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Abstract—The convex set of density operators of an perspective), are bypassed by considering density
N-level quantum mechanical system foliates as a complexpperators of quantum ensembles and completely
flag manifold, where each leaf is identified with the adjoint noninvasive measurements (i.e., classical measure-
unitary orbit of the eigenvalues of a density matrix. For ments: with a back-action which is negligible in
an isospectral bilinear control system evolving on such .. .
an orbit, the state feedback stabilization problem admits the limit of large _ensembles)' This alsp_allows us
a natural Lyapunov-based time-varying feedback design. t0 relax the requirement of commutativity of the
A global description of the domain of attraction of the measured observables and in fact we shall assume to
closed-loop system can be provided based on a “root-have a complete knowledge of the density operator
space”-like structure of the cone of density operators. The (the state) for all times. Hence, in control terms,
converging conditions are time-independent but depend we assume to be dealing with a classical state

on the topology of the flag manifold: it is shown that the e .
closed loop must have a number of equilibria at least equal feedback stabilization problem. Although physically

to the Euler characteristic of the manifold, thus imposing this set up is realistic only for some applications

topological obstructions to global stabilizability. (typically nuclear spin ensembles [13], [23]), it
Index Terms— Feedback stabilization, Bilinear control is of widespread use for Fhe purposes of model-
systems, Quantum control, Convergence analysis. based quantum state steering (often under the name

“tracking control” [10], [41]), as it allows us to
generate control functions also for difficult tasks in
. INTRODUCTION spite of the high complexity of the open loop control
The state feedback stabilization problem for bilineroblem [8], [15], [34]. See [3] for an application
ear control systems has been studied for a long tinte,the dipolar decoupling problem of identical spin
see e.g. [24], [22]. The common setting adoptexystems.
in all these works is always that of a state spaceWhile the formulation comes from quantum con-
which is R", with the origin as equilibrium point trol, the main motivations for this work are of a
to be stabilized. In this paper, instead, we focusathematical nature, namely feedback design and
on a particular class of bilinear (matrix) controtonvergence analysis for a class of bilinear con-
systems, defined on a family of compact manifoldsol systems defined on the so-calledmplex flag
and evolving isospectrally. The original formulatiomanifolds [6], [31], [42]. These are a family of
comes from quantum control of non-dissipative sysompact manifolds foliating the convex set/éix N
tems [10], [14], [15], with the state matrix rep{ositive semidefinite Hermitian matrices of trace 1
resenting a quantum mechanical density operaftine density operators), that can be described as the
and the isospectral evolution the so-called Liowrbits of the density operators under ti§é/(V)-
ville von-Neumann equation [39]. The problemsonjugation action. Such evolution is isospectral,
connected with the phenomenon of wavefunctiaas the eigenvalues of the density operator form a
collapse following a measurement, (see [28], [3@pbmplete set of invariants of an orbit, while their
for a thorough account of the peculiarities of quamultiplicity determine its dimension [6], [11], [16].
tum measurements or [37] for a control theoretic Since the bilinear system has a drift term which



cannot be canceled without introducing singularitied the closed-loop system representing unavoidable
in the control law, the most natural problem forebstructions to global stabilizability.
mulation is to seek for a stabilizer to the periodic It will be shown, however, that the undesired crit-
trajectory drawn by the drift. Rather than studyingal points are not only unstable but also repulsive,
this problem like an orbital stabilization problemmeaning that convergence is guaranteed for all ini-
[5], we reformulate and solve it as a state trackirtgal conditions outside the set of equilibria. To attain
problem, thus avoiding the obstruction to semiglobal complete and time-independent description of the
convergence of a periodic orbit, see [40], Corollargritical set and thus of the domain of attraction, we
1.6 (where it is called stability in the large). In factmake use of the “overlap”, up to the imaginary unit,
with our feedback design the state will convergeetween the set of (Hermitian) density operators and
to a periodic trajectory evolving on the orbit of thehe Lie algebrasu(/V) (of traceless skew-Hermitian
drift. As a matter of fact, by passing to a suitable ranatrices), and of a few tools deriving from the root
tating frame, our time-dependent trajectory trackirgpace decomposition of a semisimple Lie algebra,
problem can be reformulated completely in terms ofamely its orthogonal decomposition into Cartan
time-varying feedback law for the fixed point of asubalgebra plus root spaces and the invariance prop-
nonautonomous system. erties of the root spaces under certain commutators
The Lyapunov design is essentially of thélike the ad-commutators) [2]. This “graph-like”
Jurdjevic-Quinn type [24], for which the usuabpproach yields simple, time-independent charac-
LaSalle invariance principle is applicable in spiteerizations of all converging initial conditions for
of the time-dependence of the closed loop, amdgiven reference trajectory and Hamiltonian. Also
does not differ much from what has already bedhe Kalman controllability of the linearization ad-
proposed in the literature for wavefunctions [17its an intrinsic formulation in these terms. The
[38], [20], [27]. characterization we obtain gives us insight into the
What is nontrivial is to ascertain the convergenga&oblem of choosing reference trajectories having a
of a given initial condition and to provide a globalarge domain of attraction.
description of the region of attraction. In fact, the
“global” sufficiency criterion used in [24] to prove 1. DRIVEN LIOUVILLE -VON NEUMANN
asymptotic convergence and based on the so-called EQUATION

ad-commutators [4], is never verified faV > 2. 4 5 general introduction to the formalism of

For wavefunctions, a related condition based on t§¢nwum mechanics we refer the reader to standard
controllability of the linearization along the desiregyipooks like e.g. [30], [39]. See also [28] for
reference trajectory was shown in [27] 10 be @ reaqaple introduction for non-physicists. More

local sufficient condition for stabilizability. Both .;ntrol oriented material for quantum systems can
conditions fail to give a global convergence analysis tound e.g. in [2], [10], [14], [15], [36].

because of the nontrivial topological structure of a |4 the semiclassical approximation [14], with a

complex flag manifold. given Hamiltonian Hy + uHp, —iHa, —iHp €

It is known [7], [26], that compact manifoldsg, \) 4 ¢ coo(R) a control function, one can form

without boundary do not admit a global asymp; gchpdinger equation for the wavefunction) (in

totically stable equilibrium because they are Nokymic units# = 1. and with unit norm{x|v) = 1)
contractible. This is a topological property and ’ ’

corresponds to a set being homotopy equivalent) = —i (Ha +u Hp) [¢), |¢(t)) € S*V~ ' c CV,
to a point [21]. The region of convergence of an (1)
asymptotically stable attractor must be in such @t a Liouville-von Neumann equation [39] for the
homotopy class [7], [40]. For our complex flaglensity operatop

manifolds, it will be shown that a fundamental . ‘

topological invariant like the Euler characteristic, p=—ilHa+uHp, p, peM 2)
which has as meaning the number of nontriviathere M = {p = p' > 0, tr(p) = 1} is a convex
possible permutations of the eigenvalues of tlseibset of the vector space d&f x N Hermitian
density operator, [6], [11], [16], [42] correspondsnatrices. Eq. (2) holds for a quantum ensemble,
to the number ofintipodalpoints, i.e., of equilibria hence it is more general than (1). Whegrcan be



written as the outer produgi = |¢)(¢|, then it originate from a transitive action, any pointdhhas
is called a pure state and it is characterized Iblye same structure as.
tr (p*) = 1. A state which is not pure is called mixed

and for ittr (p?) < 1. _ _
B. Properties ofsu(/V) and Gell-Mann basis

A. Structure of the state space For later use, we need to recall a few standard
Qroperties of the Lie algebra of traceless skew-
values of p, ®(p) = {m,...,nv}, are constants Hermitian matricesu(/N) and its relation withM.

of motion of (2). The convex set of all admissibld "€ réader is referred to e.g. [12], [33] for more
density operators\ is foliated into (compact andd€t@ils. Leth be the Cartan subalgebra sd(N), -
connected) leaves uniquely determined ®Yp). i.e., the abelian subalgebra of maximal dimension
Call S € M one such leaf and considey € 5. 1N su(NV), dim(h) = N — 1. Let ¢ be the vector
If the geometric multiplicities of the eigenvalueSPace such thatu(N) = h & ¢ with h L ¢
(p,) are given byji,.... jo j1 + ...+ jo — N, In @ standard biinvariantu(N) metric: tr (ATB),
9 << N thens is defined as (see e.g. [1] ig]A, B € su(N). Since Hermitian matrices are related
[45]) S ' "to skew-Hermitian matrices by a multiplication by
the imaginary unit, up ta we can have the same
S=UN)/(U(j1) X ...xU(j)), complete orthonormal set covering bott and
su(N). Let Ay = Iy and callA the (N? — 1)-
dimensional vector ofV x N Gell-Mann matrices

: . _[19]. Thenspan{—iA} = su(N). In correspondence
called complex flag manifoldsClearly, the dimen ith su(N) — b @ £, we have the decomposition

sion of S, call it m, depends on the number o : = .
distinct eigenvalues and on their multiplicities. Fog:] dAEmio A and'))\\g Sc\)/vimathc&resgagiaizn%}to
example, for a pure staté = {1,0,...,0}, S = = spani—ikej, b P 9

UN)/ (U(N —1) x S') and dim(S) = 2N — 2. traceless_, purely imaginary (_Jllagonal_ matrices and
P ¢ to off-diagonal skew-Hermitian matrices. H;, is
At the other extreme, if® = {5, m2,....0n} . . . .
‘ ZN 1 thens — UM/ (Y has the elementaryV x N matrix having 1 in thej/¢)
z]imiggion]{ﬂl_’b]v—. H;ance2N:2 <( ng/g( N)2 N slot and O elsewhere, then the matriceare given

m even. by

hIn (2)'hifb7(0) €S thhertl,lo(t) e SVt I> 0,and (. 1<j<N-1}=

the reachable set of the bilinear control system is at 3

mostS. d {(En +o By = JE )/ VIO + 1)} ©)
Choose now a suitable basis in whigh is )

diagonal. The orbitS is transverse to the set ofl <J < N — 1, for the diagonal part, and

diagonal density operators, and meets it in a number

of disjoint points equal to the number of distindt e 1 <Jj <(< N}= {(Ejf + Eéj)/\/é} (4)

permutations of the entries agf,. Such number . , ,

is equal to the cardinality of the Weyl group ad e 1<J<{<Ni= {Z(_EﬂJrE‘j)/ﬂ} (5)

well as to the Euler characteristig(S) of the , , .

orbit, see [16], [42] and Theorem E.2 of [18].1 < J << N, for the off-diagonal part. Calling

These points form the vertices of a polygon ify¢ — ®Pan {=i\e _Z/\ffﬂ}’ then we have the
the N — 1-dimensional diagonal “eigenensemble’Urther splitting oft into “root spaces
and are sometimes called Weyl chambers. Inspired

by the S? case (see Example 1 below), we shall t= @ e

call them antipodal If p, = diag(n,...,nn),

Z;‘V:l nj = 1,0 < <1, then thex(S) — 1 with the following commutation relations (see for
antipodal points are given biag (7,1, .., 7v)) instance [2] for the details):

with o(1),...,0(N) a permutation of, ..., N such

thatdiag (7,1, - - -, le(n)) 7 po- Since the orbitss B, €] = &0, (7)

The evolution (2) is isospectral, i.e., the eige

jl + +]g = N,2 < ¢ < N. As jh...,jg
form a flag in N, the homogeneous spac&sare

(6)

1<G<t<N



0 if £+#pandj+#q Beside connectivity ofiraph(Hp) (i.e., the N-

£ if {=p node graph having a link between the nodgs
Epr if j =g (8) and ¢ when (Hg);, # 0), A4 guarantees that all
Ch if j=pandl=q. :[‘Luengsraenr:;[i.root spaces” (see [2]) are excited by

[Eﬂv qu] =

In terms of (3)-(5), any density can be de-
composed aspp = goAo + pp + pe = 0oAo +

Zl<j<N 9h7j)‘b7j+21<j<£<N (Qgejf/\gejé + Qégjé)‘ésjf)’ . .
where g, — \/LN and gp; = tr(phy;) € R, Proposition 1 AssumeAl-+-A4 hold and consider

=1, N—1, 0% — tr(pAR,) € R, o3, = the systen(2). The _statep IS an _eq_uil_ibriu_m point

ir(p/\;%) cR 1 5*72? - ;(i a]ife)are caﬁéjdz the of (2) for v = 0 if and only if it is diagonal.
,J ] AN X H _

expectation values op along the basis elementgzurthermore, ifpe # 0, then foru = 0

D. Unforced equation

[28]. 1) fe(p(0)) = fe(p(tgg: .
Denotefe(p) the “support” ofp in &, i.e., the set  2) f?f ot Smf’}”’ Orje(t) 7 op(t + 6t) and
of root spaces “touched” by: f.(p) = p N ¢. Also eje(t) # 0¢;,(t +6t) ¥V (1) € Fe(p).

let Fe(p) = {(j¢) st.tr(ptj) £0, 1 < j < £ <

N} be the corresponding set of index pairs. When Proof: Whenu = 0, for a givenp = codo +

(j0) € Felp), then (o8, 0%,) # (0,0). Likewise " ¥ ity p] =0 o)

fo(p) = pN b, Fy(p) ={(j) st.op; #0, 1 <j < A Pol =5

N}’, and]—“'(,o) = Fe(p) U ],:h(p)' _ from which it is obvious thap diagonal is a fixed
Finally, if ¢ € su(NV) is decomposed in termspoint. To show the other direction, calling ;, =

of the basis above a6’ = —i) oy coiMng — pR _ipd  then for the off-diagonal part of

; id R ) & H +J 2]

i Y cjeren (A5 + CojAes0), we shall also in- |

dicate withf,(C), f¢(C) the support of”' in, respec- peje(t) = e =€) g, 10(0). (10)

tively, b, ¢, of indexesF,(C), F¢(C). _
Al+-A2 imply that&; — & # 0V (j), 1 < j <
_ o ¢ < N — 1, hence from (10) whenever ;,(0) # 0,
C. Properties of the Hamiltonian peje(t) # 0 V¢ > 0. Condition 1 and 2 of the last
We will make the following assumptions on théart also follows straightforwardly from (10). O
Hamiltonian of (2).

Al: H, is diagonal and traceless Ill. FEEDBACK STABILIZATION FOR N-LEVEL
< QUANTUM ENSEMBLES
1
H, = &4 4+EN =0, A. Problem formulation
Ex For the system (2), we are interested in the prob-

. lem of tracking the periodic orbit drawn by the free
with the &; supposed ordered: Hamiltonian H,. More precisely, the stabilization
) problem is the following.
<&E <. <En ) . .
fisb s Ev Given the systen{2) with p € S, find u =
A2:  H, is strongly regular i.e., u(pa(t), p) such that, fort — oo, p(t) — pa(t),
1) the eigenvalues aff , are nondegen- Wherepa(t) obeys

erate:f; # &, j # ¢, ) s
2) the transition frequencies are nonde- palt) = [=iHa, pa(t)] (11)

generates; — & # &, — &, (j0) # —iHa € su(N), pa(t) € S.
(pg) 5 # ¢ p#q. This is a full state tracking problem which, from
A3: Hp is off-diagonal; Proposition 1, reduces to stabilization to an equilib-
A4:  Hp enables all transitions between adjaium point whenp,(t) is diagonal. In the following
cent eigenvaluesr (Hgt; j11) #0V j = pq Will always mean the reference trajectosy(t)
1,...,N—1. solution of (11).
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B. Modified Jurjevic-Quinn conditions and antipo-.. = %& = 0 in correspondence with the feedback

dal points law (13):

The algorithm for the feedback design resembles du , _
the one used fof) in [17], [38], [20], [27] and - = ~tr([[=ifa, —iHp], pa(t)] p) =0
indeed the standard Jurdjevic-Quinn method f%lhd similarly

bilinear systems [24]. It consists in choosing as
candidate Lyapunov function the Frobenius norm d‘u y , . _
V = V(pu(t).p) = tr (931) — tr (pa(t)p). 1 palt) g~ IrLadan (Zifn), paltle) =0

obeys (11), . (15)

o Hence, if W’ = su(N) for some/, £ contains no
V =V(pa(t), p) = —tr ([=iHa, pa(t)]p) other trajectory thap,(t) and convergence follows.
—tr ([—iHa, plpa(t)) — utr ((—iHg, plpa(t)) For |¢) which is an eigenfunction, the condition
=utr ([—iHpg, pa(t)]p) . of Proposition 3, used implicitly in [38], is made

(12) explicit in [27] as a Kalman rank condition on the
_ linear tangent system. Givenc S, the linearization
Since V' is homogeneous im, the obvious choice of (2) aroundp,(t) yields

of feedback dp
— = |—tH t —iH t T,,S.
w= (il o) @) e PO OIS
guaranteed” = —(tr ([—iHp, pa(t)]p))* < 0. Since dim(7,,S) = m, if (16) satisfies condition

The following two sufficient conditions for (14), then in the same spirit of the original Jurdjevic-
asymptotic stability of the closed-loop system giveQuinn work (see Lemma 2 below for the details),
by the feedback law (13) are adaptations of knowhis implies that in closed loog contains no other

results to the case at hand. trajectory thanp,(t), at least locally.

These criteria are not straightforwardly useful for
Proposition 2 (Jurdjevic-Quinn [24]) at least a couple of reasons:
Assume Al+A4  hold. Call W' = 1) the Lie algebraic condition of Proposition 2
span {—iHp, ad_iy,(—iHp),...,ad’y, (—iHp)}, never applies (see Lemma 1);
wheread’ ,; (—iHp) = [~iHa,...,[~iHa —iHg]l. 2) the linearized tangent system may be time-

¢ times varying and the sufficient condition is always

If W¢ = su(N) for some/, then the systenf2) local.

with the feedback13) is asymptotically converging Both arguments are consequences of the nontrivial
to pa(t) from all p(0) € S which are not antipodal topology of S, and imply that the domain of attrac-

points of p4(0). tion of the closed-loop system cannot be the entire
L o S.
Proposition 3 (Mirrahimi-Rouchon ) [27]) " The vector space of Proposition 2V’, is in-
Assume A1+-A4 hold and call Q'(pi(t)) = variant under the so-callechd-brackets” [24] but
Sp%}n{[—ZHB, pa(t)], [=iHa, [=iHp, pa(t)]],-- -, not necessarily a Lie subalgebra. For the system (2)
ad;y, [~iHp, pa(t)]}. If the condition we have that thesgl-brackets are never generating.
dim Q" (pa(t)) = m (14) Call Wi = span{—iHa, W'}.

is satisfied? py(t) € S obeying(11), then the systemLemma 1 Under Al1-+-A4, for the system(2),
(2) with the feedback13) is locally asymptotically Lie(W4) = su(N) but W4 € su(N) V¢ > 0 if

converging top,(t). N > 3, while W C su(N)V¢>0if N > 2.

Both criteria are based on the application of Proof: Since H, is strongly regular andA\4
LaSalle invariance principle to the closed loop sysmplies that Graph(Hg) is connected, it follows
tem. Concerning Proposition 2, the largest invariaftom Theorem 2 of [2] that the smallest subalgebra
set€ in N ={p e S s.t.V(pt),p) =0} can be containing—iH,, —iHp is su(N). For the second
computed looking at the locus in whieh= Cfi—? = part, recall thatdim(h) = N — 1. From the Lie



bracket relations (7)-iH4 € h, —iHp € ¢ implies In the case op,(t) diagonal, the antipodal points
adf_iHA(—z‘HB) € t. HenceW’ C £ VN > 2. Even are equilibria for the closed loop system. FQit)
adding—iH 4, WY alone cannot fully generatefor nondiagonal, they are critical periodic trajectories.

any/if N > 3. ) )
Remark 1 The trajectory tracking problem pre-

The first part of Lemma 1 is also known as theented above admits a reformulation as a point
strong accessibility condition [29]. Sinea(N) is stabilization for a nonautonomous system. Consider
compact, it suffices for controllability on each orbia frame rotating with—iH 4. Call p; and p the
S. new reference and state matrices. Them) =

Concerning Proposition 3, it is easy to see that’p(t)e "4t and py(t) = efalp,(t)e Hat =
even whenp,(t) is diagonal and (16) is time-p4(0), i.e., the reference trajectory becomefxad
invariant, the Kalman-like “rank condition” (14)point Using a variation of constants formula, we
alone is not enough to guarantee attractivity, as cahtain for (2)
be checked for example in any other diagonal state (- ot iHat, CiHat ~
pp € Siin fact [—iHa,p,) = 0 ie., the linear {ﬂ(t) = ule(—iHp)e™ ", p(t)]
system turns out to be driftless. This argument can p(0) = p(0).
be generalized as follows. The Lyapunov functiort’ = tr (52) — tr (p.p) and

N _ ) its derivativeV = utr ([—iHg, pa)p) are invariant
Proposition 4 Consider the systen2) with the 5 the change of reference frame. The uniformity
feedback(13). Given py(t) € S obeying(11), any iy time of the asymptotic stability for the nonau-
antipodal statep,(0) € S of p4(0) is such thap,(¢)  tonomous system (17) with the same feedback sta-
remains antipodal tgq(t) V¢ > 0. bilizer as (13) follows directly.

Proof: For any given diagonal pajr,(0), p4(0), o N
[—iHp, p,(0)] € t/i is off-diagonal. But then = C. Time-independent convergence conditions
—tr ([—iHp, pa(0)]p,(0)) = 0, sinceh L &. Hence  The following Theorem provides a time-
no feedback is produced and singgt) = p4(0), independent condition for asymptotic stabilizability
pp(t) = pp(0) ¥t > 0, the claim follows. Con- to any p4(t) € S, and a global description of the
sider now the case of;(0), p,(0) € S antipodal region of attraction of the controller.
but not diagonal. For the unforced system, one _
has thatp,(0), p,(0) antipodal impliespy(t), p,(t) Theorem 1 AssumeAl+A4 hold and consider the
antipodal for allz > 0. To see this, notice thatSystem(2) with the feedback13), where p4(t) €
by the transitivity of theSU(N) action onS, 3 S obeys(11). An initial condition p(0) € S is
U, € SU(N) such thatj,(0) = Uyps(0)U] and asymptotically converging tp,(t) if
5,(0) = Up,(0)U] are both diagonal. But then 1) p(0) is not an antipodal point 0p,(0),
pa(t) = e~Hatp,(0)eitat = e~iHat[Tl 5 (0)U,eHat, 2) F([—iHp, pa(t)]) N F (p(0)) # 0,
and similarly p,(t) = e~ Hatyy] 5, (0)Uyetf4t, ie.,  3) CardFe([—iHp, pa(t)]) = m/2,
pa(t) andp,(t) are still diagonalizable by the samavhereCard denotes the number of pairs of indexes
unitary matrix and therefore still antipodal. Fomn F.
pa(0) and pp(0) antipodal, .the feedback (13) at In order to prove the Theorem we need a few
t = 0is u(0) = —tr([~iflp, pd(o)]pp_(o)) ~ preliminary results. The following Lemma implies
—tr <—iHBU1T[ﬁd(0)7 pp(0)]U1) = 0. Since no that although the vector spad&™~! is never the
feedback is produced, the system remains unforaestire Lie algebrasu(N) acting transitively onS,
and, for what said abovey(t) =0 V¢ > 0. it may nevertheless span the entire tangent space at

[0 a point. The same holds for the Kalman controlla-

_ _ _ _ bility. An equivalent time-independent condition is
As will be shown in next Section, the antipodahen provided.

points are not the only states lacking attractivity, and
the linearization alone is not enough to investigatemma 2 Under the assumptionA1--A4, the fol-
the domain of attraction of the feedback stabilizetowing three conditions are equivalent:

(17)



1) the Kalman-like conditior{14) is satisfied; = Remark 4 The conditions of Lemma 2 depend on
2) dim (W™ pa(t)]) = m; pa(t), Ha and Hg but not on the state, meaning
3) CardFe([—iHp, pa(t)]) = m/2. that alone they are not enough to guarantee conver-

Proof: Given C' € su(N), strong regularity gence of a giverp(0).

of H, implies thatC, [—iH,C],... ,adﬁ}{AC are  The Lyapunov derivative in (12) is made homo-
all linearly independent up té = 2 CardF(C'), geneous inu by the cancellation of the drift term
see Theorem 2 in [2]. IfC' = Cy + C, since and therefore the notion of attractivity provided by
[—iHa, Cy] = 0, only the off-diagonal part of” V' must be rendered invariant under such flow (in
matters. The suppofft(C) intersects a number ofa way similarly to the orbital stabilization problem,
“root spaces’®,;, (each has real dimension 2) equalee [5]). The following Lemma gives an alternative
to CardF¢(C'). Furthermore, since-iH 4 € su(N), attractivity condition which is fully invariant under
from (7) andA2 it follows that: the drift and generically equivalent to the usual
¢ _ Lyapunov convergence property. This last in fact
Fe (ad*iHA@ = R(C), (18) may fail in isolated points: certain critical points
while of V' are not invariant under the flow of the drift
f (adﬁ_iHAC') = 0. (19) (see Section IV for examples).

If O = [~iHp, pa(t)] @s in (16), then we have the gnyma 3 AssumeA1+A4 hold, and consider the
Kalman-like controllability condition (14) Prov_idedsysten(Z) with the feedbackl3), wherep,(t) obeys
that Card Fe([Hp, pa(t)]) = m/2, and (18) implies 45 (11" The following conditions are generically
Fe([—iHp, pa(t)]) = fe(adg_iHA[—iHB,pd(t)]), equivalent under the flow of the drift term:
(20) 1) F([—iHp, pa(t)]) NF (p) #O;
¢ =1,2,.... If insteadC = —iHp, one gets the 2) V(p,(t),p) <0;
(-th order commutator o#/V™~!. From the Jacobi 3) tr([adé_iHA(—iHB),pd(t)] p) #0VYL>0.

identity it follows that for any/ > 0 Proof: Clearly

2’ (—iHp), pa(t)] = V = —(tr ([—iHp, pa(t)]p))? <0 implies
= [[~iHa, ad};, (—iHp)], pa(t)] F([=iHp, pa(t)]) N F(p) # 0. To prove that
iH . fadt-Ll (il . (21) also the converse is generically true, it is enough
= [~iHa, [adZy, (—iHp), pa(t)]] to show that whenF ([—iHy, pa(t)]) N F (p) # 0

— [ad}y, (—iHp), [—iHa4, pa(t)]] the zero crossing of the inner product can occur
and, by induction ort, only at isolated points along the trajectories of the
closed loop system. Assume Condition 1 holds

WY, pa(t)] = Qlpa(t)). (22) and, at timet, tr([—iHg, pa(t)]p) = 0. If ot is

In summary, strong regularity df , guarantees the & smaII. .time increment, then from Condition _1 of
full spanning of a linear space whose dimensidafoPosition 1F ([—iHp, pa(t)]) and F (p) remain
is determined uniquely bfardFe([—iHpg, pa(t)]). the same, while, from Condition 2 of Proposition 1
Igﬁsséqﬁé\;atlllsnce of the three conditions fogows (PR (L +08), 30t +08)) # (pR3e(6), pisel))

poj(t+0t) = py;(t)
Remark 2 In general CardF(Hp) # (P?,B,jé(t+5t)apie7je(t+5t)) 7 (P?,é,jf(t)apigjé(t))
CardFe([—iHp, pa(t)]), hence the controllability Papi(t+0t) = pap,;(t).
of the linearization depends from the reference . N -
trajectory p,(t) chosen. It Fy([—iHp, pa(t)]) N Fy(p) # 0, then

from the last row of (8) onlypse(t) matters
Remark 3 While the Kalman-like condition (14)in the computation ofFy ([—iHpg, pa(t)]), and
seems time-varying as soon ase(t) # 0, tr([—iHpg,pae(t+ 6t)]py(t+ 0t)) # 0sincepye(t+
the equivalent condition 3 of Lemma 2 is alét) # pae(t), while py(t + 6t) = py(t). If,
ways time-independent sincg ([—iHp, pqa(0)]) = instead, Fe ([—iHp, pa(t)]) N Fe(p) # 0, then
Fe([—iHg, pa(t)]). we have two possible contributions to consider:



Fe([—iHg, pay(t)]) and Fi([—iHp, pae(t)]). In Consider the geodesic line i§ of reference tra-
the first case the conclusion follows from the samectories connecting, with p.: ps(s) = ps + ¢(s)
argument used above since npw, (t+0t) = pap(t) such thatp(0) = 0 and ¢(s.) = p. — pa and py(s)
while pe(t+dt) # pe(t). In the second case it followsobeying (11) for alls € [0, s.]. Along this line,
from the observation thatF, ([—iHp, pae(t)]) N - 5V — —tr (—iHw. 51002
Felp) # 0 implies F(parlt)) # Fi(p) (see the  (Pos)pe) ==t ll=illp. pdpa)

explicit computations of the commutators in (27)). — tr([=iHp, pelpa) tr ([=iHs, pel¢(s)) ,

The general case” ([—iHg, pa(t)])) N F(p) # 0 s€0,s.], is afunction linear iny(s) and such that,
is the sum of the two situations just describety the assumption (23),

Concerning Item 3, it is enough to notice th Ay T N\ , N
generically tr ((—iHy, pa(t)]p) # 0 if and only if %%(O)v’ie)—wpd’%) = —tr ([=iflp, pelpa)” <0
tr ([ad” 7, (—iHg), pa(t)]p) # 0. The argument isV (Ps(se), fe) =V (pe, fe) < 0.

of the same type used in the proof of Lemma i then V(p¢(s),ﬁe) <0V s € [0s)] and
For example it Fe ([~iHp, pae(t)]) N Fe(p) # 0 vy (s), ps(s)) = 0. Since j. is any point in
then just apply S~ N andV(-,-) is a distance orS such that

Fe([—iHp, pa(t)]) = FE([ade_iHA<_iHB)7 pa(t)]), X)ﬁ%@\(’? ’tlfleazt ;ac?‘lpj?g) Z(pg(s[)(’)’p;e(f)é : (8}niet_

¢ =1, 2,.... The genericity of the argument can b¥arying) equilibrium for the closed loop system
shown as above. ] Wwhich is at least locally stable. But this is a contra-
diction, sincep, is an isolated locally asymptotically
Proof: (of Theorem 1) For the closed loopstable (time-varying) equilibrium. Hence it must
system, consider the séf of critical points. Con- be thatV(p.,5.) > 0 i.e., p. must be repulsive.
dition 3 guarantees that locally aroupd(t) there Thereforep, cannot belong to the invariant sé&t
is no other closed loop trajectory iV, as, from From Lemma 3, all conditions (15) are satisfied or
Lemma 2, the linearization (16) at;(¢) is con- violated simultaneously whely = 0 or V' < 0
trollable. Hencep,(t) is a locally asymptotically respectively, i.e., whei ([—iHg, pa))NF (pe) =0
stable (time-varying) equilibrium for the closed loor # 0. Hence outsideV p(0) must converge te,
system angb,(¢) is isolated in\. Considerp.(t) € since any othep, € N is repulsive. O
N, pe(t a(t), pe(t) obeying (11). This implies N _ _
pe(t)p éi)sjz)éinpt %r())mpp(d()t) and V (pa(t), pe(t)) > 0. Remark 5 Condltl_o_n 2 of Theorem 1 is obwog_sly
The independent variable will be omitted from & necessary condition for convergence. Condition 3
now on. We need to show that must be a repulsiveinStead is sufficient but not necessary, see Example
critical trajectory for the closed loop systemFor 1 In Section IV.

any p. € NV, it is enough to perturlp. to p. € S \while, from Lemma 2, the linear spans /ai(t)
so thatF ([—iflp, pa]) N F (pe) # 0. It is always of the linearized system (16) and of the’ yield
possible to do this in a neighborhood pf since 5 gpace of the same dimension, Condition 3 of
F ([-iHp, pa]) has cardinality at least./2 and | emma 3 holds for each of the bilinear forms (in

(M5 jj41: P j41) # (0, 0) implies thatGraph(Hs) (1) and p) but it is in general not true for the
is connected and that there is no subspége |inearization atpy(t)

invariant under—iHg. But then, from Lemma 3,
tr ([—iHp, palpe) # 0 and V(pg4, pe) < 0, i.e., p. Corollary 1 Under A1+A4 and for p,(t) obeying
is attracted tg,. To show thatV(p., g.) increases, (11):

assume by contradiction that 1) dim (WY, pa(t)]) = dim Q(pa(t)),
: ~ .o~ 3 szO,,m—l,
V(pes pe) = —tr (pepe) — tr (Pepe) 2) tr([adé,iHA(—iHB), pa(t)]p) # 0
= —tr ([=iHp, pelpa) tr ([—iHp, ﬁe]pe)(2<3 )0- < tr((ad’,py, [—iHp, pa(t)])p) # 0.

Proof: The first condition is a consequence of
!Since p. may not be isolated i\, the term repulsive has to bethe strong regularlty of7, and follows stralghtfor-.
intended as “semi-repulsive”. wardly from Lemma 2, see (22). The second claim



follows from the recursive application of the Jacohi,(t) € S, where p,(t) obeys(11). For each pair
identity (21) and the observation thaﬂz_iHACb = pa(t), pp,(t) there exists a two-spheﬁpd’pp,} CcS

0, C € su(N). L' such thatp,(t) and p,,(t) are antipodal points of
2

. . — S :
The consequence is that the linearization aloné’«»;}
is inconclusive about the region of attraction of the  pygof: (of Proposition 5) From Proposition 6,

reference trajectory in the closed loop system, whilecontainsy(S)—1 two-spheres. Each two-sphere is

instead thead-commutators completely specify it.

Corollary 2 When CardF, ([—iHg, pa(t)]) =
m/2, the region of attraction of the systef®) with
the feedbacK13) is given byR = S ~ N.

itself a compact manifold without boundary, hence it
is noncontractible. In particular, for any Lyapunov
function V' e C>(S) denoteV its restriction to

S%pd,pp].}' Then certainly for any choice of feedback

u =

u(p) in closed loop the setV; = {p €

S%pd oy} S- L V;(p) = 0} contains at least two equi-
Py

D. Global stabilization and topological obstruc- _ _
tions libria. This follows fromV;(py) = 0 and Vj(p) < 0

For a given control system, once a LyapunoV? € S7,,,, ) (inherited fromV(p) < 0 Vp €
function and a feedback law are chosen, the cd). In fact, if Card N; = 1 then p,(t) would be
dinality and structure of the set of equilibria irglobally stable ir§?,  , noncontractible, which is
closed loop can be investigated. Global feedbaekcontradiction. By coﬁnting the number of distinct
stabilization is achievable only if this set reduces ®quilibria obtained in this wayard V' > x(S) and
a single isolated point (or a time-varying referenade claim follows. OJ
trajectory as in our tracking formulation). From
Proposition 4, for our choice of and u(p) there
are at least as many equilibria as there are antipodal
points ons. The methods developed above yield considerable

It would be interesting to draw the conclusiofnsightinto the stabilizability and convergence prop-
that this must always be the case fSrregardless erties of a quantum density operator. A few inter-
of the choice ofV and v = wu(p), and that it esting cases foN-level systems are now described.

is a consequence of the topological structure &hey are followed by a more detailed description

IV. A FEW CASES OF PHYSICAL INTEREST

S. A manifold like S, compact without boundary,for systems withV = 2, 3.

cannot be globally asymptotically stabilized because. Since m <

it lacks the contractivity property, i.e., it is not ho-

motopy equivalent to a point, see [7], Proposition 1
and Theorem 1, and [40]. This fact alone, however,
sheds no light on the minimal number of equilibria
of a feedback design.

Proposition 5 Consider the systenf2) and the
(possibly time-varying) equilibriunp,(t) obeying
(11). For anyV € C*(S), V(p) > 0, V(pa(t)) =0
and any smooth. = u(p) such that for the closed-
loop systemV(p) < 0, V(pa(t)) = 0, the set
N ={pe8s.t.V(p) =0}, must contain at least
x(S) — 1 (possibly time-varying) equilibria.

In order to prove the Proposition, we need the
following result, straightforward adaptation of the
main Theorem of [32].

Proposition 6 Denote byp, (t), j =1,...,x(S)—
1, the (possibly time-varying) antipodal points of

N2 — N, and
CardFe ([~iHp, pa(t)]) < (N? = N)/2,
(i.e., the maximal number of off-diagonal
terms), each complex flag manifold may
admit a controllable linearization (depending

on pqa(t)).

« The assumptio®4 of direct coupling between

nearest energy levels is needed in order to
exclude the existence of subsetsSivhich re-
main invariant under the closed loop dynamics.
It is a common assumption in most practical
cases (dipole approximation [14]). See also
Example 2 below (last item).

The full connectivity of Graph(Hp), i.e.,
(Hp)i; # 0Vi # j, is neither a sufficient nor

a necessary condition for asymptotic stability.
If pys is an eigenstate and another eigenstate
then there is never convergence, not even if
Graph(Hp) is fully connected, because is
antipodal top,.
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« For pure states and a not fully connected attained wher#, ([—iHg, pa(t)])NFe (p(0)) #
Graph(Hp), certain eigenstates are easier to 0 but [-iHg, pa(0)], p(0) both real or purely
stabilize than others, since they have a larger imaginary. This follows from Proposition 1.
region of attraction. The easiest is the one of
energy&; such that the indey appears more Example 1 N = 2. Considerp which is a pure
often in % ([—iHp, pg]). In Example 2 below state,®(p) = {1,0}. Topologically, the casé/ = 2
with Hp as in (24), the eigenstate of intermeis the only easy one, a§ = S* ~ CP'. With
diate energy has a larger region of attractidhe choice of basis (3)-(5), one has that lies
than the ground state or the most excited sta@ the great horizontal circle d§?, the diagonal
When Graph(H3g) is fully connected, there isantipodal states at the north and south poles,tand
no such difference. From Theorem 1, this doebm(h) = 1, corresponds to the vertical line passing
not mean that all initial conditions have théhrough the poles of the sphere. Everything extends
same convergence properties to a giyefr). unchanged to mixed statgs such that®(p) =

« If pg(t) and p(0) are both block diagonal and{7n:, 72}, m + 72 = 1, 0 < m, 2 < 1, sinceS

the blocks do not overlap is still equal toS?. Since eachS crossed) exactly
i, twice, x(S) = 2.
AssumeH, = A1 (1) _011 — hapihp: and
; Hp = Mhew |0 11y A Erom Proposi-
V2 1 0 B,g127'¢ 12"
tion 1, bothtr (p?) andpy are integrals of motion of
i i the unforced dynamics, while in coordinates the two

_ - components op, evolve according to a sinusoidal
law. In this caseW' = span{—i)\{},, —iAg;o}
and W} = su(2). Hence the “global” condition of
Proposition 2 is not valid. When applying Theo-
rem 1 to the system plus the feedback (13), we have
the following for the closed loop system:

. anyp,(t) has a single antipodal point which is
then also an equilibrium;
- . o if pq(t) is diagonal F; ([—iHp, pa]) = {(12)},

the linearization is controllable and any non-
diagonal p satisfies Theorem 1. Hence any
: _ * p(0) such thatpe(0) # 0 is in the domain of
[—iHp, pa(t)] = X ’ agtrzaction ofpa di(ag);onal;
: . if pa(t) is off-diagonal,
w  x CardF; ([—iHp, pa(t)]) = 0, and the sufficient
- condition of Theorem 1 does not apply.
which impliesF ([—iHp, pa(t)]) N F (p(0)) = However, 7, ([—iH, pa(t)]) # 0 and as long
0andV =0, i.e.,p(0) is not attracted te, (). as Fy ([—iHg, pa(t)]) N Fy (p(0)) # 0, ie.,
« Not all states in A are maximally dis- wheneverp, # 0, p — pg. This is a special
tant from py(t). Assumepq, p are such that situation due todim(h) = 1, and has no
Fy ([=iHp, pa]) N Fy (p(0)) # 0, Felpa) = counterpart forN > 2.

0, Fe(Hp) N Fe(p) = 0. Also in this case |n symmary, there is always almost global conver-
F ([=iHp, pa)) N F (p(0)) = 0 and p is not gence except whep,, = p, = 0, i.e., except when

converging. However, sincer (pap) # 0, pa poth p,(t) and p belong to great horizontal circles.
and p are not maximally distant. =

« A typical example of an initial condition for
which V' (p4(0), p(0)) = 0 but not invariant un-
der the drift (see paragraph before Lemma 3) Bxample 2 N = 3, ®(p) = {1,0,0} (pure state).



Since the isotropy subgroup in this caseif) x

St of dimension 5 (recall thatlim(U(3)) = 9),
dim(S) = 4 andx(8S) = 3. The structure o C S’

in coordinates is studied in detail in [16], [11],
[25], [35]. In particular, the single antipodal point
of the case@V = 2 is replaced by two symmetrically
distributed and equidistant antipodal points.

For the all different eigenvalue case(p) =
{m, m2, ms}, m; # nx, which is the generic case,
the stabilizer is the torusS')®, S = U(3)/(S')?
and dim(S) = 6. The only diagonal matrices that
are conjugate withp, € S are its five element
permutations, i.e.x(S) = 6 in this case. The drift
of the system is given by

Hy

_hapa

V2 V6

S = O

1 0 0
0 -1 0
0 0 0

1

h
+ A7h72 0
0

0
0
-2

=hap1Ap1+ hap2rpe.

We shall consider the following control vector field

1 mo hg,mz %0
Hgp=—|h 0 h
B NG B,¢,12 " B,23 (24)
0 hB,E,QS 0

R R R R
=hpp192e12 T N a3 Neas

which hasF.(Hg) = {(12), (23)} or, alternatively,

Hp =

1 %0 h‘%,?,lQ h’%,?,l?)
hB €12 0 hB €23

[Ag) vy 25

V2 h%,e,w h%é,% 0 (25)

R R R R R R
=hB 12 612 + B e13 e1s T Ape2steos

which has a “fully connected” graphF(Hg) =

{(12),

(13),(23)}.

A list of interesting cases is the following:

. any of the (two for pure, five for the generic
case) antipodal points of any,(t) is also an
equilibrium.

. if py(t) is diagonal only the off-diagonal part
of p matters

— if pq is pure, e.gpq = diag(1, 0, 0)

x with Hpg given in (24):
Fe([—ilp,pd) = {(12)} = the
linearization is never controllable since
2 CardF ([—iHp, pa]) < 4 = m, hence
Theorem 1 does not apply. Unlike the
N = 2 case, now in general(0) /4 pq4;

x with Hp given in (25):
Fe([—iHp, pa]) = {(12), (13)} = the

11

linearization is controllable. Any(0)
such thatF; (p(0))N{(12), (13)} # 0 is
converging. However, if one considers
the pure state

then F (p) = {(23)}, implying V' (0) =

w = tr([~iHgpa(0)]p(0)) = O,
i.e., the system is not converging
to p; in spite of the Kalman con-
trollability condition on the lineariza-
tion. Notice how for this example
4, while tr([ad’,; , (—iHg), palp) = 0,
(=0,1,2, 3.

if pq is pure, butp, = diag(0, 1, 0)

x Hg is either (24) or (25):
Fell=iHl,pd) = {(12),(23))
— the linearization is always
controllable. Any p(0) such that
F(p(0) N {(12).23)) # 0 s
converging.

if pg has all different eigenvalues

« for Hg as in (24): Fe ([—iHp, pd)) =
{(12),(23)} = the linearization is
never controllable since now = 6;

« for Hg as in (25): Fe ([—iHp, pa]) =
{(12), (13), (23)} = the linearization
is always controllable. Any(0) such
that F; (p(0)) # 0 is converging; any
p(0) such thatF (p(0)) = 0 is antipo-
dal.

o if pa(t) — 0o is off-diagonal

for Hgp as in (24) and F(p4(t)) C

Fe (Hp) = linearization is never control-
lable, hence Theorem 1 does not apply and
in generalp(0) pq(t);

for Hp as in (24) andF; (pa(t)) €Fe (Hp)
— CardF; ([—iHp, pa(t)]) is at least 2,
implying that the linearization is control-
lable at least for pure states;

if Fe(pa(t)) N Fe(Hp) # 0, then also
Fy (p(0)) matters for the convergence, see
(26);

if Fe(pa(t)) N Fe(Hp) = 0, then con-
vergence depends only df (p(0)) (plus
controllability), see (27).



. If the control Hamiltonian isH 5 = hy,A\fy, +
hy 15/\E 13, 1.€., direct coupling betwee8, and
& is mlssing, then the sufficient condition of
Theorem 1 does not apply. Assume for example

0 0O * % 0
pa(t) = [0 * x|, p(0)=|*x * 0

0 * =« 0 0 0
Then F, ([—iHg, pa(t)]) = {(12),(13)} and
ﬂ([—ZHB,pd(t)])ﬂfe( (0)) = {(12)}. How-
ever, p(0) /pa(t).

O

V. CONCLUSION

For a nonlinear system, attaining a global descriq—1
tion of the region of attraction of a feedback contro
design is usually a very hard problem, especially?l
when the manifold has a nontrivial topological
structure and “competing” equilibria. Remarkably,;
the system studied in this work enjoys two proper-
ties that render a global description feasible: the sét
of critical points can be described exactly and the

spurious equilibria are all repulsive.
(5]

VI. (6]

| would like to thank A. Agrachev, P. Rouchon[7]
and M. Karow for discussion on the topic of this
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nary version of the manuscript.
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APPENDIX |

A FEW COMMUTATORS [10]

The following commutators from (7)-(8) are
needed in the proof of Lemma 3 and in Exampléll
2.

[Aew e, Aesje]l = i(Ej; — Eu) 12]
i ] ¥/ /\h7 N [13]
]j )‘h,jfl + Zp:j —\/Iﬁ + \/ Z—l)\h:Z*1

if j>1and/ > 2

4 1 4
Do m%m + /71 e

if j=1and? > 2
L/ 7T e

[14]

if (=2 [15]

(26)

et AeRpg] =

[Aes,jes Aespg) =

12

For (j¢) # (pq):

1
7 (OepAes.jq T OjpAeseq
+0jqNes0p + O1gNes,jp)

i

P\{%ﬂi,jf; )\E,g,pq] :E (_5&7)\3,%,]'(1 - 5jp)\E,§R,€q

_"51'(1)‘&?1?,@10 + 51(1)‘&?]?,1'17)
i
V2
—0jqAes,ep T O1gAes,jp)

(=0 Aes.jq + djpAesieg
(27)
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