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Abstract— The convex set of density operators of an
N-level quantum mechanical system foliates as a complex
flag manifold, where each leaf is identified with the adjoint
unitary orbit of the eigenvalues of a density matrix. For
an isospectral bilinear control system evolving on such
an orbit, the state feedback stabilization problem admits
a natural Lyapunov-based time-varying feedback design.
A global description of the domain of attraction of the
closed-loop system can be provided based on a “root-
space”-like structure of the cone of density operators. The
converging conditions are time-independent but depend
on the topology of the flag manifold: it is shown that the
closed loop must have a number of equilibria at least equal
to the Euler characteristic of the manifold, thus imposing
topological obstructions to global stabilizability.

Index Terms— Feedback stabilization, Bilinear control
systems, Quantum control, Convergence analysis.

I. I NTRODUCTION

The state feedback stabilization problem for bilin-
ear control systems has been studied for a long time,
see e.g. [24], [22]. The common setting adopted
in all these works is always that of a state space
which is Rn, with the origin as equilibrium point
to be stabilized. In this paper, instead, we focus
on a particular class of bilinear (matrix) control
systems, defined on a family of compact manifolds
and evolving isospectrally. The original formulation
comes from quantum control of non-dissipative sys-
tems [10], [14], [15], with the state matrix rep-
resenting a quantum mechanical density operator
and the isospectral evolution the so-called Liou-
ville von-Neumann equation [39]. The problems
connected with the phenomenon of wavefunction
collapse following a measurement, (see [28], [30]
for a thorough account of the peculiarities of quan-
tum measurements or [37] for a control theoretic

perspective), are bypassed by considering density
operators of quantum ensembles and completely
noninvasive measurements (i.e., classical measure-
ments: with a back-action which is negligible in
the limit of large ensembles). This also allows us
to relax the requirement of commutativity of the
measured observables and in fact we shall assume to
have a complete knowledge of the density operator
(the state) for all times. Hence, in control terms,
we assume to be dealing with a classical state
feedback stabilization problem. Although physically
this set up is realistic only for some applications
(typically nuclear spin ensembles [13], [23]), it
is of widespread use for the purposes of model-
based quantum state steering (often under the name
“tracking control” [10], [41]), as it allows us to
generate control functions also for difficult tasks in
spite of the high complexity of the open loop control
problem [8], [15], [34]. See [3] for an application
to the dipolar decoupling problem of identical spin
systems.

While the formulation comes from quantum con-
trol, the main motivations for this work are of a
mathematical nature, namely feedback design and
convergence analysis for a class of bilinear con-
trol systems defined on the so-calledcomplex flag
manifolds [6], [31], [42]. These are a family of
compact manifolds foliating the convex set ofN×N
positive semidefinite Hermitian matrices of trace 1
(the density operators), that can be described as the
orbits of the density operators under theSU(N)-
conjugation action. Such evolution is isospectral,
as the eigenvalues of the density operator form a
complete set of invariants of an orbit, while their
multiplicity determine its dimension [6], [11], [16].

Since the bilinear system has a drift term which
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cannot be canceled without introducing singularities
in the control law, the most natural problem for-
mulation is to seek for a stabilizer to the periodic
trajectory drawn by the drift. Rather than studying
this problem like an orbital stabilization problem
[5], we reformulate and solve it as a state tracking
problem, thus avoiding the obstruction to semiglobal
convergence of a periodic orbit, see [40], Corollary
1.6 (where it is called stability in the large). In fact,
with our feedback design the state will converge
to a periodic trajectory evolving on the orbit of the
drift. As a matter of fact, by passing to a suitable ro-
tating frame, our time-dependent trajectory tracking
problem can be reformulated completely in terms of
time-varying feedback law for the fixed point of a
nonautonomous system.

The Lyapunov design is essentially of the
Jurdjevic-Quinn type [24], for which the usual
LaSalle invariance principle is applicable in spite
of the time-dependence of the closed loop, and
does not differ much from what has already been
proposed in the literature for wavefunctions [17],
[38], [20], [27].

What is nontrivial is to ascertain the convergence
of a given initial condition and to provide a global
description of the region of attraction. In fact, the
“global” sufficiency criterion used in [24] to prove
asymptotic convergence and based on the so-called
ad-commutators [4], is never verified forN > 2.
For wavefunctions, a related condition based on the
controllability of the linearization along the desired
reference trajectory was shown in [27] to be a
local sufficient condition for stabilizability. Both
conditions fail to give a global convergence analysis
because of the nontrivial topological structure of a
complex flag manifold.

It is known [7], [26], that compact manifolds
without boundary do not admit a global asymp-
totically stable equilibrium because they are not
contractible. This is a topological property and
corresponds to a set being homotopy equivalent
to a point [21]. The region of convergence of an
asymptotically stable attractor must be in such a
homotopy class [7], [40]. For our complex flag
manifolds, it will be shown that a fundamental
topological invariant like the Euler characteristic,
which has as meaning the number of nontrivial
possible permutations of the eigenvalues of the
density operator, [6], [11], [16], [42] corresponds
to the number ofantipodalpoints, i.e., of equilibria

of the closed-loop system representing unavoidable
obstructions to global stabilizability.

It will be shown, however, that the undesired crit-
ical points are not only unstable but also repulsive,
meaning that convergence is guaranteed for all ini-
tial conditions outside the set of equilibria. To attain
a complete and time-independent description of the
critical set and thus of the domain of attraction, we
make use of the “overlap”, up to the imaginary unit,
between the set of (Hermitian) density operators and
the Lie algebrasu(N) (of traceless skew-Hermitian
matrices), and of a few tools deriving from the root
space decomposition of a semisimple Lie algebra,
namely its orthogonal decomposition into Cartan
subalgebra plus root spaces and the invariance prop-
erties of the root spaces under certain commutators
(like the ad-commutators) [2]. This “graph-like”
approach yields simple, time-independent charac-
terizations of all converging initial conditions for
a given reference trajectory and Hamiltonian. Also
the Kalman controllability of the linearization ad-
mits an intrinsic formulation in these terms. The
characterization we obtain gives us insight into the
problem of choosing reference trajectories having a
large domain of attraction.

II. D RIVEN L IOUVILLE -VON NEUMANN

EQUATION

For a general introduction to the formalism of
quantum mechanics we refer the reader to standard
textbooks like e.g. [30], [39]. See also [28] for
a readable introduction for non-physicists. More
control oriented material for quantum systems can
be found e.g. in [2], [10], [14], [15], [36].

In the semiclassical approximation [14], with a
given HamiltonianHA + uHB, −iHA, −iHB ∈
su(N), u ∈ C∞(R) a control function, one can form
a Schr̈odinger equation for the wavefunction|ψ〉 (in
atomic units,~ = 1, and with unit norm〈ψ|ψ〉 = 1)

|ψ̇〉 = −i (HA + uHB) |ψ〉, |ψ(t)〉 ∈ S2N−1 ⊂ CN ,
(1)

or a Liouville-von Neumann equation [39] for the
density operatorρ

ρ̇ = −i[HA + uHB, ρ], ρ ∈M, (2)

whereM = {ρ = ρ† > 0, tr(ρ) = 1} is a convex
subset of the vector space ofN × N Hermitian
matrices. Eq. (2) holds for a quantum ensemble,
hence it is more general than (1). Whenρ can be
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written as the outer productρ = |ψ〉〈ψ|, then it
is called a pure state and it is characterized by
tr (ρ2) = 1. A state which is not pure is called mixed
and for it tr (ρ2) < 1.

A. Structure of the state space

The evolution (2) is isospectral, i.e., the eigen-
values of ρ, Φ(ρ) = {η1, . . . , ηN}, are constants
of motion of (2). The convex set of all admissible
density operatorsM is foliated into (compact and
connected) leaves uniquely determined byΦ(ρ).
Call S ∈ M one such leaf and considerρo ∈ S.
If the geometric multiplicities of the eigenvalues
Φ(ρo) are given byj1, . . . , j`, j1 + . . . + j` = N ,
2 6 ` 6 N , thenS is defined as (see e.g. [1], [9],
[42])

S = U(N)/ (U(j1)× . . .× U(j`)) ,

j1 + . . . + j` = N , 2 6 ` 6 N . As j1, . . . , j`
form a flag inN , the homogeneous spacesS are
called complex flag manifolds. Clearly, the dimen-
sion of S, call it m, depends on the number of
distinct eigenvalues and on their multiplicities. For
example, for a pure stateΦ = {1, 0, . . . , 0}, S =
U(N)/ (U(N − 1)× S1) and dim(S) = 2N − 2.
At the other extreme, ifΦ = {η1, η2, . . . , ηN},
ηj 6= η`,

∑N
j=1 ηj = 1, thenS = U(N)/ (S1)

N has
dimensionN2−N . Hence2N −2 6 m 6 N2−N ,
m even.

In (2), if ρ(0) ∈ S then ρ(t) ∈ S ∀ t > 0, and
the reachable set of the bilinear control system is at
mostS.

Choose now a suitable basis in whichρo is
diagonal. The orbitS is transverse to the set of
diagonal density operators, and meets it in a number
of disjoint points equal to the number of distinct
permutations of the entries ofρo. Such number
is equal to the cardinality of the Weyl group as
well as to the Euler characteristicχ(S) of the
orbit, see [16], [42] and Theorem E.2 of [18].
These points form the vertices of a polygon in
the N − 1-dimensional diagonal “eigenensemble”,
and are sometimes called Weyl chambers. Inspired
by the S2 case (see Example 1 below), we shall
call them antipodal. If ρo = diag (η1, . . . , ηN),∑N

j=1 ηj = 1, 0 6 ηj 6 1, then theχ(S) − 1

antipodal points are given bydiag
(
ησ(1), . . . , ησ(N)

)
with σ(1), . . . , σ(N) a permutation of1, . . . , N such
thatdiag

(
ησ(1), . . . , ησ(N)

)
6= ρo. Since the orbitsS

originate from a transitive action, any point inS has
the same structure asρo.

B. Properties ofsu(N) and Gell-Mann basis

For later use, we need to recall a few standard
properties of the Lie algebra of traceless skew-
Hermitian matricessu(N) and its relation withM.
The reader is referred to e.g. [12], [33] for more
details. Leth be the Cartan subalgebra ofsu(N),
i.e., the abelian subalgebra of maximal dimension
in su(N), dim(h) = N − 1. Let k be the vector
space such thatsu(N) = h ⊕ k, with h ⊥ k
in a standard biinvariantsu(N) metric: tr

(
A†B

)
,

A, B ∈ su(N). Since Hermitian matrices are related
to skew-Hermitian matrices by a multiplication by
the imaginary unit, up toi we can have the same
complete orthonormal set covering bothM and
su(N). Let λ0 = 1√

N
IN and callλ the (N2 − 1)-

dimensional vector ofN × N Gell-Mann matrices
[19]. Thenspan{−iλ} = su(N). In correspondence
with su(N) = h ⊕ k, we have the decomposition
of λ into λh and λk so that h = span{−iλh}
and k = span{−iλk}, with h corresponding to
traceless, purely imaginary diagonal matrices and
k to off-diagonal skew-Hermitian matrices. IfEj` is
the elementaryN ×N matrix having 1 in the(j`)
slot and 0 elsewhere, then the matricesλ are given
by

{λh,j, 1 6 j 6 N − 1} ={
(E11 + . . .+ Ejj − jEj+1,j+1)/

√
j(j + 1)

} (3)

1 6 j 6 N − 1, for the diagonal part, and{
λ<k,j`, 1 6 j < ` 6 N

}
=

{
(Ej` + E`j)/

√
2
}

(4){
λ=k,j`, 1 6 j < ` 6 N

}
=

{
i(−Ej` + E`j)/

√
2
}

(5)

1 6 j < ` 6 N , for the off-diagonal part. Calling
kj` = span

{
−iλ<k,j`,−iλ=k,j`

}
, then we have the

further splitting ofk into “root spaces”

k =
⊕

16j<`6N

kj` (6)

with the following commutation relations (see for
instance [2] for the details):

[h, kj`] = kj`, (7)
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[kj`, kpq] =


∅ if ` 6= p and j 6= q

kjq if ` = p

kp` if j = q

⊆ h if j = p and ` = q.

(8)

In terms of (3)-(5), any densityρ can be de-
composed asρ = %0λ0 + ρh + ρk = %0λ0 +∑

16j<N %h,jλh,j+
∑

16j<`6N

(
%<k,j`λ

<
k,j` + %=k,j`λ

=
k,j`

)
,

where %0 = 1√
N

, and %h,j = tr(ρλh,j) ∈ R,
j = 1, . . . , N − 1, %<k,j` = tr(ρλ<k,j`) ∈ R, %=k,j` =
tr(ρλ=k,j`) ∈ R, 1 6 j < ` 6 N are called the
expectation values ofρ along the basis elements
[28].

Denotefk(ρ) the “support” ofρ in k, i.e., the set
of root spaces “touched” byρ: fk(ρ) = ρ ∩ k. Also
let Fk(ρ) = {(j`) s.t. tr (ρkj`) 6= 0, 1 6 j < ` 6
N} be the corresponding set of index pairs. When
(j`) ∈ Fk(ρ), then (%<k,j`, %

=
k,j`) 6= (0, 0). Likewise

fh(ρ) = ρ ∩ h, Fh(ρ) = {(j) s.t. %h,j 6= 0, 1 6 j <
N}, andF(ρ) = Fk(ρ) ∪ Fh(ρ).

Finally, if C ∈ su(N) is decomposed in terms
of the basis above asC = −i

∑
16j<N ch,jλh,j −

i
∑

16j<`6N

(
c<k,j`λ

<
k,j` + c=k,j`λ

=
k,j`

)
, we shall also in-

dicate withfh(C), fk(C) the support ofC in, respec-
tively, h, k, of indexesFh(C), Fk(C).

C. Properties of the Hamiltonian

We will make the following assumptions on the
Hamiltonian of (2).

A1: HA is diagonal and traceless

HA =

E1

...
EN

 , E1+. . .+EN = 0,

with the Ej supposed ordered:

E1 6 E2 6 . . . 6 EN ;

A2: HA is strongly regular, i.e.,
1) the eigenvalues ofHA are nondegen-

erate:Ej 6= E`, j 6= `;
2) the transition frequencies are nonde-

generate:Ej − E` 6= Ep − Eq, (j`) 6=
(pq) j 6= `, p 6= q.

A3: HB is off-diagonal;
A4: HB enables all transitions between adja-

cent eigenvalues:tr (HBkj,j+1) 6= 0 ∀ j =
1, . . . , N − 1.

Beside connectivity ofGraph(HB) (i.e., theN -
node graph having a link between the nodesj
and ` when (HB)j` 6= 0), A4 guarantees that all
“fundamental root spaces” (see [2]) are excited by
the dynamics.

D. Unforced equation

Proposition 1 AssumeA1÷A4 hold and consider
the system(2). The stateρ is an equilibrium point
of (2) for u = 0 if and only if it is diagonal.
Furthermore, ifρk 6= 0, then foru = 0

1) fk(ρ(0)) = fk(ρ(t));
2) for δt small, %<k,j`(t) 6= %<k,j`(t + δt) and

%=k,j`(t) 6= %=k,j`(t+ δt) ∀ (j`) ∈ Fk(ρ).

Proof: When u = 0, for a givenρ = %0λ0 +
ρh + ρk,

[−iHA, ρh] = 0, (9)

from which it is obvious thatρ diagonal is a fixed
point. To show the other direction, callingρk,j` =
ρ<k,j` − iρ=k,j`, then for the off-diagonal part ofρ

ρk,j`(t) = e−i(Ej−E`)tρk,j`(0). (10)

A1÷A2 imply that Ej − E` 6= 0 ∀ (j`), 1 6 j <
` 6 N − 1, hence from (10) wheneverρk,j`(0) 6= 0,
ρk,j`(t) 6= 0 ∀ t > 0. Condition 1 and 2 of the last
part also follows straightforwardly from (10). �

III. F EEDBACK STABILIZATION FOR N -LEVEL

QUANTUM ENSEMBLES

A. Problem formulation

For the system (2), we are interested in the prob-
lem of tracking the periodic orbit drawn by the free
HamiltonianHA. More precisely, the stabilization
problem is the following.

Given the system(2) with ρ ∈ S, find u =
u(ρd(t), ρ) such that, fort → ∞, ρ(t) → ρd(t),
whereρd(t) obeys

ρ̇d(t) = [−iHA, ρd(t)], (11)

−iHA ∈ su(N), ρd(t) ∈ S.
This is a full state tracking problem which, from

Proposition 1, reduces to stabilization to an equilib-
rium point whenρd(t) is diagonal. In the following
ρd will always mean the reference trajectoryρd(t)
solution of (11).
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B. Modified Jurjevic-Quinn conditions and antipo-
dal points

The algorithm for the feedback design resembles
the one used for|ψ〉 in [17], [38], [20], [27] and
indeed the standard Jurdjevic-Quinn method for
bilinear systems [24]. It consists in choosing as
candidate Lyapunov function the Frobenius norm
V = V (ρd(t), ρ) = tr (ρ2

d(t)) − tr (ρd(t)ρ). If ρd(t)
obeys (11),

V̇ =V̇ (ρd(t), ρ) = −tr ([−iHA, ρd(t)]ρ)

− tr ([−iHA, ρ]ρd(t))− utr ([−iHB, ρ]ρd(t))

=utr ([−iHB, ρd(t)]ρ) .
(12)

Since V̇ is homogeneous inu, the obvious choice
of feedback

u = −tr ([−iHB, ρd(t)]ρ) (13)

guaranteeṡV = −(tr ([−iHB, ρd(t)]ρ))
2 6 0.

The following two sufficient conditions for
asymptotic stability of the closed-loop system given
by the feedback law (13) are adaptations of known
results to the case at hand.

Proposition 2 (Jurdjevic-Quinn [24])
Assume A1÷A4 hold. Call W` =
span

{
−iHB, ad−iHA

(−iHB), . . . , ad`
−iHA

(−iHB)
}

,
wheread`

−iHA
(−iHB) = [−iHA, . . . , [−iHA︸ ︷︷ ︸

` times

−iHB]].

If W` = su(N) for some`, then the system(2)
with the feedback(13) is asymptotically converging
to ρd(t) from all ρ(0) ∈ S which are not antipodal
points ofρd(0).

Proposition 3 (Mirrahimi-Rouchon [27])
Assume A1÷A4 hold and call Q`(ρd(t)) =
span {[−iHB, ρd(t)], [−iHA, [−iHB, ρd(t)]], . . . ,
ad`

−iHA
[−iHB, ρd(t)]

}
. If the condition

dimQm−1(ρd(t)) = m (14)

is satisfied∀ ρd(t) ∈ S obeying(11), then the system
(2) with the feedback(13) is locally asymptotically
converging toρd(t).

Both criteria are based on the application of
LaSalle invariance principle to the closed loop sys-
tem. Concerning Proposition 2, the largest invariant
set E in N = {ρ ∈ S s.t. V̇ (ρd(t), ρ) = 0} can be
computed looking at the locus in whichu = du

dt
=

. . . = d`u
dt`

= 0 in correspondence with the feedback
law (13):

du

dt
= −tr ([ [−iHA, −iHB], ρd(t) ] ρ) = 0

and, similarly,

d`u

dt`
= (−1)`tr([ ad`

−iHA
(−iHB), ρd(t)]ρ) = 0.

(15)
Hence, ifW` = su(N) for some`, E contains no
other trajectory thanρd(t) and convergence follows.

For |ψ〉 which is an eigenfunction, the condition
of Proposition 3, used implicitly in [38], is made
explicit in [27] as a Kalman rank condition on the
linear tangent system. Givenρ ∈ S, the linearization
of (2) aroundρd(t) yields

dρ

dt
= [−iHA, ρ(t)] + u[−iHB, ρd(t)] ∈ Tρd

S.
(16)

Since dim(Tρd
S) = m, if (16) satisfies condition

(14), then in the same spirit of the original Jurdjevic-
Quinn work (see Lemma 2 below for the details),
this implies that in closed loopE contains no other
trajectory thanρd(t), at least locally.

These criteria are not straightforwardly useful for
at least a couple of reasons:

1) the Lie algebraic condition of Proposition 2
never applies (see Lemma 1);

2) the linearized tangent system may be time-
varying and the sufficient condition is always
local.

Both arguments are consequences of the nontrivial
topology ofS, and imply that the domain of attrac-
tion of the closed-loop system cannot be the entire
S.

The vector space of Proposition 2,W`, is in-
variant under the so-called “ad-brackets” [24] but
not necessarily a Lie subalgebra. For the system (2)
we have that thesead-brackets are never generating.
Call W`

A = span{−iHA, W`}.

Lemma 1 Under A1÷A4, for the system(2),
Lie(W`

A) = su(N) but W`
A ( su(N) ∀ ` > 0 if

N > 3, whileW` ( su(N) ∀ ` > 0 if N > 2.

Proof: SinceHA is strongly regular andA4
implies that Graph(HB) is connected, it follows
from Theorem 2 of [2] that the smallest subalgebra
containing−iHA, −iHB is su(N). For the second
part, recall thatdim(h) = N − 1. From the Lie
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bracket relations (7),−iHA ∈ h, −iHB ∈ k implies
ad`

−iHA
(−iHB) ∈ k. HenceW` ⊂ k ∀N > 2. Even

adding−iHA,W`
A alone cannot fully generateh for

any ` if N > 3. �

The first part of Lemma 1 is also known as the
strong accessibility condition [29]. Sincesu(N) is
compact, it suffices for controllability on each orbit
S.

Concerning Proposition 3, it is easy to see that
even whenρd(t) is diagonal and (16) is time-
invariant, the Kalman-like “rank condition” (14)
alone is not enough to guarantee attractivity, as can
be checked for example in any other diagonal state
ρp ∈ S: in fact [−iHA, ρp] = 0 i.e., the linear
system turns out to be driftless. This argument can
be generalized as follows.

Proposition 4 Consider the system(2) with the
feedback(13). Given ρd(t) ∈ S obeying(11), any
antipodal stateρp(0) ∈ S of ρd(0) is such thatρp(t)
remains antipodal toρd(t) ∀ t > 0.

Proof: For any given diagonal pairρp(0), ρd(0),
[−iHB, ρp(0)] ∈ k/i is off-diagonal. But thenu =
−tr ([−iHB, ρd(0)]ρp(0)) = 0, sinceh ⊥ k. Hence
no feedback is produced and sinceρd(t) = ρd(0),
ρp(t) = ρp(0) ∀ t > 0, the claim follows. Con-
sider now the case ofρd(0), ρp(0) ∈ S antipodal
but not diagonal. For the unforced system, one
has thatρd(0), ρp(0) antipodal impliesρd(t), ρp(t)
antipodal for all t > 0. To see this, notice that
by the transitivity of theSU(N) action onS, ∃
U1 ∈ SU(N) such thatρ̃d(0) = U1ρd(0)U

†
1 and

ρ̃p(0) = U1ρp(0)U †
1 are both diagonal. But then

ρd(t) = e−iHAtρd(0)eiHAt = e−iHAtU †
1 ρ̃d(0)U1e

iHAt,
and similarly ρp(t) = e−iHAtU †

1 ρ̃p(0)U1e
iHAt, i.e.,

ρd(t) andρp(t) are still diagonalizable by the same
unitary matrix and therefore still antipodal. For
ρd(0) and ρp(0) antipodal, the feedback (13) at
t = 0 is u(0) = −tr ([−iHB, ρd(0)]ρp(0)) =

−tr
(
−iHBU

†
1 [ρ̃d(0), ρ̃p(0)]U1

)
= 0. Since no

feedback is produced, the system remains unforced
and, for what said above,u(t) = 0 ∀ t > 0.

�

As will be shown in next Section, the antipodal
points are not the only states lacking attractivity, and
the linearization alone is not enough to investigate
the domain of attraction of the feedback stabilizer.

In the case ofρd(t) diagonal, the antipodal points
are equilibria for the closed loop system. Forρd(t)
nondiagonal, they are critical periodic trajectories.

Remark 1 The trajectory tracking problem pre-
sented above admits a reformulation as a point
stabilization for a nonautonomous system. Consider
a frame rotating with−iHA. Call ρ̂d and ρ̂ the
new reference and state matrices. Thenρ̂(t) =
eiHAtρ(t)e−iHAt and ρ̂d(t) = eiHAtρd(t)e

−iHAt =
ρd(0), i.e., the reference trajectory becomes afixed
point. Using a variation of constants formula, we
obtain for (2){

˙̂ρ(t) = u [eiHAt(−iHB)e−iHAt, ρ̂(t)]

ρ̂(0) = ρ(0).
(17)

The Lyapunov functionV = tr (ρ̂2
d) − tr (ρ̂dρ̂) and

its derivative V̇ = utr ([−iHB, ρ̂d]ρ̂) are invariant
to the change of reference frame. The uniformity
in time of the asymptotic stability for the nonau-
tonomous system (17) with the same feedback sta-
bilizer as (13) follows directly.

C. Time-independent convergence conditions

The following Theorem provides a time-
independent condition for asymptotic stabilizability
to any ρd(t) ∈ S, and a global description of the
region of attraction of the controller.

Theorem 1 AssumeA1÷A4 hold and consider the
system(2) with the feedback(13), whereρd(t) ∈
S obeys (11). An initial condition ρ(0) ∈ S is
asymptotically converging toρd(t) if

1) ρ(0) is not an antipodal point ofρd(0),
2) F ([−iHB, ρd(t)]) ∩ F (ρ(0)) 6= 0,
3) CardFk ([−iHB, ρd(t)]) > m/2,

whereCard denotes the number of pairs of indexes
in Fk.

In order to prove the Theorem we need a few
preliminary results. The following Lemma implies
that although the vector spaceWm−1 is never the
entire Lie algebrasu(N) acting transitively onS,
it may nevertheless span the entire tangent space at
a point. The same holds for the Kalman controlla-
bility. An equivalent time-independent condition is
then provided.

Lemma 2 Under the assumptionsA1÷A4, the fol-
lowing three conditions are equivalent:
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1) the Kalman-like condition(14) is satisfied;
2) dim ([Wm−1, ρd(t)]) = m;
3) CardFk([−iHB, ρd(t)]) > m/2.

Proof: Given C ∈ su(N), strong regularity
of HA implies thatC, [−iHA, C], . . . , ad`−1

−iHA
C are

all linearly independent up tò = 2 CardFk(C),
see Theorem 2 in [2]. IfC = Ch + Ck, since
[−iHA, Ch] = 0, only the off-diagonal part ofC
matters. The supportfk(C) intersects a number of
“root spaces”kj` (each has real dimension 2) equal
to CardFk(C). Furthermore, since−iHA ∈ su(N),
from (7) andA2 it follows that:

fk
(
ad`

−iHA
C

)
= fk(C), (18)

while
fh

(
ad`

−iHA
C

)
= 0. (19)

If C = [−iHB, ρd(t)] as in (16), then we have the
Kalman-like controllability condition (14) provided
that CardFk([HB, ρd(t)]) > m/2, and (18) implies

Fk([−iHB, ρd(t)]) = Fk(ad`
−iHA

[−iHB, ρd(t)]),
(20)

` = 1, 2, . . .. If insteadC = −iHB, one gets the
`-th order commutator ofWm−1. From the Jacobi
identity it follows that for anỳ > 0

[ad`
−iHA

(−iHB), ρd(t)] =

= [[−iHA, ad`−1
−iHA

(−iHB)], ρd(t)]

= [−iHA, [ad`−1
−iHA

(−iHB), ρd(t)]]

− [ad`−1
−iHA

(−iHB), [−iHA, ρd(t)]]

(21)

and, by induction oǹ ,

[W`, ρd(t)] = Q(ρd(t)). (22)

In summary, strong regularity ofHA guarantees the
full spanning of a linear space whose dimension
is determined uniquely byCardFk([−iHB, ρd(t)]).
The equivalence of the three conditions follows
consequently. �

Remark 2 In general CardFk(HB) 6=
CardFk([−iHB, ρd(t)]), hence the controllability
of the linearization depends from the reference
trajectoryρd(t) chosen.

Remark 3 While the Kalman-like condition (14)
seems time-varying as soon asρd,k(t) 6= 0,
the equivalent condition 3 of Lemma 2 is al-
ways time-independent sinceFk ([−iHB, ρd(0)]) =
Fk ([−iHB, ρd(t)]).

Remark 4 The conditions of Lemma 2 depend on
ρd(t), HA andHB but not on the stateρ, meaning
that alone they are not enough to guarantee conver-
gence of a givenρ(0).

The Lyapunov derivative in (12) is made homo-
geneous inu by the cancellation of the drift term
and therefore the notion of attractivity provided by
V̇ must be rendered invariant under such flow (in
a way similarly to the orbital stabilization problem,
see [5]). The following Lemma gives an alternative
attractivity condition which is fully invariant under
the drift and generically equivalent to the usual
Lyapunov convergence property. This last in fact
may fail in isolated points: certain critical points
of V are not invariant under the flow of the drift
(see Section IV for examples).

Lemma 3 AssumeA1÷A4 hold, and consider the
system(2) with the feedback(13), whereρd(t) obeys
to (11). The following conditions are generically
equivalent under the flow of the drift term:

1) F ([−iHB, ρd(t)]) ∩ F (ρ) 6= 0;
2) V̇ (ρd(t), ρ) < 0;
3) tr([ad`

−iHA
(−iHB), ρd(t)] ρ) 6= 0 ∀ ` > 0.

Proof: Clearly
V̇ = −(tr ([−iHB, ρd(t)]ρ))

2 < 0 implies
F ([−iHB, ρd(t)]) ∩ F (ρ) 6= 0. To prove that
also the converse is generically true, it is enough
to show that whenF ([−iHB, ρd(t)]) ∩ F (ρ) 6= 0
the zero crossing of the inner product can occur
only at isolated points along the trajectories of the
closed loop system. Assume Condition 1 holds
and, at timet, tr ([−iHB, ρd(t)]ρ) = 0. If δt is
a small time increment, then from Condition 1 of
Proposition 1,F ([−iHB, ρd(t)]) andF (ρ) remain
the same, while, from Condition 2 of Proposition 1

(ρ<k,j`(t+ δt), ρ=k,j`(t+ δt)) 6= (ρ<k,j`(t), ρ
=
k,j`(t))

ρh,j(t+ δt) = ρh,j(t)

(ρ<d,k,j`(t+ δt), ρ=d,k,j`(t+ δt)) 6= (ρ<d,k,j`(t), ρ
=
d,k,j`(t))

ρd,h,j(t+ δt) = ρd,h,j(t).

If Fh ([−iHB, ρd(t)]) ∩ Fh (ρ) 6= 0, then
from the last row of (8) only ρd,k(t) matters
in the computation ofFh ([−iHB, ρd(t)]), and
tr ([−iHB, ρd,k(t+ δt)]ρh(t+ δt)) 6= 0 sinceρd,k(t+
δt) 6= ρd,k(t), while ρh(t + δt) = ρh(t). If,
instead, Fk ([−iHB, ρd(t)]) ∩ Fk (ρ) 6= 0, then
we have two possible contributions to consider:
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Fk ([−iHB, ρd,h(t)]) and Fk ([−iHB, ρd,k(t)]). In
the first case the conclusion follows from the same
argument used above since nowρd,h(t+δt) = ρd,h(t)
while ρk(t+δt) 6= ρk(t). In the second case it follows
from the observation thatFk ([−iHB, ρd,k(t)]) ∩
Fk (ρ) 6= 0 implies Fk(ρd,k(t)) 6= Fk (ρ) (see the
explicit computations of the commutators in (27)).
The general caseF ([−iHB, ρd(t)]) ∩ F (ρ) 6= 0
is the sum of the two situations just described.
Concerning Item 3, it is enough to notice that
genericallytr ([−iHB, ρd(t)]ρ) 6= 0 if and only if
tr

(
[ad`

−iHA
(−iHB), ρd(t)]ρ

)
6= 0. The argument is

of the same type used in the proof of Lemma 2.
For example ifFk ([−iHB, ρd,k(t)]) ∩ Fk (ρ) 6= 0
then just apply

Fk([−iHB, ρd(t)]) = Fk([ad`
−iHA

(−iHB), ρd(t)]),

` = 1, 2, . . .. The genericity of the argument can be
shown as above. �

Proof: (of Theorem 1) For the closed loop
system, consider the setN of critical points. Con-
dition 3 guarantees that locally aroundρd(t) there
is no other closed loop trajectory inN , as, from
Lemma 2, the linearization (16) atρd(t) is con-
trollable. Henceρd(t) is a locally asymptotically
stable (time-varying) equilibrium for the closed loop
system andρd(t) is isolated inN . Considerρe(t) ∈
N , ρe(t) 6= ρd(t), ρe(t) obeying (11). This implies
ρe(t) disjoint from ρd(t) and V (ρd(t), ρe(t)) > 0.
The independent variablet will be omitted from
now on. We need to show thatρe must be a repulsive
critical trajectory for the closed loop system1. For
any ρe ∈ N , it is enough to perturbρe to ρ̃e ∈ S
so thatF ([−iHB, ρd]) ∩ F (ρ̃e) 6= 0. It is always
possible to do this in a neighborhood ofρe since
F ([−iHB, ρd]) has cardinality at leastm/2 and
(h<B,j j+1, h

=
B,j j+1) 6= (0, 0) implies thatGraph(HB)

is connected and that there is no subspacekj`

invariant under−iHB. But then, from Lemma 3,
tr ([−iHB, ρd]ρ̃e) 6= 0 and V̇ (ρd, ρ̃e) < 0, i.e., ρ̃e

is attracted toρd. To show thatV (ρe, ρ̃e) increases,
assume by contradiction that

V̇ (ρe, ρ̃e) = −tr (ρ̇eρ̃e)− tr
(
ρe

˙̃ρe

)
= −tr ([−iHB, ρ̃e]ρd) tr ([−iHB, ρ̃e]ρe) < 0.

(23)

1Sinceρe may not be isolated inN , the term repulsive has to be
intended as “semi-repulsive”.

Consider the geodesic line inS of reference tra-
jectories connectingρd with ρe: ρφ(s) = ρd + φ(s)
such thatφ(0) = 0 andφ(se) = ρe − ρd andρφ(s)
obeying (11) for alls ∈ [0, se]. Along this line,

V̇ (ρφ(s), ρ̃e) = −tr ([−iHB, ρ̃e]ρd)
2

− tr ([−iHB, ρ̃e]ρd) tr ([−iHB, ρ̃e]φ(s)) ,

s ∈ [0, se], is a function linear inφ(s) and such that,
by the assumption (23),

V̇ (ρφ(0), ρ̃e) = V̇ (ρd, ρ̃e) = −tr ([−iHB, ρ̃e]ρd)
2 < 0

V̇ (ρφ(se), ρ̃e) = V̇ (ρe, ρ̃e) < 0.

But then V̇ (ρφ(s), ρ̃e) < 0 ∀ s ∈ [0, se] and
V̇ (ρφ(s), ρφ(s)) = 0. Since ρ̃e is any point in
S r N and V (· , ·) is a distance onS such that
V (ρφ(s), ρ̃e) > 0 and V (ρφ(s), ρφ(s)) = 0, it
follows that eachρφ(s) s ∈ [0, se] is a (time-
varying) equilibrium for the closed loop system
which is at least locally stable. But this is a contra-
diction, sinceρd is an isolated locally asymptotically
stable (time-varying) equilibrium. Hence it must
be that V̇ (ρe, ρ̃e) > 0 i.e., ρe must be repulsive.
Thereforeρe cannot belong to the invariant setE .
From Lemma 3, all conditions (15) are satisfied or
violated simultaneously wheṅV = 0 or V̇ < 0
respectively, i.e., whenF ([−iHB, ρd])∩F (ρ̃e) = 0
or 6= 0. Hence outsideN ρ(0) must converge toρd

since any otherρe ∈ N is repulsive. �

Remark 5 Condition 2 of Theorem 1 is obviously
a necessary condition for convergence. Condition 3
instead is sufficient but not necessary, see Example
1 in Section IV.

While, from Lemma 2, the linear spans atρd(t)
of the linearized system (16) and of theW` yield
a space of the same dimension, Condition 3 of
Lemma 3 holds for each of the bilinear forms (in
ρd(t) and ρ) but it is in general not true for the
linearization atρd(t).

Corollary 1 Under A1÷A4 and for ρd(t) obeying
(11):

1) dim
(
[W`, ρd(t)]

)
= dimQ`(ρd(t)),

∀ ` = 0, . . . ,m− 1;
2) tr([ad`

−iHA
(−iHB), ρd(t)]ρ) 6= 0

6⇐⇒ tr((ad`
−iHA

[−iHB, ρd(t)])ρ) 6= 0.

Proof: The first condition is a consequence of
the strong regularity ofHA and follows straightfor-
wardly from Lemma 2, see (22). The second claim
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follows from the recursive application of the Jacobi
identity (21) and the observation thatad`

−iHA
Ch =

0, C ∈ su(N). �

The consequence is that the linearization alone
is inconclusive about the region of attraction of the
reference trajectory in the closed loop system, while
instead thead-commutators completely specify it.

Corollary 2 When CardFk ([−iHB, ρd(t)]) >
m/2, the region of attraction of the system(2) with
the feedback(13) is given byR = S rN .

D. Global stabilization and topological obstruc-
tions

For a given control system, once a Lyapunov
function and a feedback law are chosen, the car-
dinality and structure of the set of equilibria in
closed loop can be investigated. Global feedback
stabilization is achievable only if this set reduces to
a single isolated point (or a time-varying reference
trajectory as in our tracking formulation). From
Proposition 4, for our choice ofV and u(ρ) there
are at least as many equilibria as there are antipodal
points onS.

It would be interesting to draw the conclusion
that this must always be the case forS regardless
of the choice ofV and u = u(ρ), and that it
is a consequence of the topological structure of
S. A manifold like S, compact without boundary,
cannot be globally asymptotically stabilized because
it lacks the contractivity property, i.e., it is not ho-
motopy equivalent to a point, see [7], Proposition 1
and Theorem 1, and [40]. This fact alone, however,
sheds no light on the minimal number of equilibria
of a feedback design.

Proposition 5 Consider the system(2) and the
(possibly time-varying) equilibriumρd(t) obeying
(11). For anyV ∈ C∞(S), V (ρ) > 0, V (ρd(t)) = 0
and any smoothu = u(ρ) such that for the closed-
loop systemV̇ (ρ) 6 0, V̇ (ρd(t)) = 0, the set
N = {ρ ∈ S s. t. V̇ (ρ) = 0}, must contain at least
χ(S)− 1 (possibly time-varying) equilibria.

In order to prove the Proposition, we need the
following result, straightforward adaptation of the
main Theorem of [32].

Proposition 6 Denote byρpj
(t), j = 1, . . . , χ(S)−

1, the (possibly time-varying) antipodal points of

ρd(t) ∈ S, whereρd(t) obeys(11). For each pair
ρd(t), ρpj

(t) there exists a two-sphereS2
{ρd,ρpj }

⊂ S
such thatρd(t) and ρpj

(t) are antipodal points of
S2
{ρd,ρpj }

.

Proof: (of Proposition 5) From Proposition 6,
S containsχ(S)−1 two-spheres. Each two-sphere is
itself a compact manifold without boundary, hence it
is noncontractible. In particular, for any Lyapunov
function V ∈ C∞(S) denoteVj its restriction to
S2
{ρd,ρpj }

. Then certainly for any choice of feedback
u = u(ρ) in closed loop the setNj = {ρ ∈
S2
{ρd,ρpj }

s. t. V̇j(ρ) = 0} contains at least two equi-

libria. This follows from V̇j(ρd) = 0 and V̇j(ρ) 6 0
∀ ρ ∈ S2

{ρd,ρpj }
(inherited from V̇ (ρ) 6 0 ∀ ρ ∈

S). In fact, if CardNj = 1 then ρd(t) would be
globally stable inS2

{ρd,ρpj }
noncontractible, which is

a contradiction. By counting the number of distinct
equilibria obtained in this way,CardN > χ(S) and
the claim follows. �

IV. A FEW CASES OF PHYSICAL INTEREST

The methods developed above yield considerable
insight into the stabilizability and convergence prop-
erties of a quantum density operator. A few inter-
esting cases forN -level systems are now described.
They are followed by a more detailed description
for systems withN = 2, 3.

• Since m 6 N2 − N , and
CardFk ([−iHB, ρd(t)]) 6 (N2 − N)/2,
(i.e., the maximal number of off-diagonal
terms), each complex flag manifoldS may
admit a controllable linearization (depending
on ρd(t)).

• The assumptionA4 of direct coupling between
nearest energy levels is needed in order to
exclude the existence of subsets ofS which re-
main invariant under the closed loop dynamics.
It is a common assumption in most practical
cases (dipole approximation [14]). See also
Example 2 below (last item).

• The full connectivity of Graph(HB), i.e.,
(HB)ij 6= 0∀ i 6= j, is neither a sufficient nor
a necessary condition for asymptotic stability.

• If ρd is an eigenstate andρ another eigenstate
then there is never convergence, not even if
Graph(HB) is fully connected, becauseρ is
antipodal toρd.
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• For pure states and a not fully connected
Graph(HB), certain eigenstates are easier to
stabilize than others, since they have a larger
region of attraction. The easiest is the one of
energyEj such that the indexj appears more
often inFk ([−iHB, ρd]). In Example 2 below
with HB as in (24), the eigenstate of interme-
diate energy has a larger region of attraction
than the ground state or the most excited state.
WhenGraph(HB) is fully connected, there is
no such difference. From Theorem 1, this does
not mean that all initial conditions have the
same convergence properties to a givenρd(t).

• If ρd(t) and ρ(0) are both block diagonal and
the blocks do not overlap

ρd =



∗ . . . ∗
...

...
∗ . . . ∗

 ,

ρ(0) =

 ∗ . . . ∗
...

...
∗ . . . ∗

 ,

then

[−iHB, ρd(t)] =



∗ . . . ∗
...
∗ . . . ∗

∗ . . . ∗
...

∗ . . . ∗
∗ . . . ∗
...

...
∗ . . . ∗

0 . . . 0
...

...
0 . . . 0


,

which impliesF ([−iHB, ρd(t)])∩F (ρ(0)) =
0 andV̇ = 0, i.e.,ρ(0) is not attracted toρd(t).

• Not all states in N are maximally dis-
tant from ρd(t). Assumeρd, ρ are such that
Fh ([−iHB, ρd]) ∩ Fh (ρ(0)) 6= 0, Fk (ρd) =
0, Fk (HB) ∩ Fk (ρ) = 0. Also in this case
F ([−iHB, ρd]) ∩ F (ρ(0)) = 0 and ρ is not
converging. However, sincetr (ρdρ) 6= 0, ρd

andρ are not maximally distant.
• A typical example of an initial condition for

which V̇ (ρd(0), ρ(0)) = 0 but not invariant un-
der the drift (see paragraph before Lemma 3) is

attained whenFk ([−iHB, ρd(t)])∩Fk (ρ(0)) 6=
0 but [−iHB, ρd(0)], ρ(0) both real or purely
imaginary. This follows from Proposition 1.

Example 1 N = 2. Considerρ which is a pure
state,Φ(ρ) = {1, 0}. Topologically, the caseN = 2
is the only easy one, asS = S2 ' CP 1. With
the choice of basis (3)-(5), one has thatρk lies
on the great horizontal circle ofS2, the diagonal
antipodal states at the north and south poles, andh,
dim(h) = 1, corresponds to the vertical line passing
through the poles of the sphere. Everything extends
unchanged to mixed statesρ such thatΦ(ρ) =
{η1, η2}, η1 + η2 = 1, 0 < η1, η2 < 1, sinceS
is still equal toS2. Since eachS crossesh exactly
twice, χ(S) = 2.

AssumeHA =
hA,h,1√

2

[
1 0
0 −1

]
= hA,h,1λh,1 and

HB =
h<B,k,12√

2

[
0 1
1 0

]
= h<B,k,12λ

<
k,12. From Proposi-

tion 1, bothtr (ρ2
k ) andρh are integrals of motion of

the unforced dynamics, while in coordinates the two
components ofρk evolve according to a sinusoidal
law. In this caseW1 = span{−iλ<k,12, −iλ=k,12}
andW1

A = su(2). Hence the “global” condition of
Proposition 2 is not valid. When applying Theo-
rem 1 to the system plus the feedback (13), we have
the following for the closed loop system:

• anyρd(t) has a single antipodal point which is
also an equilibrium;

• if ρd(t) is diagonal,Fk ([−iHB, ρd]) = {(12)},
the linearization is controllable and any non-
diagonal ρ satisfies Theorem 1. Hence any
ρ(0) such thatρk(0) 6= 0 is in the domain of
attraction ofρd diagonal;

• if ρd(t) is off-diagonal,
CardFk ([−iHB, ρd(t)]) = 0, and the sufficient
condition of Theorem 1 does not apply.
However,Fh ([−iHB, ρd(t)]) 6= 0 and as long
as Fh ([−iHB, ρd(t)]) ∩ Fh (ρ(0)) 6= 0, i.e.,
wheneverρh 6= 0, ρ → ρd. This is a special
situation due todim(h) = 1, and has no
counterpart forN > 2.

In summary, there is always almost global conver-
gence except whenρd,h = ρh = 0, i.e., except when
both ρd(t) andρ belong to great horizontal circles.

�

Example 2 N = 3, Φ(ρ) = {1, 0, 0} (pure state).
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Since the isotropy subgroup in this case isU(2) ×
S1 of dimension 5 (recall thatdim(U(3)) = 9),
dim(S) = 4 andχ(S) = 3. The structure ofS ⊂ S7

in coordinates is studied in detail in [16], [11],
[25], [35]. In particular, the single antipodal point
of the caseN = 2 is replaced by two symmetrically
distributed and equidistant antipodal points.

For the all different eigenvalue caseΦ(ρ) =
{η1, η2, η3}, ηj 6= ηk, which is the generic case,
the stabilizer is the torus(S1)3, S = U(3)/(S1)3

and dim(S) = 6. The only diagonal matrices that
are conjugate withρ0 ∈ S are its five element
permutations, i.e.,χ(S) = 6 in this case. The drift
of the system is given by

HA =
hA,h,1√

2

1 0 0
0 −1 0
0 0 0

 +
hA,h,2√

6

1 0 0
0 1 0
0 0 −2


=hA,h,1λh,1 + hA,h,2λh,2.

We shall consider the following control vector field

HB =
1√
2

 0 h<B,k,12 0
h<B,k,12 0 h<B,k,23

0 h<B,k,23 0


=h<B,k,12λ

<
k,12 + h<B,k,23λ

<
k,23,

(24)

which hasFk(HB) = {(12), (23)} or, alternatively,

HB =
1√
2

 0 h<B,k,12 h<B,k,13

h<B,k,12 0 h<B,k,23

h<B,k,13 h<B,k,23 0


=h<B,k,12λ

<
k,12 + h<B,k,13λ

<
k,13 + h<B,k,23λ

<
k,23

(25)

which has a “fully connected” graph,Fk(HB) =
{(12), (13), (23)}.

A list of interesting cases is the following:
• any of the (two for pure, five for the generic

case) antipodal points of anyρd(t) is also an
equilibrium.

• if ρd(t) is diagonal only the off-diagonal part
of ρ matters

– if ρd is pure, e.g.ρd = diag(1, 0, 0)

∗ with HB given in (24):
Fk ([−iHB, ρd]) = {(12)} =⇒ the
linearization is never controllable since
2 CardFk ([−iHB, ρd]) < 4 = m, hence
Theorem 1 does not apply. Unlike the
N = 2 case, now in generalρ(0) 6→ρd;

∗ with HB given in (25):
Fk ([−iHB, ρd]) = {(12), (13)} =⇒ the

linearization is controllable. Anyρ(0)
such thatFk (ρ(0))∩{(12), (13)} 6= 0 is
converging. However, if one considers
the pure state

ρ(0) =
1

2

0 0 0
0 1 1
0 1 1

 ,
thenFk (ρ) = {(23)}, implying V̇ (0) =
u = tr ([−iHB, ρd(0)]ρ(0)) = 0,
i.e., the system is not converging
to ρd in spite of the Kalman con-
trollability condition on the lineariza-
tion. Notice how for this example
dim([W3, ρd]) = dim([W3, ρd(0)]) =
4, while tr([ad`

−iHA
(−iHB), ρd]ρ) = 0,

` = 0, 1, 2, 3.
– if ρd is pure, butρd = diag(0, 1, 0)

∗ HB is either (24) or (25):
Fk ([−iHB, ρd]) = {(12), (23)}
=⇒ the linearization is always
controllable. Any ρ(0) such that
Fk (ρ(0)) ∩ {(12), (23)} 6= 0 is
converging.

– if ρd has all different eigenvalues
∗ for HB as in (24):Fk ([−iHB, ρd]) =
{(12), (23)} =⇒ the linearization is
never controllable since nowm = 6;

∗ for HB as in (25):Fk ([−iHB, ρd]) =
{(12), (13), (23)} =⇒ the linearization
is always controllable. Anyρ(0) such
that Fk (ρ(0)) 6= 0 is converging; any
ρ(0) such thatFk (ρ(0)) = 0 is antipo-
dal.

• if ρd(t)− %0λ0 is off-diagonal
– for HB as in (24) andFk (ρd(t)) ⊆
Fk (HB) =⇒ linearization is never control-
lable, hence Theorem 1 does not apply and
in generalρ(0) 6→ρd(t);

– for HB as in (24) andFk (ρd(t)) 6⊆Fk (HB)
=⇒ CardFk ([−iHB, ρd(t)]) is at least 2,
implying that the linearization is control-
lable at least for pure states;

– if Fk (ρd(t)) ∩ Fk (HB) 6= 0, then also
Fh (ρ(0)) matters for the convergence, see
(26);

– if Fk (ρd(t)) ∩ Fk (HB) = 0, then con-
vergence depends only onFk (ρ(0)) (plus
controllability), see (27).
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• If the control Hamiltonian isHB = h<k,12λ
<
k,12 +

h<k,13λ
<
k,13, i.e., direct coupling betweenE2 and

E3 is missing, then the sufficient condition of
Theorem 1 does not apply. Assume for example

ρd(t) =

0 0 0
0 ∗ ∗
0 ∗ ∗

 , ρ(0) =

∗ ∗ 0
∗ ∗ 0
0 0 0

 .
Then Fk ([−iHB, ρd(t)]) = {(12), (13)} and
Fk ([−iHB, ρd(t)])∩Fk (ρ(0)) = {(12)}. How-
ever,ρ(0) 6→ρd(t).

�

V. CONCLUSION

For a nonlinear system, attaining a global descrip-
tion of the region of attraction of a feedback control
design is usually a very hard problem, especially
when the manifold has a nontrivial topological
structure and “competing” equilibria. Remarkably,
the system studied in this work enjoys two proper-
ties that render a global description feasible: the set
of critical points can be described exactly and the
spurious equilibria are all repulsive.
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APPENDIX I
A FEW COMMUTATORS

The following commutators from (7)-(8) are
needed in the proof of Lemma 3 and in Example
2.

[λk,<,j`, λk,=,j`] = i(Ejj − E``)

=



−
√

j−1
j
λh,j−1 +

∑`
p=j

λh,p√
p(p+1)

+
√

`
`−1

λh,`−1

if j > 1 and ` > 2∑`
p=j

1√
p(p+1)

λh,p +
√

`
`−1

λh,`−1

if j = 1 and ` > 2√
`

`−1
λh,`−1 if ` = 2

(26)

For (j`) 6= (pq):

[λk,<,j`, λk,<,pq] =
i√
2

(δ`pλk,=,jq + δjpλk,=,`q

+δjqλk,=,`p + δlqλk,=,jp)

[λk,<,j`, λk,=,pq] =
i√
2

(−δ`pλk,<,jq − δjpλk,<,`q

+δjqλk,<,`p + δlqλk,<,jp)

[λk,=,j`, λk,=,pq] =
i√
2

(−δ`pλk,=,jq + δjpλk,=,`q

−δjqλk,=,`p + δlqλk,=,jp)
(27)
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