<1/A2, K5A,B,C, r 51,3,5,7. Squaring the relation
above, we obtain thatx has to fulfill the four constraints

2
w7

2A2
<x<

w7

2A2
, ~28!
01231
e.,

„~x!2w7
…

1/3<w1, „~x!2w7
…

1/3<w3, „~x!2w7
…

1/3<
w5

2
.

~29!

One can rewrite the last three inequalities as

0<x<H ~w1!3

w7
;
~w3!3

w7
;
~w5!3

8w7 J . ~30!

Using the rule of thumb of selecting weights so that all thr
reduced densities constraints~30! become active simulta
neously as we varyx, w15w35w5/2, one getsw75(1
28w1)/3. As we varyw1 in 0<w1< 1

8 2e, e.0, inequali-
ties ~28! and~30! give a trade-off. A quick numerical searc
shows that20.050<x<0.050 is the largest common rang
satisfying the constraints one can achieve, correspondin
w150.0715. In fact, in correspondence with these values
have that all 1- and 2-qubit densities have trace squares
tween 0.99 and 1@while tr(r2)50.125].

One may wonder if the bound found depends on the lin
combination chosen or less. In order to verify this, it is po
sible to use the alternative family of densities:

rA,15%0l0 , rB,15%0l0 , rC,15%0l02%C,1
1 l1 ,

rA,25%0l01%A,2
1 l1 , rB,25%0l01%B,2

1 l1 ,

rC,25%0l0 ,

rA,35%0l02%A,2
1 l1 , rB,35%0l02%B,2

1 l1 ,

rC,35%0l0 ,

rA,45%0l01%A,4
1 l1 , rB,45%0l01%B,4

1 l1 ,

rC,45%0l01%C,4
1 l1 ,

rA,55%0l01%A,4
1 l1 , rB,55%0l01%B,4

1 l1 ,

rC,55%0l02%C,4
1 l1 ,

corresponding to

r5
1

2A2
L0001S 2w1%C,1

1

2
1w4%C,4

1 DL0011A2~w2%A,2
1 %B,2

1

1w4%A,4
1 %B,4

1 !L11012w4%A,4
1 %B,4

1 %C,4
1 L111.

Choosingw35w2, w55w4, and

%C,1
1 52

2

w1 S x~w4!2

2 D 1/3

,

%A,2
1 52%B,2

1 5A 1

w2 S ~x!2w4

4 D 1/3

,

%A,4
1 5%B,4

1 5%C,4
1 5S ~x!2

4~w4!2D 1/3

,

1-9
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this convex combination has components that are all de
ties when the three inequalities are satisfied:

2
~w1!3

8A2~w4!2
<x<

~w1!3

8A2~w4!2
,

2A~w2!3

2w4
<x<A~w2!3

2w4
, 2

w4

A2
<x<

w4

A2
.

A parametric search gives thatx is separable in20.1166
<x<0.1166 in correspondence, for example, withw1

50.33, w250.17, andw450.165. Hence just like the mix
ture representing a density is nonunique, also the separab
range changes with the convex combination chosen. No c
clusion is drawn about separability in 0.1166<uxu
<1/(2A2), although this density is probably separable in
whole range.
is
’’

01231
i-

ity
n-

e

E. Another tripartite biseparable family

Consider the 3-qubit stater5% jklL jkl where %000

51/(2A2) and

%0315%0335%1035%1115%1335%3035%3105%3135%330

5%3315x,

%0115%0135%1015%1105%1305%30152x,

% jkl50 otherwise. ~31!

Expanding, explicitly,
ex
es
il-
by
ell-
nsi-

rre-
tate
ties
The trace norm for this density is tr(r2)5 1
8 116x2 and the

eigenvalues$ 1
8 6A2x% each with multiplicity 4. Hencer is a

well-defined density matrix for21/(8A2)<x<1/(8A2) and
it is mixed in the entire interval~completely mixed forx
50). Whenx51/(8A2), we recover the example of Eq.~6!
of @21# rUPB5 1

4 (182( j 51
4 uc j&^c j u), with uc j& an unex-

tendible product basis~UPB! for 3-qubit states: uc j&
5u011&,u110&,u101&,u222& @where u6&51/A2(u0&
6u1&)]. rUPB is known to be entangled and PPT. Again, th
last fact is simply verified by noticing that no index ‘‘2
appears in Eqs.~31!; hence corollary 2 holds for allx.

Notice that for this example the necessary conditions~22!
are fulfilled for all x, but thatr is separable only in some
proper subinterval@2xc ,xc# around the complete mixing
state.

Also in this case it is possible to obtain a linear conv
combination of tensor products of trace-1 Hermitian matric
corresponding tor. This allows us to estimate the separab
ity interval with respect to the particular mixture chosen
imposing that each matrix of each tensor product be a w
defined density. One notices first that 1-qubit reduced de
ties are all completely mixed (%00l5%0k05% j 0050). Hence
for each nonzero 2-qubit term a cancellation on the co
sponding reduced terms must occur, as in the Werner s
parametrization. On the contrary, 2-qubit reduced densi
1-10
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FIG. 1. (x,y) parameter space for the example of Sec. III F. In~a! and ~b! the triangle represents the admissible (x,y) pairs forrAB2C

andrAB2C
T1 , respectively. Hence (x,y) belonging to the complement of the rhomb in the triangle of~c! gives NPT entangled densities.
b
t

e,

he
e
ts
al
n-

th

-
th
in

be
rit

y
-
u

ty
ar
im
i

at
d

lu

-

e

rms

m
so
zed.
rn
ms,
l

ity
f is
it

e
s.
ities
the
ere
rm.
r a

in-
are not completely random and it is straightforward to o
serve that all of the nonzero 2-qubit terms correspond
‘‘reductions’’ of the four nonzero 3-qubit terms: for exampl
%133Þ0 implies %033Þ0 %103Þ0 %130Þ0. If we use the
same scheme of Sec. III D to produce the 3-party terms, t
we obtain a convex combination of 36 triples of two-lev
densities which, with the naive choice of all equal weigh
guarantees separability only in a tiny interv
20.006<x<0.006 @the realignment criterion detects e
tanglement only close to 1/(8A2)]. The explicit expression
of the components is available upon request. Notice that
linear combination obtained connectsrUPB with %000L000.
From the classification of@25#, it is known that the bisepa
rable entangled regions have a border in common with
set of separable states. Since this last set is convex, the l
combination has a unique crossing pointxc8 ~plus, specu-
larly, 2xc8).

Managing densities and weights becomes rapidly cum
some, but one can expect the problem to admit an algo
mic formulation via ~tractable! convex optimization
schemes.

F. Building NPT entangled states

NPT entanglement~i.e., entanglement detectable b
means of the PPT test! is obviously the simplest to manipu
late for the purposes of building entanglement between s
systems. There are by now standard methods to do that,
cally starting from particular ket states or taking line
combinations of known singlets with product states. The a
of this example is just to show that such a construction
also easy in the formalism we are proposing, and the st
one obtains are not the standard one normally considere
the literature~GHZ, W states, etc.! @31#. For example, as-
sume that one wants to have three qubits withA andB NPT
entangled,C satisfying the PPT property. One possible so
tion is the state
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rAB2C5
1

2A2
L0001xL1221xL2121yL330. ~32!

For rAB2C we have tr(rAB2C
2 )5 1

8 12x21y2 and eigenval-
ues 1

8 (122A2y) of multiplicity 4 and 1
8 „112A2(y62x)…

each of multiplicity 2. HererT1 andrT2 instead have eigen
values 1

8 (112A2y) with multiplicity 4 and 1
8 „122A2(y

62x)… each of multiplicity 2.rAB2C is a state in the triangle
of Fig. 1~a!, while rAB2C

T1 ~or rAB2C
T2 ) has positive eigenval-

ues in the flipped triangle of Fig. 1~b!. Hence the area outsid
the rhomb of Fig. 1~c! gives the (x,y) leading to a NPT
entangled state. Notice that dropping any of the three te
in Eq. ~32! the density becomes PPT.

IV. CONCLUSION

For multiparty qubit densities, the tensorial formalis
proposed, although intuitively simple and certainly not
original, has several advantages which are now summari

~i! First and foremost, it highlights the correlation patte
between subsystems and between ‘‘groups’’ of subsyste
as is known from the literature@6,7#. Hence it may be usefu
in the construction ofquantum networks.

~ii ! It allows one to explain the concept of reduced dens
in terms of the affine parametrization and the tensor itsel
given by all ‘‘degrees of reduction’’ down to the single-qub
densities in an unambiguous way.

~iii ! It also allows one to give a geometric picture of th
density in terms of juxtaposition of affine Bloch sphere
Thanks to the affine parametrization, also reduced dens
enter into the picture. For example the degree of purity of
n-party densities is given in terms of the radius of the sph
of the corresponding dimension via the standard trace no
Such a norm itself can be intended as a Tsallis entropy fo
particular choice of the index or as a quadratic Casimir
variant for the set of density operators.
1-11
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~iv! It allows one to construct a density with the desir
correlations between its subsystems—in particular, a
quantum correlations of the NPT type.

~v! It provides an intuitive interpretation of both NPT an
bound entanglement: they correspond to linear combinat
of tensor products in which at least one of the factors in o
of the products is not a well-defined density in the sense
its Bloch vector is too big in norm.

In conclusion, we hope that the formalism put forward
this paper may help not only in the understanding of qu
tum correlations in multipartite systems, but also in th
concrete and systematic engineering.

APPENDIX: TENSOR OF COHERENCES
FOR 2-QUBIT STATES

If ( r)pq, p, q51, . . . ,4, are theelements of the density
operator r of Sec. II B, the tensor of coherences% jk

5tr(rL jk), j ,k50, . . . ,3, corresponding to it has compo
nents

%005
1

2
@~r!111~r!221~r!331~r!44#,

%015Re@~r!12#1Re@~r!34#,

%0252Im @~r!12#2Im @~r!34#,

%035
1

2
@~r!112~r!221~r!332~r!44#,
d

5.

le

ys

J.

s

01231
o

ns
e
at

-
r

%105Re@~r!13#1Re@~r!24#,

%2052Im @~r!13#2Im @~r!24#,

%305
1

2
@~r!111~r!222~r!332~r!44#,

%115Re@~r!14#1Re@~r!23#,

%1252Im @~r!14#1Im @~r!23#,

%135Re@~r!13#2Re@~r!24#,

%2152Im @~r!14#2Im @~r!23#,

%2252Re@~r!14#1Re@~r!23#,

%2352Im @~r!13#1Im @~r!24#,

%315Re@~r!12#2Re@~r!34#,

%3252Im @~r!12#1Im @~r!34#,

%335
1

2
„~r!112~r!222~r!331~r!44….
ts
.
.

J.

A

.
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