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Abstract— The aim of this paper is to shed light on how
the social relationships between individuals influence their
opinions in the case of structurally balanced social networks.
If we represent a social network as a signed graph in which
individuals are the nodes and the signs of the edges represent
friendly or hostile relationships, then the property of structural
balance corresponds to the social community being splittable
into two antagonistic factions, each containing only friends.
A classical example of this situation is a two-party political
system. The paper studies the process of opinion forming on
such a social community, starting from the observation that
the property of structural balance is formally analogous to
the monotonicity property of dynamical systems. The paper
shows that under the assumption that individuals are positively
influenced by their friends and negatively influenced by their
enemies, monotone dynamical systems, due to their order-
preserving solutions, are natural candidates to describe the
highly predictable process of opinion forming on structurally
balanced networks.

INTRODUCTION

In social network theory, a community of individuals char-
acterized by friendly/hostile relationships is usually modeled
as a signed graph having the individuals as nodes and their
pairwise relationships as edges: an edge of positive weight
expresses friendship, one of negative weight adversion or
hostility [27], [7]. According to Heider theory of structural
balance (or social balance) [13], in a balanced community
structural tensions and conflicts are absent. This corresponds
to the fact that the role of friends and enemies, determined
locally by the bipartite relationships, is perfectly defined
also on triads and, more generally, on a global scale. An
equivalent characterization is in fact that the network splits
into two factions such that each faction contains only friendly
relationships while individuals belonging to different factions
are linked only by antagonistic relationships [27]. In the
graph-theoretical formulation of Cartwright and Harary [5],
the lack of structural tensions corresponds to all cycles of the
signed graph being positive, i.e., all having an even number
of negative edges, see Fig. 1.

Following [5], in a perfectly balanced community it is
reasonable to assume that for a person the point of view of a
friend influences positively the process of forming an opinion
about a subject; the opposite for an adversary. Quoting [5]:
“the signed graph depicting the liking relations among a
group of people will, then, also depict the potential influence
structure of the group”. Under this hypothesis, it is plausible
to deduce that the outcome of an opinion forming process
overlaps with the bipartition of the network: opinions are

homogeneous within a faction and opposite with respect to
those of the other faction. In this paper we ask ourself what
kind of dynamics is suitable to represent this process of
forming an opinion in a structurally balanced world of friends
and adversaries.

In terms of dynamical systems, we can think of “influence”
in the sense mentioned above as a directional derivative
in opinion space, and of the Jacobian matrix of partial
derivatives as the collection of all these influences. The
principle stated above that the influences among the members
of the community are depicted by their social relationships
corresponds to identifying the signs of the entries of the Ja-
cobian with those of the “sociomatrix” i.e., of the adjacency
matrix of the signed graph describing the social network.
The role played by friends and adversaries is assumed to
be free from ambiguities, and this corresponds to constant
sign of the partial derivatives in the entire opinion space. In
dynamical systems theory, the systems whose Jacobians are
sign constant at all points and such that the associated signed
graph consists only of positive cycles form an important
class of systems, called monotone systems [23], [22], [24].
Monotone systems are well-known for their dynamical prop-
erties: they respond in a predictable fashion to perturbations,
as their solutions are “ordered” in the sense that they do
not admit neither stable periodic orbits nor chaotic behavior
[24]. Owing to their order-preserving flows, in many aspects
monotone systems behave like 1-dimensional systems. Such
notions of order are very appropriate for structurally bal-
anced social networks, for which the pattern of opinions
is completely predictable from the signed graphs depicting
the social relationships [5]. Scope of this paper is to make
the link between structural balance theory and monotone
dynamical systems theory clear and formally precise.

A classical example where structural balance theory ap-
plies is two-party (or two-coalition) political systems [26]. In
these systems we too often see that opinions within a faction
are monolitic and antipodal to those of the other faction, and
that discussion among the two factions is a wall-against-
wall fight. Other cases in which structural balance has been
suggested to correctly reproduce the phenomenology of a
social community are for example duopolistic markets, rival
business cartels [3], various case studies from anthropology
[12] and social psychology [2], [21]. See [27], [7] for a
more complete list of examples. In other contexts, notably
in biological networks [6], [15], [14] and in on-line social
networks [18], [17], [25], structural balance is not exact. One
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Fig. 1. Structurally balanced community. (A): The community split into two factions such that members of the same faction are connected by friendly
relationships (blue edges) and positively influence each other, while members of opposite factions are linked by adversary relationships (red edges) and
negatively influence each other. All cycles and semicycles contain an even number of negative edges. (B): the gauge transformation, i.e., the switch of sign
to all edges of the cut set (gray line), renders the signed graph completely blue. It corresponds to all individuals on one side of the cut set changing their
mind simultaneously on their relationships with the other faction (in the drawing individuals are “flipped” for analogy with spins in Statistical Physics).
(C): In this gauge transformation only the two individuals above the gray cut set switch side. The graph clearly remains bipartite. The three signed graphs
in (A), (B) and (C) all are exactly structurally balanced.

can then try to quantify this amount of unbalance [18], [6],
[15], [9], or study dynamical evolutions of the edge signs that
lead to structural balance [1], [19]. These types of dynamics
are fundamentally different from those investigated here, as
our sociomatrices are and remain structurally balanced for
all times.

If a major feature of a structurally balanced world is that
the members of a community are influenced in their decision
by the social network they form, a series of other properties
of these systems admit interpretations in terms of monotone
dynamics. One such property is that a small germ of opinion
seems to be propagating unavoidably to the whole network
if the network is connected. In structurally balanced systems,
this often seems to be happening only due to the process of
decision forming itself, regardless of the intrinsic value of the
opinion (think of some decisions in the aforementioned two-
party political systems). Monotone systems, thanks to their
order-preserving solutions, also exhibit this behavior. We will
show how for these systems the individual who seeds an idea
first has a strong competitive advantage over both friends and
rivals.

The signed graphs used in social network theory can be
either undirected or directed [27], [7]. In the present context,
an undirected edge corresponds to a mutual relationship (and
mutual influence) between the two individuals connected by
the edge, while a directed edge corresponds to an influence
which is not reciprocated. In many instances of social
networks, in fact, not all individuals have the same power
of persuasion over their peers. In particular, the fact that
an “opinion leader” may be influential for the opinions of
its neighbors on the network (both friends and adversaries),
does not mean that the implication has to reciprocate. Both
the concepts of structural balance and of monotonicity extend
to directed graphs in a similar manner. Also the graphical
tests available in the literature coincide [27], [24].

If influences are associated with edges of the social
network, it means that an individual with zero in-degree is
unaffected by the opinion of the community (one with zero
out-degree is instead unable to influence the community). At

the other extreme, highly connected individuals are those in-
fluencing (or being influenced) the most. In particular, strong
connectivity of a network means that all individuals have
some influence power and are at the same time influenced by
the community. A monotone dynamical system on a strongly
connected graph is called strongly monotone [23]. The main
characteristic of strongly monotone systems is that the order
in the solutions is strict. This corresponds to the property that
all individual in a strongly connected structurally balanced
graph must necessarily take side: neutral opinions are not
possible on such social networks.

Although the strength of the opinions at steady state
depends on the precise functional form chosen for the dy-
namics, we already mentioned that in general the individuals
with the highest in-degree achieve the strongest opinions. In
our models this is true regardless of whether their relation-
ships are friendly or hostile. We interpret this property by
observing that both monotonicity of a system and structural
balance of a social network are invariant to a particular class
of operations which, for analogy with Ising spin glasses
in Statistical Physics [4], we call gauge transformations.
Consider the signed graph representing the social network
and a cut set that splits the graph into two disconnected
subgraphs. A change of sign on all edges intersecting the
cut set cannot alter the signature of the cycles of the network
(cut sets intersect cycles in an even number of edges). Such
operations are called switching equivalences in the signed
graph literature [28], or gauge transformations in the spin
glass literature [4]. If we think of a signed graph as a
spin glass, then a structurally balanced graph corresponds
to a so-called Mattis model [20], in which the “disorder”
introduced by the negative edges is only apparent, and can
be completely eliminated by a suitable gauge transformation,
see Fig. 1 (see [11] for an earlier formulation of a structurally
balanced social network as a Mattis system). When applied
to a monotone dynamical system, this transformation renders
all entries of the Jacobian nonnegative, property known as
Kamke condition in the literature [22]. Therefore the process
of opinion forming of a two-party structurally balanced social
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Fig. 2. Examples of monotone and strongly monotone trajectories. Given σ, a system like (1) is monotone (panel (A)) if initial conditions x1, x2

which respect the partial order σ (meaning x1,i(0) 6 x2,i(0) when σi = +1, x1,i(0) > x2,i(0) when σi = −1) induce solutions in (1) which respect
the partial order σ for all times (x1,i(t) 6 x2,i(t) when σi = +1, x1,i(t) > x2,i(t) when σi = −1). It is strongly monotone (panel (B)) if initial
conditions respecting the partial order σ and such that they differ in at least a coordinate (x1,i(0) 6 x2,i(0) when σi = +1, x1,i(0) > x2,i(0) when
σi = −1, plus x1,i(0) 6= x2,i(0) for some i) induce solutions in (1) which respect the partial order σ with strict inequality for all t > 0 along all
coordinates (x1,i(t) < x2,i(t) when σi = +1, x1,i(t) > x2,i(t) when σi = −1).

network is always (dynamically) identical, up to the sign of
the opinions, to that of a community with the same topology,
but composed only of friends.

I. A DYNAMICAL MODEL FOR INFLUENCES.

Consider the dynamical system

ẋ = f(x) (1)

where x ∈ Rn is the vector of opinions of the n individuals
and the functions f(·) describe the process of opinion
forming of the community. Assume x = 0 is a fixed point of
(1). This is equivalent to assume that no opinion is formed
unless at least one of the individuals has already an opinion
at t = 0, i.e., unless x(0) 6= 0 in (1).

We model the influence of the j-th individual over the i-th
individual by the partial derivative

Fij(x) =
∂fi(x)
∂xj

,

so that the matrix of pairwise influences

F (x) =
[
∂fi(x)
∂xj

]
i,j=1,...,n

is the formal Jacobian of the system (1). We expect then
that the influence of a friend is positive, ∂fi(x)

∂xj
> 0, and

that of an adversary negative, ∂fi(x)
∂xj

< 0. We also expect
that qualitatively these influences do not change sign if we
compute them in different points x1 and x2 in opinions space.
In formulas:

sign(F (x1)) = sign(F (x2)) ∀x1, x2 ∈ Rn. (2)

The “sign stability” condition (2) implies that if we define

A = sign(F (x)), (3)

then A is sign constant over the entire opinion space Rn.
Notice that our considerations are more general than just

taking the Jacobian linearization of (1) around an equilibrium
point. In particular, the system (1) may have multiple equi-

librium points, even with different stability characters. This
is irrelevant to our discussion. Even the precise functional
form of the f(x) is not assumed to be known a priori, as
long as it obeys (2). Furthermore, we do not consider our
own current opinion as useful to reinforce it or to change our
mind. On the contrary, we will normally consider ∂fi(x)

∂xi
< 0,

i.e., opinions are gradually forgotten over time.
The following two different situations can be considered:
1) influences are always reciprocal:

Fij(x) 6= 0 ⇐⇒ Fji(x) 6= 0; (4)

2) influences can be asymmetric

Fij(x) 6= 0 6⇐⇒ Fji(x) 6= 0. (5)

We assume henceforth that Fij(x) and Fji(x) never have
opposite signs:

Fij(x)Fji(x) > 0, (6)

condition which is called sign symmetry in [22] and which
corresponds to two individuals never perceiving reciprocal
influences of opposite signs. From (3), conditions analogous
to (4)-(5) hold for A: in the first case A is symmetric; in the
second it need not be. The condition (6) instead becomes:

AijAji > 0. (7)

A. The associated signed social community and its structural
balance.

Under the sign stability condition (2), the sociomatrix
of the signed social network can be identified with the
matrix A. Associating social relationships with influences, as
assumed here, means that the i-th individual considers the
j-th individual a friend when Aij > 0, an adversary when
Aij < 0, while when Aij = 0 no relationship is perceived by
the i-th individual. Therefore in this work the matrix A plays
the double role of signature of the Jacobian of the influences
and of sociomatrix of the signed social network.

For a symmetric A, assuming that the social community is
structurally balanced means that all cycles in the (undirected)
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Fig. 3. Collective opinions triggered by the opinion of one or two individuals, in the cooperative behavior case. The color of a curve is proportional
to the in-degree of the individual. Individuals with the highest in-degree form the strongest opinions. In panel (A) a single xi(0) > 0 steers the whole
community to a positive opinion; in panel (B) two individuals have contrasting initial conditions. When all influences are equal, the whole community is
steered towards the opinion of the most connected non-zero opinioner.

graph of adjacency matrix A have to have positive sign
[5]. When instead influences can be asymmetric, A is the
adjacency matrix of a digraph. In social network theory,
the notion of structural balance is extended to digraphs by
looking at “semipaths” and “semicycles”, i.e., undirected
paths and undirected cycles of the underlying undirected
signed graph obtained ignoring the direction of the edges
[5], see Fig. 1(A) for an example. A necessary and sufficient
condition for a digraph to admit an underlying undirected
graph is (7), i.e., no negative directed cycle of length 2 exist
in the signed digraph. Under this assumption, no cancellation
appears when we take the “mirror” of A (i.e., AT ) and
consider Au = sign(A + AT ) as adjacency matrix of the
underlying undirected graph. When this is possible, then a
directed signed network is structurally balanced if and only
if all undirected cycles of Au have positive sign [5].

A sociomatrix A is reducible if there exists a permutation

matrix P such that PAP =
[
A1 A2

0 A3

]
with A1, A3 square

submatrices. A is irreducible otherwise. In terms of the
graph of A, irreducibility corresponds to a strongly connected
graph, i.e., a graph for which there exists a directed path be-
tween any pair of nodes. Irreducibility of A implies therefore
that each individual is directly or indirectly influenced by the
opinion of any of the other members of the community.

B. Monotone dynamical systems.

For a thorough introduction to the theory of monotone sys-
tems, the reader is referred to [23], [22], [24]. In Rn, consider
one of the orthants: Kσ = {x ∈ Rn such that Dx > 0}
where D is a diagonal matrix D = diag(σ) of diagonal
elements σ = (σ1, . . . , σn), σi ∈ {±1}, and denote by x(t)
the solution of (1) at time t in correspondence of the initial
condition x(0). The vector σ identifies a partial order for the
n axes of Rn, which can be the “natural” one when σi = +1,
or the opposite when σi = −1.

The partial order generated by σ is normally indicated by
the symbol 6σ: x1 6σ x2 ⇐⇒ x2−x1 ∈ Kσ. The system (1)

is said monotone with respect to the partial order σ if for all
initial conditions x1(0), x2(0) such that x1(0) 6σ x2(0) one
has x1(t) 6σ x2(t) ∀ t > 0. Strict ordering is denoted x1 <σ
x2 and corresponds to x1 6σ x2, x1 6= x2, meaning that
strict inequality must hold for at least one of the coordinates
of x1, x2, but not necessarily for all. When inequality must
hold for all coordinates of x1, x2 then we use the notation
�σ . The system (1) is said strongly monotone with respect
to the partial order σ if for all initial conditions x1(0), x2(0)
such that x1(0) <σ x2(0) one has x1(t) �σ x2(t) ∀ t > 0.
See Fig. 2 for a graphical description of these definitions.

Monotonicity of a system can be verified in terms of the
Jacobian matrix F (x), via the so-called Kamke condition
([22], Lemma 2.1), which says that the system (1) is mono-
tone with respect to the order σ if and only if

σiσjFij(x) > 0 ∀ x ∈ Rn, ∀ i, j = 1, . . . , n i 6= j.
(8)

From (2)-(3), it follows that the condition (8) can be stated
equivalently in terms of A as

σiσjAij > 0 ∀ i, j = 1, . . . , n i 6= j. (9)

The condition (9) admits a graph-theoretical reformulation
which is identical to that for structural balance (see e.g.
[22]). The system (1) is monotone with respect to some
orthant order if and only if all semicycles of length > 1
of the signed digraph of the sociomatrix A have positive
sign. Therefore, under the assumption that our opinion is
positively influenced by our friends and negatively by our
adversaries, we can conclude that the dynamics of opinion
forming in structurally balanced communities have indeed to
obey a monotone dynamics.

Under the assumption (7), the condition (9) (and, simi-
larly, (8)) covers both cases of symmetric and asymmetric
influences. In fact, the non-strict inequality in (9) accounts
exactly for situations in which Aij 6= 0 while Aji = 0,
encountered in directed graphs.

If in addition to being monotone the sociomatrix A is also



irreducible, then the system (1) is also strongly monotone
[23]. Strong monotonicity implies that opinions are strictly
ordered for all individuals. In terms of our social community,
this irreducibility corresponds to the fact that all individuals
have some influence power over the community, even the less
influential members, and strict ordering translates into the
fact that no individual can remain neutral to the influences
of the community. Hence, whenever an opinion is seeded
all individuals have to eventually take side. Following [24],
a graph-theoretical test of strong monotonicity is that all
directed cycles of the (strongly connected) digraph of A have
to have positive sign.

II. RESULTS

A. Cooperative behavior: an all-friends world.

A particular (trivial) case of structural balance is given
by A with all non-negative entries. All individuals are
friends and no tension ever emerges in decision making,
except perhaps for a transient evolution (due to conflicting
initial conditions). The corresponding system (1) is called
cooperative in this case [22].

We analyze the following situations for the initial condi-
tions
• a single individual has an opinion at t = 0;
• two different individuals have opposite opinions at t =

0.
From the definition of monotonicity, it follows that any

initial condition x(0) > 0, xi(0) 6= 0 for at least one i,
implies that x(t) > 0 ∀t > 0. In particular, under the strong
connectivity assumption, x(t) > 0 ∀ t > 0, meaning that the
opinion of the whole community gets influenced even by a
single xi(0) 6= 0. This situation is shown in Fig. 3(A) for
the functional form f(x) described in the Appendix. It can
be observed that the strongest opinions are achieved by the
most connected individuals (red lines mean high in-degree).
In a similar way, x(0) 6 0 implies x(t) 6 0 ∀ t > 0 (or
x(t) < 0 ∀ t > 0 when strongly connected).

The only case in which contrast can arise in a cooperative
system is when two individuals have opposite opinions at
t = 0. Such a contrast is not tolerated by a cooperative
system, and in fact the whole community is steered to an
unanimous opinion after a transient, see Fig. 3(B) for an
example. Assume the i-th and the j-th nodes have opposite
nonzero initial opinions, e.g. xi(0) > 0 and xj(0) < 0.
Which of these opposite initial opinions will prevail depends
on the strengths of xi(0) and xj(0), on the form of the f(x)
and on the connectivity of the i-th and j-th individuals.

B. Two-party behavior and gauge transformations.

A well-known property of a structurally balanced signed
social network is that it can be partitioned into two disjoint
antagonistic subcommunities. Each community contains only
friends, while any two (related) individuals from different
communities are adversaries. This means only +1 edges of
A link members of the same party, while only −1 edges
link members of different parties, see Fig. 1. From the sign
stability condition (2), the same is true replacing A with the

formal Jacobian F (x). Consider the change of coordinates
y = Dx, D = diag(σ) and σ a partial ordering of Rn. Since
|y| = |x| and F (x) is sign constant for all x ∈ Rn, it follows
that sign(F (x)) = sign(F (y)). From D−1 = D, the change
of variable y = Dx yields the new Jacobian DF (Dx)D. For
analogy with the theory of Ising spin glasses [4], operations
like

F (x) → DF (y)D (10)

are here called gauge transformations, and correspond to
rearranging of the order of the n axes of Rn which modify
the sign of the entries of the Jacobian, without altering
its absolute values. In terms of the graph of A, a gauge
transformation A → DAD corresponds to changing sign
to all edges adjacent to the nodes corresponding to the −1
entries of σ. As directed cycles and semicycles share two (or
zero) edges with each node, gauge transformations do not
alter the signature of the cycles of the network. This is well-
known in the Ising spin glass literature, see e.g. [10] (the ex-
tension to digraphs is completely straightforward). One says
that operations like (10) can alter the “apparent disorder”,
while the “true disorder” (or “frustration”) of the system is
an invariant of (10). In particular, when A is structurally
balanced the true disorder is zero. In Statistical Physics this
case is called Mattis spin model [4]: an Ising model in
“disguise” (the disguise being a gauge transformation). The
Kamke condition rephrases this property in terms of F (x).
In fact, (8) implies that there exists a special ordering σ̃ for
which the gauge transformed system F̃ (y) = D̃F (D̃x)D̃,
D̃ = diag(σ̃), is such that F̃ij(y) > 0 ∀ i, j, like in
a cooperative system. In terms of the dynamics (1), this
means that in a structurally balanced network the presence
of adversaries does not alter the monotonic character of
the opinion forming process: the dynamics is monotone
regardless of the amount of apparent disorder present in the
system. The only difference in the integral curves of (1) with
respect to the cooperative case is that now the two parties
converge (equally orderly) to opposite decisions, according
to the faction to which each individual belongs to.

The case of opinions triggered by a single individual is
shown in Fig. 4. In particular in this model (with the as-
sumption of all identical kinetics adopted in the simulations,
see Appendix), the strength of the opinion of an individual
is not a function of the in-degree of friends or of adversaries
alone, but only of the total in-degree of relationships of an
individual regardless of their sign, see Fig. 4(A) vs (B).

III. CONCLUSION

While the connection between structural balance and
monotonicity is not new [24], the novelty of this paper is
the use of this connection to draw conclusions on plausi-
ble opinion dynamics taking place on structurally balanced
communities. A structurally balanced network represents a
perfectly polarized community in which the drawing of a line
separating friends from enemies is always an unambiguous
process. It is this lack of ambiguity that yields the high
predictability of opinions. The key assumption for this to
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Fig. 4. Collective opinions triggered by the opinion of a single individual, in the structurally balanced case. Both (A) and (B) show how the
community becomes polarized into two factions with opposite opinions. (A): The color of a curve is proportional to the difference in the in-degree between
friends and adversaries. The two highlighted curves represent the individuals with the most of friends (pink) and adversaries (cyan). (B): for the same
dynamics as in (A) the color now represents the total in-degree of an individual, regardless of the sign of the relationship. Clearly the strength of an opinion
depends on the total number of relationships, rather than on the proportion friends/adversaries.

happen, namely that the opinions of friends exercise a
positive influence and those of enemies a negative one, is
realistic in this context. Most importantly, this assumption is
needed only in qualitative terms, in the sense that it is not
related to the specific values assumed by the Fij but only
to their sign. This is important in our case, as the precise
functional form of a dynamical process of opinion forming
is necessarily known only in qualitative terms.

APPENDIX

A more detailed model formulation: decentralized additive
nonlinear systems

Any sufficiently regular f(·) : Rn → Rn whose formal
Jacobian F (x) obeys to the Kamke condition is acceptable
for the purposes of this study. In this Appendix we introduce
a special form for the ODEs (1) of the paper, which is then
used to simulate monotone dynamical systems.

For the i-th component of the vector field f(x) in (1)
consider the following ODE:

ẋi = fi(x) =
n∑
j=1

Aijψij(xj)− λixi, (11)

i = 1, . . . , n, where
• ψij = ψij(xj) is Lipschitz continuous, depends only on

the j-th state and is such that ∂ψij

∂xj
> 0, ∀ xj ∈ R;

• λi > 0, i.e., an exponential decay affects the opinions
of all individuals;

• Aij ∈ {0,±1} and A = (Aij) structurally balanced,
that is, ∃ D̃ = diag(σ̃) such that D̃AD̃ has all
nonnegative entries.

The form (11) corresponds to an opinion forming process
in which at each node the influences of the neighbors is
additive, weighted by the signed sociomatrix A, and damped
by the forgetting factor λi. The functionals ψij : R → R
are local (i.e., only the state xj of the j-th individual
matters) and nondecreasing: the higher is xj the higher

ψij(xj). The monotonicity of the functionals reflects the
fact that the opinion expressed by the j-th individual (i.e.,
ψij(xj)) in his/her relationships is coherent with his/her
“true” opinion (i.e., xj). The sociomatrix A specifies if the
opinion expressed by the j-th individual (ψij(xj)) influences
positively or negatively the i-th neighbor (i.e., if Aijψij(xj)
is positive or negative). The degradation term λi has the form
of an exponential decay, and models a forgetting factor in
the opinion of each individual. Notice that since structural
balance and monotonicity are checked on the off-diagonal
part of the Jacobian, the presence of λi does not interfere
with these properties of the system. It is however necessary
to have the solutions of (14) not diverging to ±∞. Eq. (11)
can therefore be written as

fi(x) =
∑

j∈friends(i)

ψij(xj)−
∑

j∈advers(i)

ψij(xj)− λixi.

(12)

A special case of (12) is the following

ψij(xj) = ψj(xj) ∀ i = 1, . . . , n

corresponding to a node influencing all its neighbors in the
same manner (up to the sign, which is contained in A). In
this case, (1) of the paper can be written more compactly as

ẋ = Aψ(x)− Λx (13)

where ψ(x) =
[
ψ1(x1) . . . ψn(xn)

]T
and Λ is a diagonal

matrix Λ = diag(
[
λ1 . . . λn

]
). Nonlinear systems with a

structure like (13) are sometimes called Persidskii systems
[16].

In this study we have chosen to work with monotonic
functionals derived by the so-called Michaelis-Menten ki-
netic forms, widely used in mathematical biology to describe
reaction rates [8]. These functions are the following:

ψj(xj) =
xj

θj + |xj |
, xj ∈ R (14)



where θj > 0 is called the half-rate constant, and represents
the value of xj at which ψj reaches the value of 1/2. The
peculiarity of the ψj is in fact that the rate it describes
saturates for large values of xj :

limxj→±∞ψj(xj) = ±1,

i.e., opinions are not formed too quickly. The absolute value
in the denominator of (14) is needed to have a well-defined
expression also for negative xj (in biological models x
normally represents concentrations, hence the negative values
are disregarded).

Since
∂ψj(xj)
∂xj

=
θj

(θj + |xj |)2
> 0

from (12) one has

Fij(x) =
∂fi(x)
∂xj

=

{
θj

(θj+|xj |)2 if j ∈ friends(i)
−θj

(θj+|xj |)2 if j ∈ advers(i)
(15)

i.e., sign(Fij(x)) is always constant for all x ∈ Rn, as
required for monotone systems. In particular, then, a change
of partial order σ on the axes, y = Dx, D = diag(σ), does
not alter the Jacobian F (x). From (15), in fact, Fij(x) =
Fij(y). From the sign stability of F (x), it follows that
sign(Fij(x)xj) = sign(Aijψij(xj)), which is enough to
guarantee that the Jacobian linearization faithfully reflects
the behavior of the original nonlinear system.

In the simulations of the paper, the half-rates θj and the
degradation rates λi are fixed all equal.
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