TSRTO09 — Control Theory

Lecture 3: Disturbance models
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Summary of lecture 2

® Most of the theory for SISO systems generalizes to MIMO

® Significant differences exist in
e minimal realization
e controllability and observability canonical forms
e computation of poles and zeros in transfer function matrices

® Poles:
1. Eigenvalues of a state matrix (for a minimal realization)
2. Roots of the pole polynomial = least common multiple of all
denominators of all minors (i.e., determinant of square
submatrices) of G(s).

® Zeros:
1. Roots of the zero polynomial = greatest common divisor for the
numerators of the maximal minors of G(s)
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Lecture 3

Description of disturbances

Standard form of system with disturbances in state space form

Observer

Kalman filter

In the book: Ch. 5
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What is a disturbance?

y n
S je¢—

Two main types of disturbances

1. System disturbance: w
e affect the system to be controlled
e variations in the process
e nonmodeled dynamics
e extra non-controllable inputs

2. Measurement disturbance / noise: n
e affects y but not 2
e measurement noise in the sensors
e more general sensors disturbances
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Example: solar heated house

To heat water tank
(when not room heating)

o.‘m

System disturbances: open

® solar irradiation

® external temperature, wind oot scamutorconcrete o B
for room heating

® are the windows open?

® how many people in the house?

Measurement disturbance / error L ¢

® sensor round-off

e gradient of temperature across .
different rooms ]
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Models for disturbances

Adding disturbances to our models:
® in transfer functions:

Models for the disturbances
® Time domain: covariance
® Frequency domain: spectrum
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Signal size measure

® Qur signal size measure:

o0
2113 = / O & =Tz energy”

—0o0

® |f the integral does not converge, one can use the measure

||| = hrn / (t)]* dt “power”

This is a rough description (a scalar)
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More informative measure for vectors of signals

® How do the components of z relate to each other? Matrix

measure
+oo
R, :/ 2(t)27(t) dt “energy”
—0o0
N T AN N
R, = lim — z(t)z" (t) dt power
N—o0 0

® More general: “covariance (at 7)"

+oo
R.(r) = / ()27 (t — 7t

o0

¢ — R, = “covariance (at 0)"
R, = R.(0)
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Underlying idea: stationary stochastic processes

® at each ¢: z(t) = vector of random var. = stochastic process
® stationary stochastic process: description does not depend on ¢

® t0 describe a stochastic process:

1. mean
m, = E[z(t)]
“mathematical expectation”
2. variance

Var[z(t)] = E[(2(t) — m.)?]

“deviation from the mean”
3. covariance

R.(1) = B[(2(t) — m2)(2(t — 7) — m2)"]

matrix, “signal compared with itself, but shifted”

® for us: zero mean m, = 0
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Autocovariance vs. cross-covariance

Example
21 R (1) Ry (7)
5= — R,(r)= 1,21 1,22
|:Z2:| ( ) |:RZ2,21 (7_) RZ2,Z2 (T)
® diagonal
+00
R, .. (1) = / zi(t)zi(t — 1) dt “autocovariance”
e off-diagonal
+00
R . (1) = / 2i(t)z;(t — 1) dt cross-covariance

R ., =0 <= 2z and z; are uncorrelated
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Spectrum = “size distribution” at different frequencies

Spectrum of z(t):  ®,(w) = "Energy content of z at frequency w"

® &, (w) = matrix function

e if Z(iw) = Fourier transform of z(t)

P, (w) = Z(iw) Z* (iw)

® using Parceval

Rz ! / @z(w)dw

:% .
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Spectrum

® Alternatively: ®,(w) Fourier transform of R.(7)

P, (w) = / h R.(T)e ™7 dr

—00

® R.(7) and ®,(w) form a Fourier transform pair

¢ (w) = FIR(7)],  Ra(1) = F '[@:(w)]

® when computed in 7 = 0:
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Cross spectrum
Example

21,22 ((.U)
22,22 (w)

=] = el

® Diagonal element @, .. (w) measures the energy content of z; at
frequency w

® Off-diagonal element @, .. (w) measures the coupling between
z; and z; at frequency w

o & . (w)= cross spectrum between z; and z;

(I)zi,Zj (W) = /_ Rzi,zj (T)e_w”— dr

o &, . (w)=0 = z and z; are uncorrelated (<= R., ., = 0)
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White noise = unpredictable signal

White noise = signal with constant spectrum

®.(w) =R = const Vw

e (Covariance:

® Meaning: old values give no information on the future values

® — white noise is unpredictable
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Spectra and transfer functions

u(t) y(t)
— G(s) —»

If u has spectrum ®,(w), what is ®,(w) = spectrum of y?

Y (iw) = G(iw)U(iw), U,Y Fourier transforms

Py (w) =Y (iw)Y (iw)" = G(iw)U (iw)U (iw)*G(iw)*

or
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Example of spectrum
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A few “colored noises’ and their spectra
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0 with prob. 0.8
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Disturbance from white noise: spectral factorization

u(®) y(®)
—  G(s) —

"Reverse problem™: given y(t) of spectrum ®,(w), choose G(s) and a
white noise u(t) of spectrum ®,(w) = R so that

Y(s) =G(s)U(s) and P, (w) = G(iw)RG (iw)*
— spectral factorization

® Scalar case. If u and y are scalar and ®,, is a rational function:
easy to solve with G stable.

® Matrix case. If u and/or y are matrices: more difficult
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State space model with disturbances

® state space model with disturbances

&(t) = Ax(t) + Bu(t) + Nw(t)
y(t) = Cx(t) + Du(t) + n(t)

® w(t) and n(t) are in general not white = “colored noise”

® Task: model should contain all information useful to predict
future values = also “colored noise” contributes

e “Whitening" the disturbances: w and n are outputs of the linear
systems w = G,v1, n = Gpvg, where vy, vy are white
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State space model with disturbances

® Expressing G, Gy, in state space form

z(t) = Az(t) + Bu(t) + Nvy(t)
y(t) = Cx(t) + Du(t) + va(?)

— T is extended to include the states in G,, G,

= "new’”’ disturbance v; and measurement noise vy are white
noises = unpredictable
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“Size" of x induced by white noise
& = Ax + Ny, d, (w)=R

e Transfer function from vy to z is (sI — A)"'N

® Spectrum is then

®,(w) = (iwl — A)INRNT (—iwl — A)~T

e “Size" of x (i.e., covariance matrix of z)

I, = Ry(0) = - / 0, (w)dw

:% .
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Theorem: II, is the solution to the Lyapunov equation

All, + I, AT + NRNT =0
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State estimation: observer

® Task: estimate x from the measurement y
® — state observer &

® Dynamics of Z:

2(t) = A (t) + Bu(t) + K (y(t) — Ci(t) — Du(t))
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State estimation: observer

® Estimation error: Z(t) = z(t) — &(t)

® Dynamics of Z:

Z(t) = (A — KCO)i(t) + Nui(t) — Kuva(t)

® Choice of K decides how fast the estimation error converges and
also how much the estimation is influenced by the measurement
error = Trade off
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Kalman filter: the optimal observer

K =PCTR;!
where P is determined from

AP + PAT — PCTR;'CP + NRINT =0  Riccati equation

e Optimality 1: The linear filter that has the least mean square
error (for all noise for which the covariance is defined)

® Optimality 2: (for Gaussian noise) The best (linear or nonlinear)
filter for many criteria. Z is the conditional expectation of z,
given the observations.
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Disturbance: something "kicking the system"
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https://www.youtube.com/watch?v=aFuA50H9uek

TSRTO09 Control Theory 2022,
Lecture 3
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