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Tensor of coherences parametrization of multiqubit density operators
for entanglement characterization
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For multiqubit densities, the tensor of coheren@asStokes tensgiis a real parametrization obtained by the
juxtaposition of the affine Bloch vectors of each qubit. While it maintains the tensorial structure of the
underlying space, it highlights the pattern of correlations, both classical and quantum, between the subsystems
and, due to the affine parametrization, it contains in its components all reduced densities of all orders. The main
purpose of our use of this formalism is to deal with entanglement. For example, the detection of bipartite
entanglement is straightforward, as it is the synthesis of densities having positive partial transposes between
desired qubits. In addition, finding explicit mixtures for families of separable states becomes a feasible issue
for few-qubit symmetric densitieeve compute it for Werner stateand, more important, it provides some
insight into the possible origin of entanglement for such densities.
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[. INTRODUCTION ideas in a more straightforward manner.
Obviously the parametrization we consider is not really

The main purpose of this work is to discuss a parametrinew; it was treated in detail ifi6], used extensively, for
zation of a multiqubit(pure or mixed density operator and €xample, by Mahler and co-workefg,8] (where the basis
to show its usefulness in dealing with classical and quanturglements we use are referred to as cluster opejators
correlations. The principle behind the parametrization is thé9—11] (where it is referred to as the Stokes tensord more
same as the so-called vector of coherences of widespread 1&!€ss implicitly in many other papers, ¢8,12] for related
in modeling N-level density operatorEL—5]. It consists in Material. For example in the NMR literatufd3] it goes
choosing a complete orthogonal set of Hermitian operatorsnder the name of product of operators basis. What is new is
and in considering the corresponding real vector of expectd!S US€ in understanding multiparty entanglement, [sefe-

tion values in place of the density matrix. Here we use the17]_|fr?é 2?m0\|/:2t?t?)\l\:jgIercelsteag:rc])flr;rt::nﬂlzlgw.ent is bipartite
same idea, but respecting the tensorial structure of the den- P yp 9 P

sity, hence working with drea) tensor of coherence&ach entanglement, for which there exists a necessary and suffi-

o } . cient condition, the so-called positive partial transp@@eT)
qu'.t 1S parame_trlzed as an afflne.BIoch vector, and the _tenériterion 0f[18,19. In the tensor of coherences parametriza-
sor is just the juxtaposition of affine Bloch vectors. Main-

e ) tion, the PPT criterion has a very simple formulation and,
taining the tensorial structure has several advantages; fpr ®iore important, it becomes completely trivial to construct
ample, it makes the pattern of the “total” correlation yensities satisfying PPT between all pairs of subsystems.
between subsystems totally straightforward to see. For “toence one can focus on the class of entangled PPT densities,
tal” correlation we mean both the classical and quantumyhich are characterized by the more subtle bound entangle-
ones. As a matter of fact, we will see that the correlationment[20]. On the other hand, also the construction of sys-
between subsystems is encoded in the terms of the tens@éms having certain patterns of bipartite entanglement not
Crucial to the understanding of this point is the role of thesatisfying the PPT criteriofNPT entanglemeitis rather
affine component and of how it enters into the compoundingimple.
of the different qubits. In fact, as we use homogeneous co- If the total correlation, classical plus quantum, is directly
ordinates to deal with the affine term, the key simplificationdepicted in the tensor of coherences, the distinction between
is that tracing over one of the qubits simply corresponds, uphe two types of correlation remains, however, an elusive
to a scale factor, to choosing the “@l.e., affing component issue, although as we will see in the examples, the param-
for the corresponding index. Hence, because of the affinetrization allows one to suggest what is happening in an
parametrization, reduced densities are naturally representettangled state. Consider a one-parameter family of densities
by means of the tensor of coherences parametrization and tlding in the maximally mixed state. Close to such an ex-
tensor itself consists of the entire hierarchy of correlationstreme the state is certainly separad@]. Using the tensor of
Also the scale factor has a natural interpretation: it correctgoherences it is not too difficult to construct an explicite-
the trace norm of the completely random state when passingarameterconvex mixture of product states for it. In all the
from a density to a reduced density. Further advantages akxamples of entangled families we have tested, the convex
in the simplicity of the geometric picture for multipartite combination found is such that it induces cancellations be-
systems and in the possibility of using multilinear algebratween the corresponding mixtures of reduced densities. If
close enough to the complete mixing, these cancellations are
harmful; far from it, it may happen that the one-parameter
*Electronic mail: altafini@sissa.it density is well-defined while some of the reduced densities
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(which, again, being canceled do not explicitly appear unlessonvention over repeated indexes, always in the range
one wants to construct the mixture explicjtlgre not any- {0, ...,3.
more well-defined densities in the sense that their trace norm
is too big (some of its eigenvalues become greater than 1 A. One qubit
Hence one source of entanglement is that not well-defined _ . .
components give rise to a well-defined compound system. 1€ rescaled Paull matricag=(1/\2)oj, j=1,2.3,
The complication is obviously that due to the nonuniqueness

) . . L 1 110 —i 111 O
of the mixture representing a given density, it is an hard y _ _— N :_ﬂ } A :_[ }
problem to exclude that any other convex combination will ~* /2 Ll o TP 2lo -1
suffer from the same “unfeasibility” problem. For low-rank
systems, the tensorial notation helps in finding such conveglus the rescaled identity operathp=(1/y/2)1,,, form a
combinations. For example we could easily compute a mixcomplete orthonormal basifin the sense that tk(A,)
ture for the Werner states valid in the whole separability= &j,] for 2X2 Hermitian matrices. Fixing the trace means
interval. fixing the component alony,. Hencep can be expressed as

The parametrization into vectdiand tensor of coher-  the affine 3-vector:

ences is natural only for qubits. Folkkdevel system, in fact, 0 N ) 3 .
the vector of coherences of the density operator is not free to P=0"NoT @ N1+ 0N+ 0 N3=0')\,

evolve on the correspondin@ffine) ball in ]sz*l, see[3,4]
for hints on this point. Of course qubits are by far the mos
popular systems in quantum information processing.

0 1
1 0

twherer=tr(p7\j), j=1,2,3, and the component alohg is
0%=tr(p\o) =tr(p)/2=1/\2. Sincee’ is a constant, it is

One may argue that the dimension of the state tensorﬂorml"""y2 nesgle_cted and only the Bloch vectoe
grows as 2" with the numbem of qubits and hence that —L€~ @“ @”]  is considered. However, here it is conve-
expanding densities explicitly into a complete basis becomeQi€nt to keep the constant part and to represent the affine
rapidly cumbersome. The exponential growth of the numbeV€Ctor in terms of a set of homogeneous coordinates—i.e.,
of degrees of freedom available concerns, however, all derby means of the 4-vectop=[g° o' ¢* ¢°]". From
sities, regardless of the representation used. While this fact #(\jAy) = djx, j,k=0,1,2,3, trp1p,) induces an inner
immediately evident using our notation, it may go unnoticedproduct on the parameter spacB*( given by tr(pp,)
using some standard parametrization. Of course in a problem (o, ,0,)=0%0%+(01,0,)=%+(01,0,). The norm of
like detecting entanglement all degrees of freedom of the- . : e S/ AN D — (217112
state may come into play; therefore, we find it convenient tog |sl thezn g|Yen byllell=v{e.eh= tr(p. )= 92;”19“
have them all explicitly expressed. =z +r? Purity corresponds to tf) =1, i.e.,| e[*=3 or

In the next section the tensor of coherences is introduced belonging to the sphere of radius 1/y/2, call it Sf, R
and correlations, both classical and quantum, are discussgghile the 4-vector ¢° o' 02 ©°)T belongs to the affine
in its terms. For the sake of notation simplicity, we considersphere @O,Sf/\q)Z(l/\/E) , S’f/&)cgi, Complete mixing,

in some detail the geometry of the 2-qubit case. The exteNsiven bvp=211,..=(2/2)\~. has norm tr62) = (0%)2= 1
sion ton-qubit densities is straightforward. In Sec. IIIseverall’]g Yp=2lax= (V2200 ©)=(e)"=>

examples are treated. We construct explicit mixtures fmand corresponc_jstg—o_, i.e., to a “sphere” of 0 radlus_. Al
Werner states and for a tripartite family ending into thedegrees of mllxmg are in between the tW? e>ft2remes Just pre-
bound entangled state §21]. An example of how to con- Sented and in general the Bloch vectore 5; for O<r
struct(and analyzeNPT tripartite entanglement is also pro- <1/y2. Hence we have —i<{g;,0,)<% and 0

posed. S<<51,52>>$11V élvéZESrz'

Il. TENSOR OF COHERENCES PARAMETRIZATION B. Two qubits

FOR p Call Ajy=\;®\y, j,ke{0,1,2,3. Up to a normalization

Given n qubits living on the Hilbert space{?)®" of  constant, the\; form the so-callecproduct operator basis
dimension 2, the corresponding density operator is a(see[13]) and are subdivided into
2" 2" positive semidefinite Hermitian matrig such that
tr(p)=1 and it has 2"— 1 degrees of freedom. We construct
for p a basis borrowed from the literature on NMR spectros-, .
copy where it is normally referred to as the product operator1 qubit operators Aoz, Aoz, Aos, Ao, Az0, Ao,
basis[13]. Similar bases are discussed for exampl€6i8— et
10]. In terms of this basis, studying densities is equivalent 1 ~QubIt operators Agy, A, Ayzi Az, Az,
studying tensors of dlrt_actly observable real parameters. Aoz Az1, Az, Ass.

A word on the notation: we use the symbgi™for den-
sity matrices and ¢'” (possibly with a multi-indexfor the ~ Similarly to the 1-qubit case, the set 4fy, j,ke{0,1,2,3
components of the tensor of coherences. The superindex fsrms an orthogonal basis for all>44 Hermitian matrices
always a tensofmulti-)index; for powers ofp! we use extra (as p is now). It is still normalized, i.e., such that
round brackets. For the tensor, we also use the summatidn(A ji A m) =tr(NjA® N A ) =tr(N NN ) = 6y Sy TOr

0-qubit operators A gy,
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all j,k,l me{O 1,2,3. Except forAqg, everyAj has two trace operation consists simply in selecting the component of
eigenvaluest 3, each with multiplicity 2. An equwalent de- index “0” in the qubit to be traced over.

scription of p is given by the 2- tensop’, j, k=0, ...,3, Proposition 1.Given p= pi¥ Aj, the reduced density op-
Whereg”‘=tr(ijk), ie., erator is given by
p= 0" Aj=0 N @\ (1) pa=tra(p) = kN =201\, (58)
The tensor of coherenceg’® can still be seen as the 16- _ _ky ok
vector[ 000, .. 0%p1% . 03] which is still a homo- pu=ra(p) = 08N = V20 N (5b)
geneous representatlon of an affine 15-vector spgiteis a Proof. Since trj\) = 6,
constant. In fact, ad j is traceless fofjk}#{00} andAOO '
=11,.,®1,5, has trace 2, tf)=1 implies that o pA:trB(P):Qk)\j:QiktrB(Ajk)
=tr(pAgg) =tr(p)/2=1/2. Again the o/¥ parametrization _ '
lives onR*® endowed with the Euclidean inner product one =\ ®tr(\) = \/EQJO)\J-

gets from the following: _ .
or ph= V2010 from Eq. (4). Similarly for pg.
N K N K2 In general(also for noncorrelated or nonseparated densi-

tr(p?)=tr((e"Aj) )_jéo (@")"=cons&l. (2 ey the numbers ty2) and tr(p2) in Eq. (7) are partial

' guadratic Casimir invariants—i.e., the quadratic Casimir in-

Following the terminology of3], the norm trp?) is a qua-  variants of the two reduced densities. The scale fagfoon
dratic Casimir invariant ofp. Following instead, for ex- all components of the reduced density plays a double “nor-
ample,[22], tr(p?) is a Tsallis entropy corresponding to the malization” role: it takes care of the trace and it modifies the

3

choice of parameteq=2 in S;(p) = (tr(p%) —1)/(1—q). quadratic Casimir invariant of the completely mixed state
Unlike the single-qubit case, the subsetRIf in which  (which changes with the number of qubits
the parameterg!® are such tha@'kAJk is a well-defined _For an uncorrelated, from the tensor product structure,
density operator is not at all clearpriori and a hierarchy of olk= QL@QE is living on the tensor product of two affine
nested subsets exists: spheres ik*:
uncorrelatedC separableC entangledC “nondensity” , ) ( 1, ) 1
h®ege|l —=,5 —.,5° |, O<r,p,rg<—,
R 0a® s 72" 2 A:TB 2
(6)
If the density operatop is uncorrelated(i.e., p is a prod-
uct state:p=p,®pg), then alsop’* can be intended as the and therefore Eq(2) becomes
tensor productwhich for scalar quantities becomes ordinary 3 3
multiplication): tr(pz):jéo (Qk@)eg)z:jéo (Qk)2®(9'é)2
o= oh®os=0h0s, (3) . )
j =|5*lleal®|®| 5 +lesl?
with ¢}, describing the state of the first spln aofj the state 2 A 2 B
of the second. By “fully stretching’ QA® QB, one obtains 1 1
still the 16-dimensional vector._quljatm(B) is n30t true for _ 5“’2*) §+r§ =tr(p2)tr(p2). @
correlated states: for example=[30 ... 00%] has no

expression of the forn{3). Notice that sincep%= 03 are
nonzero constants, i'X=0 for all pairs{jk} such thatj
#0 andk#0, thenp is uncorrelated. From the same argu-
ment, it follows that, even for correlated densities, it is al-
ways possible to writ@!® and 0% in the form

Under local orthogonal transformations,=const andrg
=const. Under nonlocal rotations instead Ef.is not any-
more valid. Likewise, the factorization is not valid for corre-
lated p.

Equation(6) is useful to have a geometric picture of the
1 manifold on whicho!* lives. Expanding into its 16 compo-

' . 1
910:%@9%:%%' 0%k = 92@)9;:59;_ (4)  nents, we have

(i) 0°°=1 is the affine part,
. . (i) [*e®e® e 5.
The corresponding = 20/° and g&=20% are univo- a2
1

01,02 ,03
cally determined. Therefore®=p%®03=1%, regardless of (i) [0* 0] e 57 8/ V2 o .
the uncorrelat!on op. | 1(|1v)12 1t3he21 ZrZerT;gun;Tg “ gune d;mer;smnal vector
The main difference with respect to other papers[&g [€e e~ e~ e e~ e ™ e %les; L5,
is that we include the 0-qubit and 1-qubit terms in the dyadic With the parametrization chosen, testmg correlation be-
tensor structure. As a consequence, in the bdsjsthe re- comes an almost tautological issue. For example, a necessary
duced density operator is very natural to obtain as the partialondition for uncorrelation op is that ¢/°#0 ande®+#0
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Y o! 1&0, j,k=1,2,3. In_ fa_lct, assmime thatis uncorrelated +‘"+Ws(92,s7\o+‘"+Qf\,s7\3)Qg,s]
and @'*#0 for some paif jk}, j,k=1,2,3. If, for example, L
01°=0, then fromg!°=ph® 0 we must have thagh=0 =Wpp 1t +Wpps, (12)

and hencep’*=p}® Q‘g:O. Another necessary condition o
for uncorrelation ofp is that tr(p3)tr(p3)=tr(p?). That S'”Ce_QB,p:_l/‘/E’ Vp=1...s o
these conditions are not sufficient for uncorrelation is easily !t is possible to expang=wPp, ;@ pg,, emphasizing its
shown by examples, see Sec. Il A. Followifgj, it is con- affine structure as follows:

venient to describe the correlation betweanand B by
means of aorrelation tensoriC= c'kAjk (homogeneous, i.e.,

1 1 . 1
_ == wWPoh A —wWPO3
such thatc®=ci°=0) and rewritep as p=5 Moot SWPQA Ao+ =WPER A5

V2 V2
p=pa®patC=(hN)® (8N T Ay, (8) - 1
_ _ : +—=wPpg Agt-+ —=wPog A
wherecl*=pk—pl ok j k=1,...,3.Hence the necessary J2 o e J2 TS
and sufficient condition for the uncorrelation pfis thatC b1l 1 b3 3

=0. On the other extreme, when the reduced densitjes +WPQR p@B,pAart HWPRR p0B,pA a3
and pg are completely mixed the tensor of coherences con-
tains only correlationspi*=cl¥, j k=1, ...,3. From Eq.

(8) we can computde|*=(leallesl*+ =5 - 1(c)?, ob-
taining the classical inequality

1 1
:EAOO+ PA® Exo'i‘ E)\()@pg'i_wpgi,pejé,p/xll
+"'+Wpef\,p93,p/\33- (13)

2 < 2 2
(P =tpa)tr(p). ©) The expressioli13) allows us to easily provide a geometric
A classically correlated oseparablestate is written as a picture of the state space pf extending the one for uncor-
linear convex combinatiof29] related densities. If \=wPr, , andrg=wPrg , then from
Eq. (13):
(i) % is the affine component,

(i) [e*°0*°0*]= (1N2)¢ae S, | 7=WPS;, .

01,02 ,03]— S @2 apa?
If for pure states separability is equivalent to uncorrelation, (?") [9119 @ 32 (1/‘/51)9316 SrB/\E WfrB,psl\st
for mixed states the simultaneous presence of both classical (iV) [0 ... 0% ]=[WPox .05 - - - WPOR ,OB p]
and quantum correlations complicates considerably the pice WpSpr®SfB .

S
p=WPpp,®@pg,, WP=0, > wP=1. (10
p=1

ture. Notice hOWpin the last item the “multiplicative” part gf
The convex combination reduces under partial trace opfives on a convex sum of tensor products of spheres. Varying
eration and the statement of proposition 1 implies Fap: TBp andwP, all convex combinations of tensor prod-
Proposition 2.Given p=wPp, ,®pg p, WP=0,27_;wP  ycts of spheres of all possible radii can be obtained. Since
=1, the reduced density operators are given by any point in the Bloch ball is a good vector of coherences for
0 a qubit and since a convex combination of compact convex
PA=1rg(p) =WPpp p= \/EWpQA,pAi’ (118 sets is compﬁct and é:sonvex, the “multiplicative” part of a
separablep,0™, . .. ,0", lives on a compact, convex, infi-
Pa=tra(p)=WPpg p= V2WPOZ . (11b nitgly ger?%r%ted SEEBQO]. P

=wP
Proof. The result is well known and the proof is reported For p separablep=w"px ,®pg,p, We have

here as an exercise in computing with the tensor of coher- s
ences. Considering, t(p?)= 2 WPw(enp.0n0)(Csp C,0)
p=(W'QR 1081+ +W@R 08 ) Aco e
+(WHR 108 11 T WoRR 05 ) Aot

s
+oet (WlQileg’ﬁ‘ e +WSQ§\,SQ%,S)A33' + pq2=1 Wqu«EA,p aaA,q»«EB,p aEB,q»' (14)
pAq

=(wP)?enpl?les o>

and tracing oveB,

<<EA,p ,EA,q» is an inner product between vectors of possibly

pa=1ra(p)=2[(W'QR 108 1+ -+ W02 08 o . - = - - s
o different lengths{(@a p.@aq) =3+ (@ap Caa) With Ca

+(Whok 0% 1+ +wiek 0% ONy eSpr,QA’ququ. Since O<r;<1/1/2, j=p, q, we have
+"'+(W192,1Qg,1+'"+WSQSA,SQ(E);,S))\3] by«ethe . C;uchy-Schwa;rz inequality—i(S_—rAiM;
<{Qap:Cag)=<TaplaqSz and hence &{Qa.0aq
:\/E[Wl(Q,?\,l)\o+'"+Q/?§,1)\3)Qg,1 <1.
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For p separable, beside E¢(Q) we also recover the nec- Corollary 1. A sufficient condition for PPT is that all

essary condition of23] (itself a consequence of the partial terms of indices “2” in the tensop'* are 0.

disorder criterion, sef24]) on the traces of the reduced den-  For the tensoro’®, the partial transposition is a linear,

sities: norm preserving operation: ) =tr((p")2)=tr((p"2)?).
Proposition 3 Given p=wPp, ,®pg ,, WP=0, Ef,=lwp Hence entanglement violating PPT does not modify the qua-

=1, we have that dratic Casimir invariants of the density and the necessary

conditions(15) are insensible to it.

tr(pz) =tr(p?), (153
) C. n qubits
2
tr(pg)=tr(p°). (15b The notation for a density operator composed @jubits
Proof. From Proposition 2, f:lzggledAl, ...,A,) is completely analogous to the 2-qubit
s o
_ —pa . =p0lT AL
tr(pz)= Zl WPWILO A p O a 00 P=Papa, =0 i
p.d =l Iy @@\, 1, .- .,n=0,1,23.
S
= (Wp)ZHQA,sz+ pq2:1 WPWI(O A b0 A ) If AJl“'in hask=n non-null indexes, then it is an operator on
pq k qubits. The objecpi1 “in can still be seen as antensor or
(16) as a 2"—1 affine vector having constant componerft

=0p ® ®0R =(112)" [check that indeed tr(o..)
Equationg(14) and(16) have the same number of terms, but —tr(\o)"= \n. 0---0 —
, =tr(\o)"=(+/2)"; hence tre® °Aq...;)=1]. Reduced den-
each term of Eq(16) is greater or ezqual than the correspond- g "o nerators are obtained analogously to the bipartite case
ing one in Eq.(14), since||epll*<1 and {esp.8q) by collapsing each index being traced over to 0 and rescaling

<1 by 2 each time. For example, the reduced density operator

Equation(15) could be rewritten in terms of the tensor of 4t ine kih qubit is obtained by tracing over the other- 1
coherences as qubits:

ik

7 X
From Eq.(17), the geom_etng mtgrpretauon of Eq15? is :(\/E)nfleo---ojko-“o)\jk, i =0, ...
straightforward: || »|>=| ¢||? implies $+r3=%+r2, ie.,
the radius of the sphere of the compound system is boundegimilarly to the bipartite case, we have thais said to be
above by those of the reduced densites<r8 ncorrelated if
<min{ra,r3}+%. The coefficient} takes care of the dis-
placements of the centers of tleand p, (or pg) spheres
due to the different affine terms. Such a property is invariant
to convex combinations. Notice that this is a necessary but
not sufficient condition for separabiliyndeed it is not even
sufficient for uncorrelatednessf p. It becomes a necessary
and sufficient condition ip is pure, se¢23].

Also the partial transpose operation dfl9] p't

S 12=1nll2 o 12=1nll2
”QA” Z||Q|| ' ”QB” 2”9” . pAk=trAlu'AkflAKJrl'”An(pAl"'An):Q )\Jk

,3.

p:pAl®...®pAn:QLll®...®QJAnn)\jl®...®)\jn
_ i1 02 iAo
=Qn0n, QAN iy iy

and forp uncorrelated we have

=(T®l,)(p) and p'2=(1,&T)(p) (where T denotes the
single qubit transpositionbecomes a very straightforward
operation in the chosen basis.

Proposition 4 The partial transpositions @f become the
sign changes on the corresponding index “2”:

pT1=0%A g+ 0¥ A 1 — 0 Ay + 0N g, (183

p"2=01% o+ 01" A1~ 012N+ 03N, (18D
The proof is by direct computation. As is well knoWh8],
the PPT criterion provides a necessary and sufficient cond
tion for separability in the 2 qubit casp:is separable if and
only if p't (andp'2) is a density. We say in this case that

is PPT. Proposition 4 provides the following constructive
separability condition.

01231

tr(p?)=tr(pa)tr(pa,) - tr(pa,)

I?

- 1 . 1 .
2.0 = 2
U [EN A R A
A necessary and sufficient condition for uncorrelatiorp a$
that for all n-tuples of indexes {ji**“jn} i1, "in
:0112!31
irin=plig... In— pl1...5in

(. Op @ @O =CQp " "COp (19
Obviously the test19) can be restricted to-tuples{j;--jn}
such that at least two indices are nonzero.

The densityp is said separable if

p=WPpp p®@ "@pa (20

1-5
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whereX7_,wP=1, wP=0. Unlike the 2-qubit case, no neat

PHYSICAL REVIEW A 69, 012311 (2004

B. Bell state

necessary and sufficient condition for separability is known, t1e Bell state ¢>:(1/\/§)(|0>+|1>) has density opera-

although for a few qubits complete classifications in various;

or

entanglement classes have been proposed—for example, In

[25]. Qualitatively, one distinguishes between entanglement
due to violation of the PPT test for some of the indexes in
{j1-*int and a more subtle type of entanglement, called
bound entanglement, which cannot be detected by means of
PPT. The first type of entanglement is bipartite and will be

referred to as NPT entanglement.
Proposition 5. p is NPT entangled if for somek
e{1---n} the partial transpose

Tk=plrk-100k+1Tnp o .
pr=e A PR PR PIRES A

ik aliker oA,
te Aj i gLy iy
—olrik=12ik+1in AL . )
e Aj i g2l

ol ik Iy g

(21
has negative eigenvalues.

Also corollary 1 still holds.

Corollary 2. A sufficient condition for PPT is that all
terms of indices “2” of the tensop!* I are 0.

Similarly, if 7r(-) is a permutation of 1;-,n, the neces-

sary condition of proposition 3 generalizes to the sequence of

inequalities[23]

2 N2 ==t 2
tr(PAv(l)) tr(pAW(l)Aﬂ(z)) tr(p®)

Y permutationsr(-). (22

IIl. EXAMPLES

A. Partial quadratic Casimir invariants and classical
correlations: An example

The aim of this example is to show that given a 2-qubit

densityp, the condition trp?) =tr(p3)tr(p3) is not a suffi-

cient condition for uncorrelation. Consider the bipartite

density  p=0% oot 0% g1+ 0 %A st 07°A 1o+ %% 5
+013A 15+ 03 5;. Oncep®, 0% 01 and®° are fixed,
thengs, 03, 05, andod are determined. Choosg™ and
03! such that

1 0 0 1

110 0 0 O
pBeIIZE 0 00 O
1 0 0 1

In the tensor of coherences, it corresponds to

" 1 1 1 1
PBen:Q' Ajkzono_ EAM_ §A22+ §A33.

Sincep!®=p%=0V {jk}+#{00}, this state has both reduced
densitiesp, and pg, which are completely mixed, tpﬁ)

=tr(p§)=%. Hence the Bloch vectoréA and éB live on
“spheres” of 0 radius and, in Eq.8), o*=cl jk
=1,--,3. The condition trf3,)=1 implies that the en-
tangled state instead is pure.

C. Werner states

Consider the one-parameter family of states

"1y -
_ 0 0 0
4
1+x X
0 _ —= 0
4 2
Pwer X) = © 1ix . @
0 - — 0
2 4
1-x
0 0 0o —
- 4 -

which is known to be maximally entangled whgs1 and
uncorrelated wher=0. Using the computations of the Ap-
pendix, we get the following non-null componeng°= 1,
o= —x/2, 0??>= —x/2 the andp3*= —x/2. Hence

X

1 X X
Pwed X) = EAoo_ EAll_ EAzz_ §A33- (24

For x=0, tf(pa,(0))=3% and, for x=1, tr(p7,(1))=1.

0lod+ 013 From Eq.(24), the r_educed density operatqr,s andpg are
AL ' both completely mixed state¥ xe[0,1], since @/%=p%
s 1. a1 =0 V{jk}#{00}, so, once again, the homogeneous part of
OalB# 0™, Pwer CONtains only “pure” correlations€= pye— 3 A go-

For this highly symmetric density, the explicit computa-
tion of a linear combination of tensor products which is sepa-
rable in the whole domain€x<3 is rather easy with the
insight given by the tensor of coherences. For example, we
can construct 2-qubit termg! such that the corresponding
reduced termg!? and 0% are identically O in the following
way. Choose the 12 one-qubit densities:

but such that
(eR%(e)?+(eR)%(ep)?=(2")2+(e®h2.
Then tr(p3)tr(p3) =tr(p?) butC+#0, implying that this state

is correlated. Sinc@?=/2=0, from corollary 1 the cor-

. . . _ _ 2
relation is classic. pa1=0"No+ Q}-\,l)\lv pa2=0"No+ QA N2,
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paz=0N\o+ Qi,ahsa pe.a=0N\o— Qé,l)\lv pes=0N\o— Qg,z)\z,
pas=0"No— Q%\,ﬁ\l, pas=0"N\o— Q,zA,z)\z,
pas=0"\o— 0 N3, pe6=0"No— 0p a\3-

pe1= 0N+ Qé,l)\l! pg2=0°\o+ 925,2)\2'
If we use equal weighte/!=---w®= % the resulting density

3 .
pe3=0\oT 0p N3, p=WPpp ,®pg p IS

— 2 Moot 2 0510 At = 02008 N ert 2 03508 M
P= 500 3QA,1QB,1 11 3QA,2QB,2 22 39A,3QB,3 33

I 1 N Qi,s@g,a 0 0 Q,lA,lQé,l_ Qi,z@éz-
4 6 6
0 1 Qi,3Qg,3 Q/lx,lQé,ﬁ' Qi,zeé,z 0
4 6 6 29
= . 5
0 0R1081F QA 208 1 QR385 0
6 4 6
0A10B1~QA0E: 0 1 Qasl8s
L 6 4 6 i
|
While _the “multiplicativg”_ part of p is nontrivial, the corre- PA,1®PB,1:(QO?\0+ Q/1A,1K1)®(QO7\0+ Qé,l)\l)
sponding reduced densities are always completely mixed be-
cause of the cancellations occurring. The eigenvalugsiof = 0% A gt QOQé,leﬁ' Q/lx,lQOAlo
Eq. (25) are
+ Q,lA,lQé,lAll
> 1( ), 1
QAlQBl QA29|32 QA3933 QBl QA1
:EAOO"' 2 Aot —= 2 Aot QA 195 A
1+—(—e1 081t QA5+ 0A308 )
6 ALIZB1T EA2RB2T R A3B3N is a well-defined density within the same boundary as
pa1.pe1- INstead, if one considers the sum of two terms
11 . s s 3 which cancels the 1-qubit ternifor example, “1” and “4”
-t E(QA,lgB,l_ 020827 0A308R2), with equal weightsv*=w?*),
1 Wpa 1® pg 1+ Wpa 4@ pg 4= 2WH(0°0%A oo+ ei\,le %3,1/\11)
+ 6(91,19 1T 04208, 03083 |- (26)

1 3
:2W EAOO_ EXAll
All four eigenvalues are=0 for all admlssmleQAp QB D
€ %<1, . In part|cularp of Eq (251 |s equal tOpWerprowded =2w (Pap),

one chooses QA1 QAz QAS! QBl QAlv 952
= —4,, and g3 ;= — 3. In this case, the eigenvalues

never reach the critical points for a density (0 and). If in the larger interval &x=<1/\3. The same bound is found

—_2(p1 1 y_27,1 2
= ~3(a108,)=3(€a )" then the allowed parameter on the other pairwise sums. This is also the bound found by
spanisxe[0,3], as is known for a separable Werner state. Inthe trace-square |nequa||t|é];5)

fact, x=0 by definition [since x=35(gx,)?=0], and x Not|ce that choosmgx_)A1 QA2 035 but msteadgBl

=%(3) when gy, reaches* 1/\2. It is interesting to see =01, 0ho= —CQhao Cps=0nz and x=3(0x,081)
what happens to the single terms of the convex sum. For — 3(QAZQZBZ) in the same range of one gets the differ-
example, ent family

thenp,g is a well-defined density wheh+ (— £x)%<1:i.e.,
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[ 1+x X ] which can also be obtained fromye, by local unitary trans-
2 0 0 2 formations and which leads foge considered before fax
=1.
1-x
o — 0 0
, 4
Pwer— 1—x ) ) _ )
0 0 0 D. Tripartite family
4
X 1+x The one-parameter densityp= %A yoo+ 0**A 115
2 0 0 4 =1/(2J2) A goot XA 111, OF written explicitly,
1 0 0 0 0 0 0 |
——— X
242
0 ! 0 0 0 0 0
—— X
242
0 0 ! 0 0 0 0
——— X
2\2
0 0 0 ! 0 0 0
——— X
1 22
= — , 2
P 22 1 @0
0 0 0 x —— 0 0 0
2\2
0 0 0 0 ! 0 0
x —
242
0 0 0 0 0 ! 0
X _
2\2
0 0 0 0 0 0 !
X _
22
|
has trp?)=%+x2 and eigenvalueqs=1/(2y2)x} each pca=0"No+ 0¢ N1,

with multiplicity 4. Here p is a density for—1/(2y2)<x
<1/(2\/2). From corollary 2, this state is certainly PPT. Fur-
thermore, the necessary conditioi2®) are satisfied as well
as the realignment criterid26—2§. Still one may wonder if

p is separable and if an explicit mixture can be found and Pco= 907\0—9%’1)\1,

how. Forx=0 (and near iXit is obviously separable. Once

we have an explicit linear combination fpr, then this will 0 1 0
provide an estimate of its separability interval, valid at least PAs=C Mot Qash1, PB3=C Mo,
with respect to the mixture used. All 1-qubit and 2-qubit
reduced densities are in the completely random state. The
trick of pairwise canceling reduced densities does not gener-
alize in a straightforward manner to multipartite qubits, but
some variants of it can still be used. For example the follow- paa=0"No—CasN1, pea=0 N,
ing nine triples of operators,

pa2=0%0, pr2=0No— Qé,l)\l’

pca=0\o+ Q(lz,g)\ly

pa1=0%o, pe1=0No+ Qé,l)\ly pca=0N\o— Qé,S)\lv
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pas=0N\o+ Q}-\,s)\ll pes= 0N+ Qé,s)\ll
pcs=0%o,

pas=0"\o— Q%\,57\1, PB6= QO)\O_QE,S)\L
pce=0"\o,

pa7=0"\o+ Q/lu)\l- pe7=0\o+ Qéﬁ\l'

pc7=0"\o+ 9(13,77\1,

pas=0"No—Ca7N1, Pee=0°\o— 0B A1,

pcs=0"\o,
pas=0"\0, ppe=0"\o,

pc.o=0"\o— 9(13,77\11

with the choices of weighta*=w?, w3=w* w®=w®, and

w’=w8=w?® such thaw!+---+w°=1 gives

1

1 1.1 1 7.1 1
p= ﬁ/\oooJr E(ZW 08,10¢1TW'0g70¢ 7)) Ao11

1
+—=(2W30 308 3t W OA 0 DA
\/5 a3fc3 a7€c,7) N 101

+ \/E(W5Q,%\,SQ]I§,5+ W7Q%\|7Qé,7)A110

7.1 1 .1
W0 708 70¢ 7A 111-

In order to cancel the terms alongy;1, A 101, A 119, We fix
the parameters of the reduced operators as follows:

Ql B (X)2/3(W7)1/3 Ql B Ql
B1 o1 ci1— ~EB1
' 2wt ' '
L (X)2/3(W7)1/3 L L
Oas= T ow® @c3= " Cs3:

(X)Z/S(W7)l/3
Q%\,sz VT’ Qé,sz—Q/lx,si

o | 3
11 1 N
Op7=€B7=Cc 7™ ( W7) :

PHYSICAL REVIEW A 69, 012311 (2004

5
(02w e<wt, (%)W) B<w?, ((x)2w7)1’3sW7.

(29)
One can rewrite the last three inequalities as
Wl 3 W3 3 W5 3
0=x< W) ( );( ) . (30
wow T osw

Using the rule of thumb of selecting weights so that all three
reduced densities constraint80) become active simulta-
neously as we vary, w'=w3=w°2, one getsw’=(1
—8wh)/3. As we varyw! in O<w'<i—e¢, >0, inequali-
ties (28) and(30) give a trade-off. A quick numerical search
shows that—0.050=x=<0.050 is the largest common range
satisfying the constraints one can achieve, corresponding to
wl=0.0715. In fact, in correspondence with these values we
have that all 1- and 2-qubit densities have trace squares be-
tween 0.99 and {while tr(p?)=0.125].

One may wonder if the bound found depends on the linear
combination chosen or less. In order to verify this, it is pos-
sible to use the alternative family of densities:

pa1=0%0, pe1=0%N,, pC,lzgo)\O_Qé,l)\l’
PA,2:QO)\0+Q,1A,2)\11 PB,2:QO)\0+QE,2)\1,
pc.o=0\g,
PA,3:QO>\0_Q/%\,2)\L PB,3:QO>\0_QE,27\1,
pca=0"\o,
pas=0No+ a1, PB,4:QO)\0+QE,4)\1,
pca=0NoT 0T N1,
PA,SZQO)\0+Q,1A,4)\11 PB,5:QO)\0+Q%;,4)\11
Pc,5:QO)\o_Qé,47\1:
corresponding to

1 _ngé,l 4.1 2.1 1
p= ﬁ/\ooo"’ T+W QC,4 A001+ \/E(W QA,ZQB,Z

41 1 41 1 1
W0 4084 A 1101 2W QA 408 40C 4N 111-

Choosingw®=w?, w°=w*, and

2 X(W4)2 1/3
1 _ _—
hence reobtaining Eq27) for all x. What is left to do is to @ca™ wt 2 ) '
control for whichx there exist admissible weightg" such
that all the reduced operators are well-defined densities—i.e., 1 [ ()2 18
lok /<12, K=A,B,C, r=1,3,5,7. Squaring the relations ol,=—ol =\/= ) ,
above, we obtain that has to fulfill the four constraints ' ' w2l 4
- ——=x=—, 28 1 _ 1 _ 51 _ ,
2\/5 2\/5 ( ) QA,4 QB,4 QC,4 4(W4)2
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this convex combination has components that are all densi- E. Another tripartite biseparable family

ties when the three inequalities are satisfied:
(w3 (wh)®

T B 2w

(W2)3 (WZ)S W4 W4
-/ <x=<1/ , — ——=X=-—.
2w? 2w? \J2 V2

A parametric search gives thatis separable in—0.1166

Consider the 3-qubit statep=g!'A;, where %%
=1/(2y2) and

031_ ,033_ ,103_ ,111_ ,133_ ,303_ ,310_ ,313_ ,330
gT=eTTReTTRe =eTUTEeTEeT=Re

=@

=0
By

<x=0.1166 in correspondence, for example, witit @M= 0= 01%= o10= p1¥0= = —x,
=0.33,w?=0.17, andw*=0.165. Hence just like the mix-

ture representing a density is nonunique, also the separability _

range changes with the convex combination chosen. No con- o!'=0 otherwise. (31

clusion is drawn about separability in 0.1E5[|

<1/(2y/2), although this density is probably separable in the

whole range. Expanding, explicitly,
[ \2+12x ]
- X —x X —x —x X
4
2—4
\/_ ~ — —X —3x x —x
4
\/5—4)(
X —x —x X X —x
4
\/5—4)(
—X x 3 x —x —x x
1
P=T75 2—4
2\/E x —x —x \/_ x x —3x —x
4
\/5—4)(
—X —3x x —x x —x x
4
\/5—4)(
—X x x —x —3x —x x
4

V2+12x
X —x —x —x X X —

The trace norm for this density is pf) = 1 + 16x? and the
eigenvalueg : = \/2x} each with multiplicity 4. Hence is a
well-defined density matrix for- 1/(8/2)<x=<1/(8,2) and
it is mixed in the entire intervalcompletely mixed forx
=0). Whenx=1/(8y2), we recover the example of E€f)
of [21] pyps=3(ls==j_al¢;)(¥]), with |¢) an unex-
tendible product basis(UPB) for 3-qubit states:|y;)
=|01+),/1+0),|+01),|— ——) [where |*=)=1/y2(|0)

are fulfilled for all x, but thatp is separable only in some
proper subinterval —X.,X.] around the complete mixing
state.

Also in this case it is possible to obtain a linear convex
combination of tensor products of trace-1 Hermitian matrices
corresponding t@. This allows us to estimate the separabil-
ity interval with respect to the particular mixture chosen by
imposing that each matrix of each tensor product be a well-
defined density. One notices first that 1-qubit reduced densi-

*]1))]. pups is known to be entangled and PPT. Again, thisties are all completely mixedo® = p%°= p1%=0). Hence
last fact is simply verified by noticing that no index “2” for each nonzero 2-qubit term a cancellation on the corre-

appears in Eqe31); hence corollary 2 holds for ak.
Notice that for this example the necessary conditi@s

sponding reduced terms must occur, as in the Werner state
parametrization. On the contrary, 2-qubit reduced densities

012311-10
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1
2/2
7 i 1 J7
. sl _

U

2/2

V7
v

@

FIG. 1. (x,y) parameter space for the example of Sec. Il Hdnand (b) the triangle represents the admissibtey( pairs forpag_ ¢
andpllsfc, respectively. Hencex(y) belonging to the complement of the rhomb in the triangléodfgives NPT entangled densities.

53

(b) (©)

are not completely random and it is straightforward to ob-

serve that all of the nonzero 2-qubit terms correspond to PAB-Cc=—=
“reductions” of the four nonzero 3-qubit terms: for example, V2
01330 implies 093#0 0190 3% 0. If we use the

same scheme of Sec. Il D to produce the 3-party terms, theRor pag—c we have trbis, c)= 1+ 2x?+y? and eigenval-
we obtain a convex combination of 36 triples of two-level ues :(1—2+2y) of multiplicity 4 and £(1+22(y*+2x))
densities which, with the naive choice of all equal weights,each of multiplicity 2. Herep "t andp'2 instead have eigen-
guarantees separability only in a tiny interval values 3(1+2y2y) with multiplicity 4 and 3(1—22(y
—0.006=x=<0.006 [the realignment criterion detects en- +2x)) each of multiplicity 2.p55_¢ iS a State in the triangle
tanglement only clo_se to _1/@@)]. The explicit exp_ression of Fig. 1(a), while P/T\lsfc (or plzsfc) has positive eigenval-
of the components is available upon request. Notice that thges in the flipped triangle of Fig(1). Hence the area outside
linear combination obtained connegigpg With ©°Agoo.  the rhomb of Fig. (o) gives the &,y) leading to a NPT

From the classification df25], it is known that the bisepa- entangled state. Notice that dropping any of the three terms
rable entangled regions have a border in common with thg, ¢ (32) the density becomes PPT.

set of separable states. Since this last set is convex, the linear

combination has a unique crossing poit (plus, specu-
larly, —Xcr). IV. CONCLUSION

Managing densities and weights becomes rapidly cumber- e mitiparty qubit densities, the tensorial formalism
some, but one can expect the problem to admit an algorithshosed, although intuitively simple and certainly not so
mic formulation via (tractable convex optimization  qgina| has several advantages which are now summarized.
schemes. (i) First and foremost, it highlights the correlation pattern
between subsystems and between “groups” of subsystems,
as is known from the literatures,7]. Hence it may be useful
in the construction ofjluantum networks

NPT entanglement(i.e., entanglement detectable by (ii) It allows one to explain the concept of reduced density
means of the PPT tesis obviously the simplest to manipu- in terms of the affine parametrization and the tensor itself is
late for the purposes of building entanglement between sulgiven by all “degrees of reduction” down to the single-qubit
systems. There are by now standard methods to do that, typilensities in an unambiguous way.
cally starting from particular ket states or taking linear (iii) It also allows one to give a geometric picture of the
combinations of known singlets with product states. The aindensity in terms of juxtaposition of affine Bloch spheres.
of this example is just to show that such a construction isThanks to the affine parametrization, also reduced densities
also easy in the formalism we are proposing, and the statemnter into the picture. For example the degree of purity of the
one obtains are not the standard one normally considered imparty densities is given in terms of the radius of the sphere
the literature(GHZ, W states, et¢.[31]. For example, as- of the corresponding dimension via the standard trace norm.
sume that one wants to have three qubits witandB NPT  Such a norm itself can be intended as a Tsallis entropy for a
entangledC satisfying the PPT property. One possible solu-particular choice of the index or as a quadratic Casimir in-
tion is the state variant for the set of density operators.

Aogoot XA 120t XA 215t YAgze. (32

F. Building NPT entangled states
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(iv) It allows one to construct a density with the desired 0%=Re[(p)1z]+ Re[(p)adl,
correlations between its subsystems—in particular, also
guantum correlations of the NPT type. 20

(v) It provides an intuitive interpretation of both NPT and e ==Im[(p)1a]=Im[(p)24],
bound entanglement: they correspond to linear combinations
of tensor products in which at least one of the factors in one a0 1
of the products is not a well-defined density in the sense that @7 =51(P)ut (p)22= (P33~ (p)adl,
its Bloch vector is too big in norm.

In conclusion, we hope that the formalism put forward in
this paper may help not only in the understanding of quan-
tum correlations in multipartite systems, but also in their

o*'=Re[(p) 1]+ Re[(p)2al,

concrete and systematic engineering. e=—1Im[(p)1al+IM[(p)2al,
APPENDIX: TENSOR OF COHERENCES oB=Re[(p)1s]—Re[(p)2dl,
FOR 2-QUBIT STATES
If (p)pg P.A=1,...,4, are theelements of the density e?'=—1Im[(p)1al—IM[(p)2al,
operator p of Sec. IIB, the tensor of coherences
=tr(pAjy), j,.k=0,...,3, corresponding to it has compo- 02=—Re[(p) 14+ Re[(p)2al,
nents

oo_ 1 eZ=—1Im[(p)1al+Im[(p)2dl,
[} 2[(P)11+(P)22+(P)33+(P)44],

o3'= Re[(p)12]—Re[(p)aal,
0”=Re[(p)12]+Re[(p)adl,

902: —Im [(p)lﬂ_ Im [(p)34:|' Q32: —Im [(P)12]+ Im [(p)34]1

o™= [(P)ss—(plazt (s~ 2 (P11 () (P)ast ()
2 p)11—(p)2zt+ (p)3z—(p)aal, e 2 (P) 11— (P) 22— (P)33t (p)a)-
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obviously intended with respect to both components of the binations only in a trivial manner—is infinite.

tensor producpzEsp,l_wF_’(,_)jA'pcapB,p). _ _ [31] Although they may very well be reconducible to the standard
[30] A convex set is said infinitely generated if the set of its ex- states of a classification as that [&5] by means of local

treme points—i.e., the points being expressed as convex com-  unitaries and classical communication.
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