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5 Metabolic Networks [Flux Balance Analysis]

In this Chapter we study metabolic networks (i.e., of networks of biochemical reactions constituting
the metabolism of an organism), making use of the Flux Balance Analysis formalism. An example of
a genome-wide metabolic network is shown in Fig. 1. It is for the bacterium E.coli and it comprises
2383 reactions among 1668 metabolites, hence the stoichiometric matrix S is 1668× 2383.

Consider the system
ẋ = Sv(x, k)

studied in the previous Chapter. In the context of metabolic networks, the idea of flux balance
analysis is to disregard the dependence from x (and k) in v(x, k). In this way dx

dt = Sv is not
really a system of ODEs (x no longer appears on the r.h.s.), but one can still concentrate on the
properties of the stoichiometric map

S : Rr
+ → Rn

v 7→ dx

dt
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Figure 1: Full-organism metabolic network of E.coli.

Figure 2: Time constant separation between metabolic reactions and changes in enzyme concen-
tration (i.e., protein turover).

and in particular study the steady state flux distributions. The rationale behind the choice of
steady states is that the time constants of the metabolic reactions are very short (∼ 10−1 sec)
when compared to most other time constants of an organism (for example transcriptional processes
have time constants ∼ 102 − 104 sec, and protein synthesis/degradation even longer, see Fig. 2),
hence we can assume that the concentration of the metabolites equilibrates fast, i.e. dx

dt = 0. We
can therefore limit ourselves to study the configurations of fluxes compatible with this assumption.
Sv = 0 implies v ∈ ker(S).
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5.1 The cone of steady state fluxes

The fact that v ≥ 0 implies that steady state fluxes must in reality obey to the set of constraints:

Sv = 0

v ≥ 0
(1)

that is, the steady state fluxes must belong to a polyhedral convex cone given by ker(S) ∩ Rr
+. A

polyhedral convex cone in Rr−q
+ is described as a nonnegative combination

C = {v ∈ Rr−q s. t. v =

d∑
i=1

αiwi, αi ≥ 0}

where wi, i = 1, . . . , d, are the generating vectors (or extreme rays), see Fig 3. Even if dim(ker(S)) =
r − q with q = rank(S), the cone C is often described by a number of generating vectors d much
larger than r−q. The extreme rays are called extreme pathways, as they represent pathways on the
reaction graph of the network. Their calculation is a hard computational problem: for networks in
which n, r ∼ 103 the number of extreme pathways can be d ∼ 106 or higher.

Figure 3: A cone C of admissible fluxes in R3 with d = 5 extreme rays.

Example Consider the network of Fig. 4. The stoichiometric matrix is

S =

−1 1 0 1 0 0
1 0 1 0 −1 0
0 −1 −1 0 0 1


has rank(S) = 3 =⇒dim(ker(S)) = 6− 3 = 3. Consider the 3 vectors wi ∈ ker(S)

w1 =



1
1
−1
0
0
0

 , w2 =



0
0
1
0
1
1

 , w3 =



1
0
0
1
1
0


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Figure 4: A basic reaction network

Clearly span(w1, w2, w3) = ker(S); however the 3 vectors are not all extreme rays of the cone C.
In fact, if we look at the corresponding extreme pathways, shown in Fig. 5 (a), (b), (c), then it can
be observed that w1 is not feasible (look at the direction of the arrows), while w2 and w3 are.
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(b) w2
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(c) w3
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(d) w4

Figure 5: Nonadmissible (red) and admissible (blue) extremal pathways.

In place of w1 one can use instead

w4 =



1
1
0
0
1
1


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for which span(w4, w2, w3) = ker(S) but also

C =

v =
[
w4 w2 w3

] α1

α2

α3

 , αi ≥ 0

 .

In this case the cone C is simplicial (i. e. its generators are linearly independent in ker(S)), meaning
d = r − q. Every steady state flux is then expressed as

w4 =



α1 + α3

α1

α2

α3

α1 + α2 + α3

α1 + α2

 , αi ≥ 0

�

The convex cone C can typically be restricted to a polytope (i.e, a convex bounded polyhedral
set) H, by adding further constraints like upper bounds u on the fluxes:

H = C ∩ {0 ≤ v ≤ u}

Figure 6: The polytope H of admissible fluxes

5.2 Thermodynamics and stoichiometric networks

In thermodynamics, the Gibbs energy is a measure of the amount of reversible work that may be
performed by a system at a constant temperature and pressure. It can be defined as

G = E − PV − TSe
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where

• E = energy

• P = pressure

• V = volume

• T =temperature

• Se =entropy.

Here we are interested in changes of Gibbs energy in a reaction i, quantity indicated by ∆Gi. From
basic thermodynamic laws, for a reaction to happen spontaneously it must be

vi∆Gi ≤ 0 (2)

In particular, when vi = 0 then also ∆Gi = 0. If we associate to each molecular species Xi a
chemical potential µi, then the Gibbs energy change for the reaction i can be expressed as

∆Gi =
∑

j=products

Sjiµj −
∑

j=substrates

Sjiµj

where Sji are the stoichiometric coefficients. In vector form,

∆Gi = (S:,i)
Tµ

where S:,i is the column of S corresponding to the i-th reaction and µ is the vector of n chemical
potentials. For a network of r reactions, then

∆G = STµ

is the r× 1 vector of Gibbs energy changes. From (2), if we have the restriction v ≥ 0 then it must
be ∆G ≤ 0.

Example If in the elementary reaction

X1
v1−−−→ X2

the chemical potential of X1is µ1 and that of X2 is µ2, then ∆G1 = µ2−µ1. If the reaction happens
(i.e., v1 > 0) then ∆G1 < 0, i.e., µ1 > µ2. �

Example Consider the reaction

pX1 + X2
v1−−−→ X3

with chemical potentials of Xi equal to µi, then

∆G1 = ST

µ1µ2
µ3

 =
[
−1 −p 1

] µ1µ2
µ3

 = µ3 − pµ2 − µ1

Also in this case v1 > 0 implies ∆G1 < 0, i.e., µ1 + pµ2 > µ3. �
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5.2.1 Loop law and thermodynamically unfeasible steady states

At steady state it must be Sv = 0, hence also vTST = 0. But then it must also be

vTSTµ = vT∆G = 0 (3)

The latter expression must be valid also on subsets of the reaction network which satisfy the
steady state assumption, for instance on the extreme pathways w1, . . . , wd which generate C. When
such subset involves only internal reactions but not inflow/outflow reactions, then the relationship
(3) is called the loop law, as it forbids to have nonzero fluxes on loops (i.e., directed cycles) of
reactions. Combined with (2), it can be used to discover steady state flux distributions which are
thermodynamically unfeasible, and hence can be discarded.

Example Consider the reaction network shown in Fig. 7 (similar, but not identical to a previous
example). Denote µi, the chemical potentials of Xi . The stoichiometric matrix is

Figure 7: Example of reaction network with (unfeasible) loop.

S =

−1 1 −1 0 1 0
1 −1 0 1 0 −1
0 0 1 −1 0 0


and since q = rank(S) = 3 the system has no conservation laws. Since r = 6, dim(ker(S)) = 6−3 =
3. The following 3 vectors wi ∈ ker(S)

w1 =



1
0
0
0
1
1

 , w2 =



0
0
1
1
1
1

 , w3 =



0
1
1
1
0
0


are linearly independent and form a basis of ker(S), admissible by the direction of the flows (hence
they are admissible extreme rays of the cone C). However, the extreme pathway w3 corresponds
to the loop shown in Fig. 8 which involves only internal fluxes. Let us shown that such pathway
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Figure 8: Extreme pathway of the reaction network of Fig. 7 representing an “internal” loop, whch
is unfeasible.

is not compatible with all positive fluxes. Assume v3 > 0 and v4 > 0. From (2), excluding trivial
cases (i.e., assuming (2) holds strictly), we have

v3 > 0 and v3∆G3 < 0 =⇒ ∆G3 = µ2 − µ1 < 0 =⇒ µ2 > µ1

v4 > 0 and v4∆G4 < 0 =⇒ ∆G4 = µ3 − µ2 < 0 =⇒ µ3 > µ2

Hence µ3 > µ1 =⇒∆G2 = µ1 − µ3 > 0. But then, from v2∆G2 < 0 it must be v2 < 0, that is the
only admissible reaction direction between X1 and X2 is v1, not v2! Hence the loop of Fig. 8 is
thermodynamically unfeasible. We can replace w3 e.g. with

w4 =



1
0
1
1
2
2


which corresponds to the (loop-free) pathway of Fig. 9 and it is feasible. However, w4 = w1 + w2

i.e., it is a nonnegative combination of the two already identified extreme rays, hence it is not
providing a new extreme ray for C. �

Figure 9: Feasible extreme pathway of the reaction network of Fig. 7 (no “internal” loop).
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Notice that loop laws are something different from conservation laws (which are less important
here because we disregard the concentrations of the metabolites).

5.3 Choosing a “preferred” steady state flux distribution [Linear Programming]

Any v ∈ H is an admissible flux distribution. How do we choose a “preferred” flux distribution
within H? In “Flux Balance Analysis”, one popular choice is to optimize some cost function, for
example growth rate i.e., the production of biomass of an organism (the idea is that organisms like
bacteria have evolved over millions of years to optimize their growth). This is typically written as
a linear cost functional F (v) =

∑r
i=1 βivi, where βi describe the (empirical) relative weights of all

reactions which are crucial for growth, such as biosynthesis of nucleotides, aminoacids, fatty acids,
cell-wall components, etc. The problem becomes therefore a Linear Programming problem:

max
v

F (v) =
r∑

i=1

βivi

subject to Sv = 0

0 ≤ v ≤ u

(4)

When solving (4), the level surfaces of the cost function F (v) may hit the “upper” boundary of
H in a single point vLP as shown in Fig. 10 or may do so on a face of H, in which case there is a
degenerate solution to (4) (i.e., the optimal flux distribution is not unique, see Fig. 11).

Figure 10: The level surfaces of the linear cost function F (v) on the polytope H of admissible
fluxes. The LP problem (4) has a unique solution vLP.
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Figure 11: The level surfaces of another linear cost function F (v) on the polytope H of admissible
fluxes. The LP problem (4) has a degenerate solution in this case.

5.4 Minimization of metabolic adjustment after the knockout of a reaction
[Quadratic programming]

In the optimization problem (4), taking as cost function F (v) growth rate corresponds to modeling
the fact that (maybe over an evolutionary horizon of millions of years) the bacteria has “shaped” its
own metabolism to optimize growth (and hence “beating” other strains of bacteria). This however
concerns the wild type bacterium, as found in nature.

When in the lab we do a knock-out of a gene which codes for an enzyme (and hence we suppress
the flux of the corresponding reaction, for instance vi = 0), then the polytope of feasible steady
states restricts, because putting a reaction vi equal to zero means collapsing H to the origin along
the i-th axis. Call H′ ⊆ H the new polytope we obtain. The question that can be posed is what is
the new optimum in correspondence of the new polytope H′? One possibility is to re-run the LP
problem (4) on the new polytope H′. However, if we think of the regulation of metabolism as a
“distributed” system, in which each enzyme has been synthetized and activated independently (and
unaware) of what the other enzymes are doing, then another possibility is that the r− 1 remaining
reactions tend to behave as close as possible to the old wild type. The principle “as close as possible
to the old wild type” can be modeled taking the orthogonal projection of the old optimum vLP

onto the new polytope H′, see Fig. 12. The orthogonal projection is the flux distribution inside
H′ which minimizes the distance to vLP. In the literature this is called Minimization of Metabolic
Adjustement (MOMA), and it corresponds to computing the solution of following Linear-Quadratic
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Problem

min
v

Φ(v) = ‖v − vLP‖2 =
r∑

i=1

(
vi − vLPi

)2
subject to Sv = 0

0 ≤ v ≤ u
vi = 0

(5)

The extra constraint vi = 0 corresponds to the knock-out of the i-th reaction. Experimentally one
indeed observes that artificial mutants (i.e., knock-outs) do not seem optimal with respect to the
growth rate, unlike the wild type bacteria.

Figure 12: Minimization of metabolic adjustment after a knockout. The knock-out reduces the
polytope H of admissible fluxes reduces to H′. vMOMA is the solution of the LQP problem (5),
which is different from the solution of the LP problem (4) computed on the mutant strain (polytope
H′).
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