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Feedback Control of Spin Systems
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The feedback stabilization problem for ensembles of coupled spin 1/2 systems is
discussed from a control theoretic perspective. The noninvasive nature of the bulk
measurement allows in principle for a fully unitary and deterministic closed loop.
The Lyapunov-based feedback design presented does not require spins that are selec-
tively addressable. With this method, it is possible to obtain control inputs also for
difficult tasks, like suppressing undesired couplings in identical spin systems.
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1. INTRODUCTION

NMR spectroscopy deals with the manipulation of nuclear spins of
quantum ensembles (see Refs. 2 and 12). These systems exhibit most of
the essential features of quantum mechanical systems, like the state space
of tensorial type (providing exponential growth of the degrees of freedom
available) and natural coupling mechanisms between spins, which guar-
antee the nonclassical nonlocality characteristic of quantum evolutions.
For the purposes of state manipulation, over the last 40 years the field of
NMR has developed an extremely versatile and universally accepted set of
tools, in the form of sequences of electromagnetic pulses.(9,12,16) In terms
of classical control theory, these would be classified as open loop control
methods. From the perspective of control theory, open-loop methods are
by far more complicated and less robust than closed-loop methods, in which
one or more functions of the state variables are measured on-line and used
to impose a behavior to the system through a feedback algorithm, or sim-
ply to reject errors and disturbances deviating the state from its desired
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trajectory. As new directions of research like quantum information pro-
cessing are pushing for more precise and efficient engineering of quantum
states, the use of a quantum/classical interface for the purpose of feed-
back control of a quantum state is becoming a reasonable task in different
settings.(11,14,17,21,27,28) From this control perspective, NMR systems con-
stitute a remarkable opportunity to device feedback control methods at a
quantum level for a number of reasons:

1. the model of the system is known in detail;
2. its control mechanism is also very accurate;
3. the measurement is classical, thus avoiding all complications due to

the state collapse problem (weak or less) unavoidable in other
quantum control contexts;(24,28)

4. the relaxation times are sufficiently long to make the real-time
interface with a control device feasible.

For all these reasons, a completely classical, unitary and deterministic
feedback in the context of NMR systems is theoretically feasible, although
major technical problems remain to be addressed, like the very low signal-
to-noise ratio, the on-line extraction of measurements from coil magneti-
zation in real time and in presence of rf excitation and the need to on-line
reconstruct the density matrix from the collective measurements.

The aim of a feedback synthesis is to render a desired state or state
trajectory an attractor for the system regardless of the initial condition,2

and the main purpose of this work is to investigate in detail this feed-
back synthesis from a theoretical viewpoint. The main tools we shall use
are Lyapunov-based feedback design for bilinear control systems, adapt-
ing a method known as Jurjevic–Quinn condition(7,18) to the case at hand.
Standard references for basic material on feedback control are, e.g., the
Refs. 19, 25. It is worth mentioning that in the physics literature a related
approach (using model-based feedback only for the purposes of attaining
the open loop control corresponding to a certain task, see also Sec. 6)
appears under the name “tracking control”.(8,22,30)

For the purpose of feedback synthesis, the system is formulated as a
bilinear control system living on a compact homogeneous space. For the
task of tracking a given orbit, a class of control Lyapunov functions is
naturally defined by the notion of distance induced by the real Euclidean
structure with which the homogeneous space is endowed. This construc-
tion resembles closely the Jurdjevic–Quinn stabilization technique,(18) (see
also Refs. 13, 15, 23, 29 for related material dealing with pure states only),

2While in open-loop methods the initial condition must always be known, in closed-loop
methods no knowledge of the initial state is required.
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although the computation of the largest invariance set via LaSalle princi-
ple is more complicated. This is a consequence of the nontrivial topology
of the state space (for a single spin 1/2 it is a sphere S

2), implying that no
(smooth) feedback design can achieve global stabilization (see Ref. 6 for a
detailed analysis in this direction). At most one can achieve convergence
out of a singular set of isolated, repulsive points. The emphasis on the
exact knowledge of the singular locus is motivated by the fact that near
a singularity the convergence can be very slow. Moreover, a local design
is of limited practical interest in a quantum context. For multispin sys-
tems it is shown that the tensor product nature of the state space does not
complicate exceedingly the feedback synthesis. On the contrary, the singu-
lar set of the control law can be computed explicitly thanks to this tenso-
rial structure.

Throughout the paper we consider only the case of spins that are not
selectively excitable. This is clearly the most difficult case, as an rf field
affects all spins and interacts with all couplings. A similar feedback syn-
thesis for selective controls is much simpler (especially for what concerns
the convergence analysis) and can be deduced by similar means.

While the analysis is easier for the Ising Hamiltonian, all the results
are valid for different types of interactions like Heisenberg or dipole–
dipole. In particular, we show (Sec. 4) how it is possible to reject unwanted
coupling terms, provided they are sufficiently slow compared to the resid-
ual nonlocal part of the Hamiltonian.

As an example of a difficult task that can be solved in this way, we
consider in Sec. 6 a system of three identical spins in which we want to
cancel the interaction between first and third spins without altering the
dipole–dipole coupling of the linear chain. This is a typical problem aris-
ing in solid state NMR. The feedback scheme allows to compute the time
course of the control field achieving an almost exact decoupling in the
entire Hilbert space.

2. FORCED LIOUVILLE EQUATION FOR SPIN 1/2 SYSTEMS: A
BILINEAR CONTROL MODEL

The Liouville–von Neumann equation for a density operator ρ is:

ρ̇ =−i[H, ρ]. (1)

For a single spin 1/2 system, assume the Hamiltonian H is com-
posed of a free part (the drift, often called the Zeeman Hamiltonian) and
a forcing part (the control term). If λ j , j = 0, . . . ,3, are the (normalized:
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tr
(
λ jλk

) = δ jk) Pauli matrices, the free part, which is due to a strong
static magnetic field Bo, is conventionally aligned with the λ3 axis and
causes the spin ensemble to precess around λ3. In the laboratory frame
this is

Hf ,� =−γ Boλ3,

where γ is the gyromagnetic ratio. The quantity ωo = γ Bo is normally
referred to as Larmor frequency. The control Hamiltonian originates from
an electromagnetic field rotating in the (λ1, λ2) plane at a frequency ωrf
close or equal to the precession frequency ωo. In the laboratory frame, this
corresponds to the Hamiltonian:

Hrf =−γ B1 (cos(ωrf t +φ)λ1 + sin(ωrf t +φ)λ2)

where φ is the phase of the field. Typically, ω1 =γ B1 is of the order of the
tens to hundreds of kHz. The controllable parameters are the amplitude
B1, the frequency ωrf and the phase φ. The resulting motion in the labo-
ratory frame is rather complicated to describe. It is convenient to express
it in a rotating frame, i.e., a coordinate system rotating about the vertical
axis λ3 at the frequency ωrf . It can be obtained by means of a variation
of constants formula. Up to a negligible term, the neat result is that the
inertial Hamiltonian Hf ,� + Hrf is replaced by the rotating frame Hamilto-
nian Hf + Hc given by

Hf = −(ωo −ωrf )λ3 =h3λ3 (2)

Hc = −ω1 (cos φλ1 + sin φλ2) . (3)

Fixing φ means fixing the axis at which the control acts. Hereafter we
assume φ =0. Hence (3) becomes simply:

Hc =uλ1 (4)

with u = −ω1 as our real valued control u ∈ C∞(R). When ωrf = ωo, the
Hamiltonian is driftless and the resulting motion is called nutation around
the axis determined by φ.

Consider a two spin 1/2 system in an external field. To represent the
Hamiltonian, we make use of the product operators basis given by Λ jk =
λ j ⊗ λk , j, k = 0, . . . ,3. Calling γα and γβ the gyromagnetic ratios of the
two spins, the rf Hamiltonian now becomes

Hrf = −B1
(
cos(ωrf t +φ)

(
γαΛ10 +γβΛ01

)

+ sin(ωrf t +φ)
(
γαΛ20 +γβΛ02

))
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or, in the rotating frame described above and with φ =0

Hc =−B1
(
γαΛ10 +γβΛ01

)
.

In the same rotating frame, the free part of the Hamiltonian Hf is

Hf =h03Λ03 +h30Λ30 +h33Λ33, (5)

where h30 and h03 are the differences between the Larmor frequencies of
each spin, call them ωo,α and ωo,β , and the carrier frequency ωrf , h30 =
−(ωo,α − ωrf ), h03 = −(ωo,β − ωrf ), and h33 represents the so-called J (or
scalar) coupling, with typical values of hundreds of Hz.

If the spins are homonuclear, γα = γβ , then ωo,α and ωo,β (and thus
h03 and h30) differ only because of the chemical shift, typically of the
order of a few kHz (compared to the MHz order of both ωo,α and ωo,β ).
If instead we have heteronuclear species, then this difference may be of the
order of several MHz.

We shall distinguish between nonselective and selective Hamiltonians.
The main difference between the two cases is in the structure of the con-
trol Hamiltonian Hc. In the first case, it is assumed that the different spins
all experience the effect of the same control field

Hc =u Hc,ns =u (Λ01 +Λ10) , (6)

where u = −γα B1 = −γβ B1. This model is suited for homonuclear spe-
cies with ωo,α and ωo,β not sufficiently separated. When instead ωo,α and
ωo,β are well separated, like in homonuclear species with consistent chem-
ical shift or in heteronuclear species, it is a good approximation to con-
sider the spins as selectively excitable.3 This is achieved by considering
two different rf fields tuned around the two frequencies ωo,α and ωo,β call
them ωrf ,α and ωrf ,β . The separation of ωo,α and ωo,β implies that the
cross-talk with the off-resonant spin is negligible. By applying the dou-
ble coordinate change, one gets still the free Hamiltonian (5), but now
with h30 =−(ωo,α −ωrf ,α) and h03 =−(ωo,β −ωrf ,β). Choosing ωrf ,α =ωo,α

and ωrf ,β = ωo,β , the two local precessions disappear from (5). The cou-
pling term is unchanged, as Λ33 commutes with Λ03 and Λ30. The control
Hamiltonian, instead, becomes

Hc =u01Λ01 +u10Λ10, (7)

where u01 =−γβ B1,β and u10 =−γα B1,α.

3Selectivity normally holds when |ωo,α −ωo,β |> |ω1|. In a feedback design, |ω1|�k, the feed-
back gain. Therefore high gain feedback may reveal unsuitable for selective controls, espe-
cially in the homonuclear case.
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Models like (5) with only a vertical coupling are often referred to as
Ising Hamiltonians. In particular, notice that since Hf is diagonal,

Hf =

⎡

⎢⎢
⎣

h03 +h30 +h33

−h03 +h30 −h33

h03 −h30 −h33

−h03 −h30 +h33

⎤

⎥⎥
⎦ ,

when h03 = h30 4 the unforced system has at least one degenerate eigen-
value of multiplicity 2, regardless of the value of h33. This may result in a
loss of controllability and complicates also the convergence in the closed-
loop system. The diagonal elements of Hf have the meaning of energy
levels of the (unperturbed) system. From Ref. 4, since Graph(Hc,ns) is con-
nected, as soon as Hf is Hc,ns-strongly regular, i.e., has energy levels that
are nondegenerate and transition frequencies all different in correspon-
dence to the nonzero elements of Hc,ns, then the system is controllable (see
Theorem 3 of Ref. 4).

Lemma 1. Consider the systems (5) and (6). Hf is Hc,ns-strongly
regular if h03 �=h30, h33 �=0 and h33 �=±(h03 −h30)/2.

Proof. The graph of the control Hamiltonian Hc,ns habilitates the
following four (nonoriented) transitions: 1 ↔ 2, 1 ↔ 3, 2 ↔ 4, 3 ↔ 4.
Computing the energy differences in terms of the h03, h30 and h33, lack
of degenerate transitions corresponds to the three inequalities stated above.

The condition of the lemma is a generic condition, satisfied almost
always. Furthermore, it is sufficient but not necessary for controllability.

Corollary 1. The systems (5) and (6) is controllable if h03 �= h30,
h33 �=0 and h33 �=±(h03 −h30)/2.

For n spin 1/2, in a rotating frame of frequency ωrf , the Ising Ham-
iltonian of a linear spin chain is still composed of a drift part contain-
ing the Larmor precessions (relative to ωrf as in (5)) plus the J couplings
between adjacent spins

Hf =
(

h0...03Λ0...03 +· · ·+h30...0Λ30...0

+h0...033Λ0...033 +· · ·+h330...0Λ330...0

)

4Since Hf is relative to at least a carrier frequency (two in the selective case (7)), it is not a
restriction to assume h03, h30 ≥0.
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and of a forcing term along the λ1 axis of each spin which, in the
nonselective case, is

Hc =u Hc,ns =u (Λ0...01 +· · ·+Λ10...0) .

Rather than working with the complex matrix ODE (1) (whose inte-
gral flow corresponds to a conjugation action), we prefer to use the real
“one-sided” linear action on vectors (or tensors) of expectation values
along a complete orthonormal set of observables. For a single spin 1/2, it
is well-known that one can write the density operator ρ as a real vector of
expectation values along the Pauli matrices λ j , j =0, . . . ,3: ρ =� jλ j =� ·λ,
using the summation convention. In terms of �, and for the Hamiltonian
in (2) and (3) one obtains the Bloch equations:

�̇=−i
(

h3adλ3 +uadλ1

)
�. (8)

The notation “ad” in (8) originates from the notion of adjoint repre-
sentation, and the adjoint operators adλ j stand for matrices of structure
constants with respect to the su(2) basis given by the −iλ j : adλ j λk =
[λ j , λk]=∑3

l=0 cl
jkλl . In general, the adjoint representation of a semisim-

ple Lie algebra is a real isomorphic matrix representation of the algebra.
For su(2), for example, we have adsu(2) = so(3). The most important
feature of the adjoint representation in our case is that it provides a
linear representation of one-parameter groups of automorphisms of the al-
gebra. This enables us to formulate the control problem in terms of stan-
dard real bilinear control systems also for multispin systems. In fact, for 2
or more spin 1/2 densities, a parametrization similar to the Bloch vector
yields a tensor, called the Stokes tensor and also denoted by �: if ρ ∈H⊗2

2 ,
ρ = � jkΛ jk = � ·Λ where � jk = tr

(
ρΛ jk

)
are expectation values capturing

all 15 degrees of freedom of ρ along the complete set of observables Λ=
{Λ jk, j, k = 0, . . . ,3}, � ∈ S � S

15, where the real set S is very difficult to
describe explicitly. All details are given in Ref. 5. Calling

adΛ jk = 1
2

(
adλ j ⊗aadλk +aadλ j ⊗adλk

)

the real skew-symmetric operators obtained from the adλ j above and the
“antiadjoint” operators aadλ j (which have a similar meaning, only involv-
ing the “symmetric” structure constants aadλ j λk = {λ j , λk} = ∑3

l=0 sl
jkλl ),

then we obtain the following adjoint representation of the Liouville
equation

�̇=−i
(
adHf +uadHc,ns

)
� (9)



16 Altafini

or, in components,

ρ̇ pq =− i
(

h03adΛ03 +h30adΛ30 +h33adΛ33

)pq

lm
ρlm

− iu
(
adΛ01 +adΛ10

)pq
lm ρlm .

(10)

By writing ρ jk as a 16-vector and expanding the tensor products, a
bilinear control system with drift and control vector fields that are 16 ×
16 matrices is obtained. The expression is similar for the selective cases
(5)–(7).

Obviously, from g2s = Lie{−iΛ jk, j, k = 0, . . . ,3} = su(2) ⊕ su(2) ∪
su(2)⊗su(2), one gets for the adjoint representation adg2s =Lie{−iadΛ jk , j, k =
0, . . . ,3}= so(3)⊕ so(3)∪ so(3)⊗ so(3).

In the case u =0 the Ising model is completely integrable because

[adΛ03 ,adΛ30]= [adΛ03,adΛ33 ]= [adΛ30,adΛ33]=0. (11)

Hence

�pq(t) =
(

exp
(
−i th03adΛ03

)
exp

(
−i th30adΛ30

)
·

exp
(
−i th33adΛ33

))pq

lm
�lm(0) (12)

which shows that the evolution is a “superposition” of three different
periodicities, two local τpα = 2π

h30 and τpβ = 2π

h03 and one nonlocal τp = 2π

h33 .
The purity of the two reduced densities ρα(t) = trβ(ρ) and ρβ(t) = trα(ρ)

is varying with time because of the coupling.
The generalization to n spin 1/2 is completely analogous: the 2n ×2n

density matrix ρ can be described by an n-index tensor ρ =� j1... jn Λ j1... jn =
� · Λ, each index ranging in 0, . . . ,3, Λ j1... jn = λ j1 ⊗ . . . ⊗ λ jn . The corre-
sponding ODE is still given by an equation like (9).

3. STATE FEEDBACK STABILIZATION OF SPIN-1/2 SYSTEMS

In this section, we are only interested in full state feedback. The
topology of the manifolds discussed in this work (spheres and compact
homogeneous spaces obtained by taking the “envelope” of tensor prod-
ucts of “affine” spheres) forbids to have globally converging smooth algo-
rithms. For example, for the Bloch sphere S

2 there does not exist smooth
positive definite functions with less than two points having zero deriv-
ative. In control theory, the functions having such minimal number of
zeros are sometimes referred to as Morse functions.(20). Hence in the sim-
plest case of a single spin 1/2, the Lyapunov-based design will always
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be characterized by the presence of at least a spurious equilibrium point,
which can, however, be rendered repulsive.

3.1. State Feedback Stabilization for a Single Spin-1/2 System

Because of the drift term, for � different from the north/south poles
of S

2 the unforced system �̇ = −ih3adλ3� does not have an equilibrium
point but keeps moving on an orbit in the (�1, �2) plane corresponding
to �3(t) = �3(0). We shall not try to cancel such precession motion, but
instead try to stabilize the state to a desired orbit. Consider the system (8)
from a given initial condition �(0). If �d is the reference state, describe the
orbit to track (with the obvious prerequisite ‖�d‖=‖�‖=r ) by means of a
ODE like (8) but without forcing terms. Calling �d(t) the desired reference
state,

�̇d =−ih3
dadλ3�d, (13)

means that �1
d and �2

d evolve on a circle while �3
d(t) = �3

d(0) is the fixed
value that characterizes the orbit.

Proposition 1. The system (8) with the feedback law

u = k〈〈�d, −iadλ1�〉〉, (14)

where k ∈R
+, is tracking the reference orbit �d(t) given by (13) with h3

d =
h3, in an asymptotically stable manner, for all �(0)∈S

2
r with the exception

of �(0)=−�d(0) and of �(0), �d(0) such that �3(0)=�3
d =0.

Proof. For density operators, a natural choice of distance is given by
the so-called Hilbert–Schmidt (or trace) norm: tr

(
ρ2

)
. In terms of Bloch

vectors �d, �, this induces the following S
2 distance between �d and � (see,

e.g. Ref. 31):

d(�d,�)=‖�d‖2 −〈〈�d,�〉〉=‖�d‖2 −�T
d �. (15)

Consider as candidate Lyapunov function the distance (15): V = d(�d,�).

Clearly V ≥0 and V =0 only when �d =�. Since d‖�d‖2

dt =0

V̇ = −〈〈�̇d,�〉〉−〈〈�d, �̇〉〉
= −〈〈−ih3adλ3�d,�〉〉−〈〈�d,−i

(
h3adλ3 +uadλ1

)
�〉〉

= iu�T
d adλ1�,

(16)
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because iadλ3 is skew-symmetric. Inserting (14):

V̇ =−k
(

i�T
d adλ1�

)2 ≤0.

The system (8) with the feedback (14) is time-varying and it is not
possible to get rid completely of the time dependence by considering the
error system e=�d −�:

ė=−iadHf e− iuadHc,ns(e−�d).

However, from (16), V̇ is time-independent thanks to the cancella-
tions and so must be V (its time-dependence is only apparent). Hence we
can use LaSalle invariance principle for autonomous systems and the pos-
itive limit set of �(t) is still the largest invariant set, call it E , confined to
N ={� such that V̇ =0} (and corresponding to u =0). To compute E , fol-
lowing the same idea of the proof of Theorem 2 of Ref. 18, in N it must
also be du

dt =0. Explicitly:

du

dt
= −ik

(
�̇T

d adλ1�+�T
d adλ1 �̇

)
(17)

= kh3�T
d [−iadλ1 , −iadλ3 ]�=√

2kh3i�T
d adλ2�.

Notice, however, that u = du
dt =0 yield bilinear forms as opposed to the

quadratic forms of the original proof of Ref.(18); that in addition we have
the constraint of ‖�(t)‖ = const �= 0 to deal with; and that the Lie alge-
bra involved is composed of only skew-symmetric matrices, which applied
to a point yields (out of the singularities) the tangent plane to the sphere
S

2
r (not R

3). This makes the condition of Ref.(18) nonglobal. For example
both bilinear forms (14) and (17) are identically zero on the great circles
�3

d =�3 =0, regardless of the values of �
j
d, � j , j =1,2. If �3

d �=0 then in N
we have

� j (t)= �3

�3
d

�
j
d(t), j =1,2 (18)

and the closed loop system confined to N is given by the drift alone:

�̇=√
2h3

⎡

⎢
⎢
⎣

0
−�2

�1

0

⎤

⎥
⎥
⎦=√

2h3 �3

�3
d

⎡

⎢
⎢
⎣

0
−�2

d
�1

d
0

⎤

⎥
⎥
⎦ . (19)
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The presence of spurious equilibria in N is equivalent to the feasibility of
(19) with �3 �=�3

d. In N , expanding the isospectral constraint ‖�d‖2 =‖�‖2,
one gets:

(�1
d)2 + (�2

d)2 + (�3
d)2 = (�1)2 + (�2)2 + (�3)2

= (�3)2

(�3
d)2

(
(�1

d)2 + (�2
d)2

)
+ (�3)2 = (�3)2

(�3
d)2

(
(�1

d)2 + (�2
d)2 + (�3

d)2
) (20)

The first and last expression of (20) are equal if and only if (�3)2

(�3
d)2 =1, i.e.,

�3 =±�3
d. While �3 =+�3

d is already on the equilibrium since (18) implies
that �=�d, the case �3 =−�3

d leads to a singular point of the control law
given by �(t) = −�d(t) (again from (18)). Such a singularity corresponds
to the antipodal point to the current desired position and is an isolated
unstable equilibrium point. Hence, whenever �3

d �= 0, E = {�(t) = ±�d(t)}
and the closed loop system almost globally tracks the desired orbit in an
asymptotically stable manner. Since V is almost always decreasing along
the trajectories of the closed loop system and the condition �3

d �= 0 does
not depend on time, it is possible to recompute E in terms of the initial
conditions:

u(t)=− ik�T
d (0)eith3adλ3 adλ1 e−i th3adλ3 �(0)

=√
2k�T

d (0)

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 − sin(

√
2th3)

0 0 0 − cos(
√

2th3)

0 sin(
√

2th3) cos(
√

2th3) 0

⎤

⎥
⎥
⎦�(0)

=√
2k

(
cos(

√
2th3)

(
�3

d(0)�2(0)−�2
d(0)�3(0)

)

+ sin(
√

2th3)
(
�3

d(0)�1(0)−�1
d(0)�3(0)

))
=0

(21)

leads to conditions equivalent to (18) and (20) in terms of �(0) and �d(0).
Hence �(t)=−�d(t) if and only if �(0)=−�d(0), i.e., the system is initial-
ized in the antipodal point with respect to the initial condition �d(0) of
the desired trajectory.

Remark 1. The closed loop system is a nonlinear Bloch equation
very similar to those obtained by considering radiation damping effects.(1)

Remark 2. A periodic solution of an autonomous system can never
be a global attractor of a compact set (like the sector of the sphere delim-
ited by �3

d �= 0 and not containing −�d(0)). The time-varying formulation
allows to bypass this topological obstruction.
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Remark 3. The exact cancellation of the drift in (16) is crucial for
the proof of stability. If h3

d �=h3, in fact (16) is not homogeneous in u and
the set of singular points in N is larger.

Remark 4. If rather than tracking a given orbit (a full state stabiliza-
tion problem) we are interested only in the orbital asymptotic stabilization
of the invariant set �3

d = const, then the problem becomes unidimensional.
In this case, simple distance-like feedback laws like

u = k�2(�3
d −�3) (22)

readily provide a solution.

In Figs. 1–3, simulations of the closed loop system with the controller
(14) are shown. In Fig. 3 the instability of the antipodal point is shown:
while �(0) = −�d(0) implies the state (dashed line) is not converging to
�d(t) (dotted line), a small perturbation in �(0) is enough to make �(t)
(solid line) converging to �d(t).

When the rf field rotates at the Larmor frequency, the Hamiltonian
of the system is driftless as h3 = ωo − ωrf = 0. In this case, in the rotat-
ing frame we have a nutation motion, i.e., just a rotation around the λ1
axis:

�̇=−iuadλ1�. (23)

Assuming �d(t) = �d(0), then both the feedback laws (22) and (14)
still hold and give a time-independent closed loop system. As a
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Fig. 1. Closed-loop trajectory on the Bloch sphere for the controller (14).



Feedback Control of Spin Systems 21

0 5 10 15 20 25

0

0.5

1

-0.5

-1

ρ 1

0 5 10 15 20 25

0

0.5

1

-0.5

-1

ρ 2

0 5 10 15 20 25

0

0.5

1

-0.5

-1

ρ 3

time units

Fig. 2. The components of the Bloch vector of �d(t) (dotted line) and �(t) (solid line) for
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0 5 10 15 20 25

0

0.5

1

-0.5

-1

ρ 1

0 5 10 15 20 25

0

0.5

1

-0.5

-1

ρ 2

0 5 10

times units

15 20 25

0

0.5

1

-0.5

-1

ρ 3

Fig. 3. The closed-loop trajectories of the system with intial state (dashed line) “antipodal”
to the desired state (dotted line) �d(0)=−�(0) and from the same antipodal initial state plus
a small perturbation (solid line).

consequence, almost global stabilization is no longer achievable on a
compact and in fact both schemes correspond to partial state stabilization
schemes, since in (23) �̇1 =0 remains critically stable in closed loop.
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3.2. State feedback for Two spin- 1
2 systems

Assuming the entire two spin 1/2 state tensor � is available on-line,
we want now to generalize the feedback law of Sec 3.1 to the ensembles of
weakly coupled spin 1/2 described above. Only the nonselective case will
be treated. Clearly, the selective Hamiltonian of eq. (7) has more control
authority available, hence its stabilization is an easier task than the non-
selective case. As before, let �α, �β and �αd

, �βd
be the reduced densities

respectively of � and �d. An obvious prerequisite for stabilizability is that
� and �d both belong to S, which implies for example that ‖�‖ = ‖�d‖.
We shall also assume that the initial condition is a product state �(0) =
�α(0)⊗�β(0).

The proof of Proposition 1 was essentially relying on the Jurdjevic-
Quinn sufficient condition for stabilizability,(18) opportunely modified in
order to deal with skew-symmetric infinitesimal generators. The key tool
is the so-called “ad-condition”, i.e., a particular type of Lie brackets often
used for testing controllability, see Ref. 4. The following proposition shows
that this condition is never satisfied by the system (9).

Lemma 2. For the system (9)

span
{−iadHf , −iadHc,ns, [−iadHf , −iadHc,ns], . . . ,

[−iadHf , . . . , [−iadHf , −iadHc,ns] . . .]
} �=adg2s . (24)

Proof. Given any A, B ∈g2s , for the adjoint representation

[adA, adB]=ad[A, B], (25)

with adA,adB ∈adg2s . Hence, (24) holds if and only if

span
{−i Hf , −i Hc,ns, [−i Hf , −i Hc,ns], . . . ,

[−i Hf , . . . , [−i Hf ,−i Hc,ns] . . .]
} �=g2s . (26)

Computing explicitly the first Lie brackets:

[−i Hf , −i Hc,ns] = −i
(

h03Λ02 −h33Λ32 +h30Λ20 −h33Λ23

)
(27a)

[−i Hf , [−i Hf , −i Hc,ns]] = −i
((

(h33)2 − (h03)2
)

Λ01

+
(
(h33)2 − (h30)2

)
Λ10

)
(27b)



Feedback Control of Spin Systems 23

Comparing (6) and (27b) it is clear what the pattern of iterated Lie brack-
ets will be, since the basis elements involved are the same. In particular,
the basis directions −iΛ11, −iΛ12, −iΛ21 and −iΛ22 are never touched
by such sequences of commutators. Hence the claim (26) or, equivalently
(24). ��

As for the single spin 1/2 case, we want to achieve asymptotically sta-
ble tracking of the following periodic orbit:

�̇d =− iadHfd
�d

=− i
(

h03
d adΛ03 +h30

d adΛ30 +h33
d adΛ33

)
�d, �d(0)∈S (28)

by means of a single control input.

Proposition 2. Whenever Hf is Hc,ns-strongly regular, the feedback

u = k〈〈�d, −iadHc,ns�〉〉 (29)

with k ∈ R
+, asymptotically stabilizes the system (9) to the time-varying

reference state �d(t) given by (28) with Hfd = Hf , for all �(0)∈S with the
exception of �(0) such that (�α(0), �β(0)) = −(�αd

(0), �βd
(0)) and of all

pairs (�(0), �d(0)) having (�3
α, �3

αd
)= (0, 0) and (�3

β, �3
βd

)= (0, 0).

Proof. As in proof of Proposition 1, take as Lyapunov function the
analogous of the distance (15), V (t)=‖�d‖2 −〈〈�d(t), �(t)〉〉. Again, when
differentiating the drift disappears,

V̇ = −〈〈�̇d, �〉〉−〈〈�d, �̇〉〉 (30a)

= i
(〈〈adHf �d, �〉〉+〈〈�d, (adHf +uadHc,ns)�〉〉) (30b)

= −u〈〈�d, −iadHc,ns�〉〉, (30c)

and V̇ is made negative semidefinite by the choice of feedback (29). Com-
plications arise when checking the emptiness of the invariant set E in
N = {� s.t. V̇ = 0}. In fact, from Lemma 2, the Jurdjevic–Quinn con-
dition never applies to tensor product systems. Furthermore, since the
reduced densities �α(t) and �β(t) in N have time-varying norm, neither
the method used in proof of Proposition 1 is directly applicable. However,
it can be applied “stroboscopically”, i.e., at the time instants t =cτp, c∈N,
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in which the nonlocal part of the dynamics disappears. From (29):

u = −ik�T
d adHc,ns�

du

dt
= −ik

(
�̇T

d adHc,ns�+�T
d adHc,ns �̇

)

= −ik�T
d [adHc,ns, adHf ]�

= −ik�T
d ad[Hc,ns, Hf ]�

where we have used (25). The explicit expression for ad[Hc,ns, Hf ] follows
applying (25)–(27a). From (11) and (12), in N one can write

u(t) = −ik
(
�T

d (0)eith33adΛ33 eith03adΛ03 adΛ01e−i th03adΛ03 e−i th33adΛ33 �(0)

+�T
d (0)eith33adΛ33 eith30adΛ30 adΛ10 e−i th30adΛ30 e−i th33adΛ33 �(0)

)
=0

(31)

and similarly for du
dt = 0. At t = cτp, e±i th33adΛ33 = I4, hence (31) contains

only local terms and the integration in �, �d resembles (21):

u(t)|t=cτp = −i
√

2k
(
�T

d (0)I4 ⊗ eith03adλ3 adλ1 e−i th03adλ3 �(0)

+�T
d (0)eith30adλ3 adλ1 e−i th30adλ3 ⊗ I4�(0)

)

= 2k

⎛

⎜⎜
⎝�T

dα
(0)�α(0)⊗�T

dβ
(0)

⎡

⎢⎢
⎣

0 0 0 0
0 0 0 − sin(th03)

0 0 0 − cos(th03)

0 sin(th03) cos(th03) 0

⎤

⎥⎥
⎦�β(0)

+�T
dα

(0)

⎡

⎢⎢
⎣

0 0 0 0
0 0 0 − sin(th30)

0 0 0 − cos(th30)

0 sin(th30) cos(th30) 0

⎤

⎥⎥
⎦�α(0)⊗�T

dβ
(0)�β(0)

⎞

⎟⎟
⎠=0.

(32)

Equation (32) is enough to show that the structure of E at t = cτp

reflects essentially that of Proposition 1. In fact, the assumption of Hc,ns-
strong regularity of Hf implies that (excluding the case �T

αd
(0)�α(0) =

�T
βd

(0)�β(0) = 0 corresponding to the antipodal case, but only for pure
reduced densities), each of the two terms of (32) must be zero. Therefore
in N we have the following invariant states (for t = cτp):
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1. �α(0)=−�αd
(0) and to �β(0)=−�βd

(0) (“local” antipodal case);
2. �3

α = �3
αd

= 0 and/or �3
β = �3

βd
= 0, regardless of the values of the

other terms �0 j , � j0, �
0 j
d , �

j0
d , j =1,2 (reduced densities of true and

desired trajectories are horizontal great circles, for any degree of mix-
ing, including the completely mixed case).

All cases above correspond to u =0 and give the invariant set E at t =cτp.
Hence, for any t , E will contain at most a subset of them. All are excluded
by the assumptions of the proposition.

For a typical simulation, the entire 16-state reference tensor (dotted)
and the tensor of the closed-loop system (solid) are shown in Fig. 4, and
the two reduced densities in Fig. 5.

Remark 5. Since −iadHc,ns is local, the feedback action (29)
preserves ‖�α‖ and ‖�β‖.
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Fig. 4. The 16-components of the tensor �d (dotted lines) and � (solid line) for the orbit
tracking problem.
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Fig. 5. Closed-loop reduced densities �α(t) (left) and �β(t) (right) corresponding to Fig. 4.

Remark 6. From a practical point of view, although out of the
singular set convergence is guaranteed, the rate of convergence may be
very slow for initial conditions near the singularities. Having a second
nonselective control field at the same frequency ωrf but with a phase
difference of 90◦, i.e., using

Hc =u1(Λ01 +Λ10)+u2(Λ02 +Λ20)

in place of (6), with the feedback law u2 = 〈〈�d, −iad(Λ02+Λ20)�〉〉 helps
considerably in improving the convergence rate.

In the selective case described by the Hamiltonian (5) and (7), the two
feedback laws for u01 and u10 are of the same type as (29). Tuning the two
rf fields exactly on the two Larmor frequencies ωo,α and ωo,β , one gets
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h03 =h30 =0. Therefore the proof of Proposition 2 does not apply straight-
forwardly. However, the idea behind the proof still holds true, namely that
the two reduced closed-loop evolutions are nonidentical. The presence of
two controls in the selective Hamiltonian (7) emphasizes this distinguish-
ability and simplifies the stabilizability argument considerably with respect
to Proposition 2. Another consequence of this “distinguishability” notion,
as a generalization of the argument in proof of Proposition 2, is that the
same tracking scheme can be used for more complicated free Hamiltoni-
ans than (5). In particular, any

Hf =h03Λ03 +h30Λ30 +h jkΛ jk, j, k �=0 (33)

can be used in Proposition 2, provided that Hfd = Hf . We state it as a
Corollary.

Corollary 2. If Hf given by (33) is Hc,ns-strongly regular, the feed-
back law (29) asymptotically stabilizes the system �̇ =−iad(Hf +u Hc,ns)� to
the time-varying reference state �d(t) given by �̇d =−iadHf �d for all �(0)∈
S, except for the same singular set described in Proposition 2.

3.3. n Spin 1/2 Case

For the Ising Hamiltonian, if we start from a product state, label the
spins as α, . . ., ν and call ρα , . . ., ρν the corresponding reduced densities,
then we can arrive at the same conclusion as Proposition 2, provided all
energy levels are neither equal nor equispaced. The proof is omitted as it
makes use of the same techniques used above, only the notation is more
cumbersome.

Proposition 3. If Hf is Hc,ns-strongly regular, the feedback

u = k〈〈�d, −iadHc,ns�〉〉 (34)

with k ∈ R
+, asymptotically stabilizes the system �̇ =−i(adHf + uadHc,ns)�

to the time-varying reference orbit �d(t) given by �̇d = −iadHf �d, for all
�(0) such that ‖�(0)‖=‖�d(0)‖, with the exception of the antipodal point
(�α(0), . . . ,�ν(0)) = −(�αd

(0), . . . ,�νd
(0)) and of all pairs (�(0), �d(0))

having (�3
α, �3

αd
)= (0, 0), . . ., (�3

ν, �3
νd

)= (0, 0).

4. SUPPRESSING UNWANTED WEAK COUPLINGS

The J -coupling used in the previous sections is an indirect coupling
mechanism, physically due to the electrons shared in the chemical bonds
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between the atoms. Apart from this coupling, there are other interaction
mechanisms, due to the direct or electron-mediated interactions between
the spins. Consider the nonselective two spin 1/2 Hamiltonian (33) and

Hfd =h03Λ03 +h30Λ30 +h jk
d Λ jk, j, k �=0. (35)

Call Hδ = Hfd − Hf the difference between the desired and the true Ham-
iltonian. We are interested in treating the extra terms Hδ as disturbances
and suppressing them by means of feedback.

Assume the frequencies h jk
d are of the same order of magnitude, call

it 2π/τd. When the frequency of the disturbance Hδ, call it 2π/τδ (�h jk
δ ),

is much smaller than 2π/τd, then Hδ can be suppressed by the control
action.

Proposition 4. Assume Hf is Hc,ns-strongly regular and τδ �τd. Then
there exists a ωrf and a sufficiently high gain k such that the system �̇ =
−iad(Hf +u Hc,ns)� with the feedback (29) can track the reference trajectory
�d(t) given by �̇d = −iadHfd

�d and reject the disturbance Hδ up to a
bounded error.

Proof. Since Hfd �= Hf , in the proof of Proposition 2 the derivative of
the Lyapunov function is no longer homogeneous in the control. Inserting
the feedback (29),

V̇ =〈〈�d, −iadHδ�〉〉− k〈〈�d, −iadHc,ns�〉〉2 (36)

the first term is in general sign indefinite, implying negative semidefinite-
ness of V̇ is not guaranteed. Consider the set N = {� s. t. V̇ = 0}. Since
k〈〈�d, −iadHc,ns�〉〉2 ≥ 0, for an invariant set to belong to N it must be
〈〈�d, −iadHδ�〉〉 ≥ 0. As −iadHδ is skew-symmetric, the only solution is
〈〈�d, −iadHδ�〉〉= 〈〈�d, −iadHc,ns�〉〉2 =0. This happens for example for the
perfect tracking � = �d. When this is not verified, the steady state is
replaced by a limit cycle which is in general stable but not asymptotically
stable.

The first term in (36) is slow, of small amplitude, of period τδ (when
u =0) and of zero average. Provided k is sufficiently high, the second term
has a fast dynamics with respect to the first one and a large amplitude.
Hence, in the time scale τd, 〈〈�d, −iadHδ�〉〉 can be thought of as frozen,
with the controlled term still acting as a damping. The cancellation of Hδ

cannot be perfect because there are regions of the state space where the
controllable term of (36) vanishes, namely where any of the four reduced
densities �αd

, �βd
, �α, and �β approaches the λ1 axis. Recall (Remark 5)

that the amplitude of the feedback action only depends from the reduced
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densities. In absence of a local precession motion, the system leaves this
nonconvergence region only due to the coupling terms and it is not pos-
sible to guarantee a recovery from the disturbance-induced instability for
all Hfd . However, since h03 = −(ωo,α − ωrf ) and h30 = −(ωo,β − ωrf ), it
is always possible to choose ωrf so that 1/τδ is small compared to h03

and h30. The effect of the local precessions is to steer the corresponding
reduced dynamics, both the desired and the real ones, out of the uncon-
trollable alignment with the λ1 axis. Therefore, since both local closed-loop
dynamics evolve fast compared to Hδ and so does Hfd , the displacement
due to the drift term in (36) can be rejected in the fast time scale. Since
the disturbance Hδ is persistently exciting the system, no steady state is
ever reached, but the error remains bounded.

Two common coupling models often used in the literature are the
Heisenberg interaction and the dipole–dipole interaction.(2,12) For exam-
ple, the dipole–dipole Hamiltonian is given by

Hdd =−ωdd(Λ11 +Λ22 −2Λ33) (37)

and models the direct coupling between the magnetic moments in solid
state NMR. As an application of Proposition 4, we want to modify the
response of Hdd so as to reproduce that of a J coupling. In the rotating
frame ωrf , assume that the free Hamiltonian is

Hf =h03Λ03 +h30Λ30 +h33Λ33 +h11Λ11 +h22Λ22, (38)

where Hδ =h11Λ11 +h22Λ22, h11 =h22 =−h33/2=−ωdd, and 10ωdd �h03 �
h30. The control Hamiltonian is still nonselective and given by (6). A typ-
ical closed loop behavior for this choice is shown in Fig. 6. Even after the
offset due to the initial condition is recovered, the system does not quickly
reach an unperturbed steady state due to the periodic excitation given be
Hδ. The Lyapunov function V and its derivative V̇ are shown in Fig. 7.

Notice further that Corollary 2 implies that the coupling included
in Hfd needs not be restricted to the vertical Λ33 direction. Only the
weakness of the unwanted coupling Hf − Hfd with respect to Hfd and
with respect to the local precession frequencies matters for the disturbance
rejection.

5. FEEDBACK FROM MEASURABLE QUANTITIES

A typical NMR measurement apparatus can provide a collective mag-
netization measurement in the (λ1, λ2) plane. We assume this measure pro-
cess can coexist with the excitation of the coil (actuator signal). While
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Fig. 6. The 16-components of the tensor �d (dotted lines) and � (solid line) for the weak
coupling suppression problem.

for a single spin ensemble this, together with ‖�‖ = const, allows to
easily recover the entire state vector, for two spin systems what is measur-
able depends on the nuclear species we are considering. In the homonu-
clear case, the measurement corresponds to the output vector y =[y1 y2]T ,
where y j (t) = �0 j (t) + � j0(t). Since also the controls are nonselective, a
feedback from y cannot stabilize the system. However, if we can, by means
of a state observer,5 access the entire 3-vectors �0 j and � j0 rather than
just the sums of their (λ1, λ2) components, then several control designs
are possible. We will not investigate the state estimation issue in detail
here see, e.g., Ref. 10. We only notice that the system is easily seen to
be observable as soon as it is controllable(3) but that due to the compli-
cated structure of S, linear state observers are inadequate (they do not
preserve ‖�‖). In the heteronuclear case, the estimation of �α and �β is an

5The word “observer” is used in the system-theoretic sense of state estimator.
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easier task than in the homonuclear one. In fact, for different spin species,
different coils (tuned at the different, well-separated, precession frequen-
cies ωo,α, ωo,β ) can be used so that both pairs (�01, �02) and (�10, �20)

can be available simultaneously from direct measurements. Since in NMR
experiments the initial condition �(0) is always known, the simplest way
to recover the �03 and �30 components in this case is obviously to
numerically integrate the system.

Assuming �α(t) and �β(t) are available, then one could use �α(t) ⊗
�β(t) in place of �(t) in the feedback controller of Proposition 2

u = k〈〈�d, −iadHc,ns�α ⊗�β〉〉. (39)

The approximation of the true state �(t) with the product state �α(t) ⊗
�β(t) corresponds to disregarding at each time the correlation that is
being built by the J -coupling h33. From Remark 5, this difference is
to a large extent negligible. The results are plotted in Figs. 8 and 9:
comparing with Figs. 4 and 5, notice how the transient is only slightly
worsened.
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Fig. 8. The 16-components of the tensor �d (dotted lines) and � (solid line) for the orbit
tracking problem with feedback from reduced density measurements.

6. DESIGN OF OPEN LOOP CONTROL VIA MODEL-BASED
FEEDBACK

The feedback schemes of the previous sections have a straightforward
application as open-loop model-based state steering method, see Fig. 10.
In this setting, the system and its feedback controller are simulated on a
computer. The time-varying control signal u(t) obtained in this way can
then be used in an open-loop fashion to control the true system in the lab.
This strategy is particularly significant for very difficult control tasks, like
canceling unwanted couplings in spin systems not admitting selective con-
trols, like is often the case in solid state NMR. Consider the three identical
spins configuration of Fig. 11. Each coupling is of dipole–dipole type, with
the strength of the AB and BC couplings equal to 1 while for the AC cou-
pling it is 1/8. The lack of any chemical shift makes the three spins indis-
tinguishable (“full” controllability is therefore lost). The task is to have
the three spins behave like a linear chain, canceling the effect of the AC
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Fig. 9. Closed-loop reduced densities �α(t) (left) and �β(t) (right) corresponding to Fig. 8.

coupling:

Hfd =− (Λ110 +Λ220 −2Λ330)

− (Λ011 +Λ022 −2Λ033)

Hδ =− 1
8

(Λ101 +Λ202 −2Λ303)

by means of the control Hamiltonian

Hc =u(Λ001 +Λ010 +Λ100).

Since the purposes is now only to attain a useful control signal u, we can
choose the initial condition �(0)=�d. Normally in the laboratory one uses
�(0) = �α(0) ⊗ �β(0) ⊗ �γ (0) where each reduced density is aligned along
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Fig. 10. Block diagram for the “model-based feedback” control design.

A B C

Fig. 11. Three spin configuration.

the λ1 axis. Using the feedback scheme of (34) the so-called free induction
decay (FID) signal �001 +�010 +�100 with and without control is shown in
Fig. 12.

The same tracking behavior holds for the entire tensor �. Hence the
Hδ coupling is effectively suppressed on the entire Hilbert space of the
system. Due to the symmetries of the problem, in this case the local
precession are totally ininfluent. In the NMR literature, achieving this
decoupling is known to be a difficult task, even when we restrict to the
one-dimensional submanifold corresponding to the FID signal and
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Fig. 12. Left: Uncontrolled FID response. Right: FID response with the feedback control.
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disregard what happens on the rest of the Hilbert space. This shows the
potential of model-based feedback methods even for the usual task of
open-loop control design.

7. CONCLUSION

In the classical world, feedback can provide a degree of robustness
to all tasks requiring state manipulation or protection which is by far
unachievable by open loop control methods. If one adds that the com-
plexity of the feedback synthesis is much lower than that of open loop
design, (26) it is easy to realize which one control engineers like it better.
The main purpose of this paper is to show that to some extent known
feedback methods could be used also in NMR systems. Unlike other con-
texts, where “quantum feedback” is studied,(11,17,24,27) the complete non-
invasivity of the bulk measurements makes it theoretically sound -at least
in principle- to study the feedback problem for NMR systems in a purely
deterministic and unitary framework. A possible feedback synthesis fol-
lows directly from standard control-theoretic Lyapunov techniques.
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