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Lecture Content Chapters

1 Course overview. Estimation theory for linear models. 1–2

2 Estimation theory for nonlinear models and sensor networks. 3–4

3 Detection theory with sensor network applications. 5

4 Nonlinear filter theory. The Kalman filter. Filter banks. 6–7, 10

5 Kalman filter approximation for nonlinear models (EKF, UKF). 8

6 The point-mass filter and the particle filter. 9

7 The particle filter theory. The marginalized particle filter. 9

8 Simultaneous localization and mapping (SLAM). 11

9 Modeling and motion models. 12–13

10 Sensors and filter validation. 14–15

Literature: Statistical Sensor Fusion. Studentlitteratur, 2010.
Exercises: compendium. Software: Signals and Systems Lab for Matlab.
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Sensor Fusion

Lecture 1: Estimation theory in linear models

Whiteboard:

• The weighted least squares (WLS) method.

• The maximum likelihood (ML) method.

• The Cramér-Rao lower bound (CRLB).

• Fusion algorithms.

Slides:

• Examples

• Code examples

• Algorithms
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Sensor Fusion

Example 1: sensor network
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12 sensor nodes, each one with microphone, geophone and magnetometer.
One moving target.
Detect, localize and track/predict the target.
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Sensor Fusion

Example 2: fusion of GPS and IMU

GPS gives good position. IMU gives accurate accelerations.
Combine these to get even better position, velocity and acceleration.
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Sensor Fusion

Example 3: fusion of camera and radar images

Radar gives range and range rate with good horizontal angle resolution, but no
vertical resolution.
Camera gives very good angular resolution, and color, but no range.
Combined, they have a great potential for situation awareness.
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Sensor Fusion

Chapter 2: estimation for linear models

• Least squares and likelihood methods.

• Sensor network example.

• Fusion and safe fusion in distributed algorithms
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Sensor Fusion

Code for Signals and Systems Lab:

p1=[0;0];
p2=[2;0];
x=[1;1];
X1=ndist(x,0.1*[1 -0.8;-0.8 1]);
X2=ndist(x,0.1*[1 0.8;0.8 1]);
plot2(X1,X2)
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Sensor Fusion

Sensor network example, cont’d

X3=fusion(X1,X2); % WLS
X4=0.5*X1+0.5*X2; % LS
plot2(X3,X4)
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Sensor Fusion

Information loops in sensor networks

• Information and sufficient statistics should be communicated in sensor networks.

• In sensor networks with untagged observations, our own observations may be
included in the information we receive.

• Information loops (updating with the same sensor reading several times) give
rise to optimistic covariances.

• Safe fusion algorithms (or covariance intersection techniques) give conservative
covariances, using a worst case way of reasoning.
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Sensor Fusion

Safe fusion
Given two unbiased estimates x̂1, x̂2 with information I1 = P−1

1
and I2 = P−1

2

(pseudo-inverses if singular covariances), respectively. Compute the following:

1. SVD: I1 = U1D1U
T
1

.

2. SVD: D
−1/2

1
UT

1
I2U1D

−1/2

1
= U2D2U

T
2

.

3. Transformation matrix: T = UT
2

D
1/2

1
U1.

4. State transformation: ˆ̄x1 = T x̂1 and ˆ̄x2 = T x̂2. The covariances of these are
COV(ˆ̄x1) = I and COV(ˆ̄x2) = D−1

2
, respectively.

5. For each component i = 1, 2, . . . , nx, let

ˆ̄xi = ˆ̄xi
1
, Dii = 1 if Dii

2
< 1,

ˆ̄xi = ˆ̄xi
2
, Dii = Dii

2
if Dii

2
> 1.

6. Inverse state transformation:

x̂ = T−1 ˆ̄x, P = T−1D−1T−T
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Sensor Fusion

Transformation steps
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Sensor Fusion

Sensor network example, cont’d

X3=fusion(X1,X2); % WLS
X4=fusion(X1,X3); % X1 used twice
X5=safefusion(X1,X3);
plot2(X3,X4,X5)
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Sensor Fusion

Sequential WLS

The WLS estimate can be computed recursively in the space/time sequence yk .
Suppose the estimate x̂k−1 with covariance Pk based on observations y1:k−1. A
new observation is fused using

x̂k = x̂k−1 + Pk−1H
T
k

(

HkPk−1H
T
k + Rk

)

−1

(yk − Hkx̂k−1),

Pk = Pk−1 − Pk−1H
T
k

(

HkPk−1H
T
k + Rk

)

−1

HkPk−1.

Note that the fusion formula can be used alternatively. In fact, the derivation is
based on the information fusion formula applying the matrix inversion lemma.
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Sensor Fusion

Batch vs sequential evaluation of loss function

The minimizing loss function can be computed in two ways using batch and
sequential computations, respectively,

V WLS(x̂N ) =
N

∑

k=1

(yk − Hkx̂N )T R−1

k (yk − Hkx̂N )

=
N

∑

k=1

(yk − Hkx̂k−1)
T (HkPk−1H

T
k + Rk)−1(yk − Hkx̂k−1)

− (x̂0 − x̂N )T P−1

0
(x̂0 − x̂N )

See Theorem 6.2!

The second expression should be used in decentralized sensor network
implementations and on-line algorithms.

The last correction term to de-fuse the influence of the initial values is needed only
when this initialization is used.
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Sensor Fusion

Batch vs sequential evaluation of likelihood

The Gaussian likelihood of data is important in model validation, change detection
and diagnosis. Generally, Bayes formula gives

p(y1:N ) = p(y1)
N
∏

k=2

p(yk|y1:k−1).

For Gaussian noise and using the sequential algorithm, this is

p(y1:N ) =
N
∏

k=1

γ(yk; Hkx̂k−1, HkPk−1H
T
k + Rk)

Using (5.98) in Adaptive Filtering and Change Detection:

p(y1:N ) = γ(x̂N ; x0, P0)
√

det(PN )

N
∏

k=1

γ(yk; Hkx̂N , Rk).

Prefered for de-centralized computation in sensor networks or on-line algorithms.
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