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Summary of lecture 2

• Most of the theory for SISO systems generalizes to MIMO

• Significant differences exist in
• minimal realization
• controllability and observability canonical forms
• computation of poles and zeros in transfer function matrices

• Poles:
1. Eigenvalues of a state matrix (for a minimal realization)
2. Roots of the pole polynomial = least common multiple of all

denominators of all minors (i.e., determinant of square
submatrices) of G(s).

• Zeros:
1. Roots of the zero polynomial = greatest common divisor for the

numerators of the maximal minors of G(s)
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Lecture 3

• Description of disturbances
• Standard form of system with disturbances in state space form
• Observer
• Kalman filter

In the book: Ch. 5
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What is a disturbance?
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Two main types of disturbances
1. System disturbance: w

• affect the system to be controlled
• variations in the process
• nonmodeled dynamics
• extra non-controllable inputs

2. Measurement disturbance / noise: n
• affects y but not z
• measurement noise in the sensors
• more general sensors disturbances
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Example: solar heated house

System disturbances:
• solar irradiation
• external temperature, wind
• are the windows open?
• how many people in the house?

Measurement disturbance / error
• sensor round-off
• gradient of temperature across

different rooms
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Models for disturbances
Adding disturbances to our models:
• in transfer functions:

Y (s) = G(s)
(
U(s) +W (s)

)
+N(s)

• in state space models

ẋ(t) = Ax(t) +Bu(t) +Nw(t)

y(t) = Cx(t) +Du(t) + n(t)

Models for the disturbances
• Time domain: covariance
• Frequency domain: spectrum
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Signal size measure

• Our signal size measure:

∥z∥22 =
∫ ∞

−∞
|z(t)|2 dt |z|2 = zT z “energy”

• If the integral does not converge, one can use the measure

∥z∥2e = lim
N→∞

1

N

∫ N

0
|z(t)|2 dt “power”

This is a rough description (a scalar)
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More informative measure for vectors of signals
• How do the components of z relate to each other? Matrix

measure

Rz =

∫ +∞

−∞
z(t)zT (t) dt “energy”

Rz = lim
N→∞

1

N

∫ N

0
z(t)zT (t) dt “power”

• More general: “covariance (at τ)”

Rz(τ) =

∫ +∞

∞
z(t)zT (t− τ)dt

• =⇒ Rz = “covariance (at 0)”

Rz = Rz(0)
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Underlying idea: stationary stochastic processes

• at each t: z(t) = vector of random var. =⇒ stochastic process
• stationary stochastic process: description does not depend on t
• to describe a stochastic process:

1. mean
mz = E[z(t)]

“mathematical expectation”
2. variance

Var[z(t)] = E[(z(t)−mz)
2]

“deviation from the mean”
3. covariance

Rz(τ) = E[(z(t)−mz)(z(t− τ)−mz)
T ]

matrix, “signal compared with itself, but shifted”
• for us: zero mean mz = 0
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Autocovariance vs. cross-covariance

Example

z =

[
z1
z2

]
=⇒ Rz(τ) =

[
Rz1,z1(τ) Rz1,z2(τ)
Rz2,z1(τ) Rz2,z2(τ)

]
• diagonal

Rzi,zi(τ) =

∫ +∞

−∞
zi(t)zi(t− τ) dt “autocovariance”

• off-diagonal

Rzi,zj (τ) =

∫ +∞

−∞
zi(t)zj(t− τ) dt cross-covariance

Rzi,zj = 0 ⇐⇒ zi and zj are uncorrelated
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Spectrum = “size distribution” at different frequencies

Spectrum of z(t): Φz(ω) = ”Energy content of z at frequency ω”

• Φz(ω) = matrix function

• if Z(iω) = Fourier transform of z(t)

Φz(ω) = Z(iω)Z∗(iω)

• using Parceval

Rz =
1

2π

∫ ∞

−∞
Φz(ω)dω
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Spectrum

• Alternatively: Φz(ω) Fourier transform of Rz(τ)

Φz(ω) =

∫ ∞

−∞
Rz(τ)e

−iωτ dτ

• Rz(τ) and Φz(ω) form a Fourier transform pair

Φz(ω) = F [Rz(τ)], Rz(τ) = F−1[Φz(ω)]

• when computed in τ = 0:

Rz =
1

2π

∫ ∞

−∞
Φz(ω)dω
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Cross spectrum

Example

z =

[
z1
z2

]
=⇒ Φz(ω) =

[
Φz1,z1(ω) Φz1,z2(ω)
Φz2,z1(ω) Φz2,z2(ω)

]
• Diagonal element Φzi,zi(ω) measures the energy content of zi at

frequency ω

• Off-diagonal element Φzi,zj (ω) measures the coupling between
zi and zj at frequency ω

• Φzi,zj (ω) = cross spectrum between zi and zj

Φzi,zj (ω) =

∫ ∞

−∞
Rzi,zj (τ)e

−iωτ dτ

• Φzi,zj (ω) ≡ 0 =⇒ zi and zj are uncorrelated (⇐⇒ Rzi,zj = 0)
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White noise = unpredictable signal

White noise = signal with constant spectrum

Φz(ω) = R = const ∀ω

• Covariance:

Rz(τ) = δ(τ)R =

{
R if τ = 0

0 if τ ̸= 0

• Meaning: old values give no information on the future values
• =⇒ white noise is unpredictable



15 / 28

Spectra and transfer functions

If u has spectrum Φu(ω), what is Φy(ω) = spectrum of y?

Y (iω) = G(iω)U(iω), U, Y Fourier transforms

Φy(ω) = Y (iω)Y (iω)∗ = G(iω)U(iω)U(iω)∗G(iω)∗

or

Φy(ω) = G(iω)Φu(ω)G(iω)∗
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Example of spectrum
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A few “colored noises” and their spectra
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Disturbance from white noise: spectral factorization

”Reverse problem”: given y(t) of spectrum Φy(ω), choose G(s) and a
white noise u(t) of spectrum Φu(ω) = R so that

Y (s) = G(s)U(s) and Φy(ω) = G(iω)RG(iω)∗

=⇒ spectral factorization

• Scalar case. If u and y are scalar and Φy is a rational function:
easy to solve with G stable.

• Matrix case. If u and/or y are matrices: more difficult
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State space model with disturbances

• state space model with disturbances

ẋ(t) = Ax(t) +Bu(t) +Nw(t)

y(t) = Cx(t) +Du(t) + n(t)

• w(t) and n(t) are in general not white =⇒ “colored noise”

• Task: model should contain all information useful to predict
future values =⇒ also “colored noise” contributes

• “Whitening” the disturbances: w and n are outputs of the linear
systems w = Gwv1, n = Gnv2, where v1, v2 are white
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State space model with disturbances
• Expressing Gw, Gn in state space form

˙̄x(t) = Āx̄(t) + B̄u(t) + N̄v1(t)

y(t) = C̄x̄(t) +Du(t) + v2(t)

=⇒ x̄ is extended to include the states in Gw, Gn

=⇒ “new” disturbance v1 and measurement noise v2 are white
noises =⇒ unpredictable
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“Size” of x induced by white noise
ẋ = Ax+Nv1, Φv1(ω) = R

• Transfer function from v1 to x is (sI −A)−1N

• Spectrum is then

Φx(ω) = (iωI −A)−1NRNT (−iωI −A)−T

• “Size” of x (i.e., covariance matrix of x)

Πx = Rx(0) =
1

2π

∫ ∞

−∞
Φx(ω)dω

Theorem: Πx is the solution to the Lyapunov equation

AΠx +ΠxA
T +NRNT = 0
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State estimation: observer

ẋ(t) = Ax(t) +Bu(t) +Nv1(t)

y(t) = Cx(t) +Du(t) + v2(t)

• Task: estimate x from the measurement y
• =⇒ state observer x̂
• Dynamics of x̂:

˙̂x(t) = Ax̂(t) +Bu(t) +K
(
y(t)− Cx̂(t)−Du(t)

)
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State estimation: observer
• Estimation error: x̃(t) = x(t)− x̂(t)

• Dynamics of x̃:

˙̃x(t) = (A−KC)x̃(t) +Nv1(t)−Kv2(t)

• Choice of K decides how fast the estimation error converges and
also how much the estimation is influenced by the measurement
error =⇒ Trade off
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Kalman filter: the optimal observer

K = PCTR−1
2

where P is determined from

AP + PAT − PCTR−1
2 CP +NR1N

T = 0 Riccati equation

• Optimality 1: The linear filter that has the least mean square
error (for all noise for which the covariance is defined)

• Optimality 2: (for Gaussian noise) The best (linear or nonlinear)
filter for many criteria. x̂ is the conditional expectation of x,
given the observations.
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Disturbance: something "kicking the system"

https://www.youtube.com/watch?v=aFuA50H9uek
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