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Tire-road friction is estimated using the wheel-slip computed
from standard sensor signals. A parametric model is

estimated using an adaptive �lter supported by a fault
detector. Results from extensive �eld trials are presented.

An approach to estimate the tire{road friction during normal drive using
only the wheel slip, that is, the relative di�erence in wheel velocities, is
presented. The driver can be informed about the maximal friction force
and be alarmed for sudden changes. Friction related parameters are es-
timated using only signals from standard sensors in a modern car. An
adaptive estimator is presented for a model linear in parameters, which is
designed to work for periods of poor excitation, errors in variables, simul-
taneous slow and fast parameter drifts and abrupt changes. The physical
relation between these parameters and the maximal friction force is de-
termined from extensive �eld trials using a Volvo 850 GLT as a test car.
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1 Introduction

Tire|Road Friction Estimation (TRFE) has become an intense research area as
the interest of information technology in vehicles increases. For instance, the need of
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TRFE is established as the problem area \Common European Demonstrator 2.1",
Friction Monitoring and Vehicle Dynamics, in the European Prometheus project
and it is also identi�ed by the Advanced Vehicle Control Systems Committee of
the Intelligent Vehicle Highway Society of America ([1]). TRFE is of importance in
itself as a driver information unit, but friction information is also needed in other
functions like safety margin determination, autonomous intelligent cruise control,
collision avoidance systems and for exchange of road-side information.

To our knowledge, four di�erent approaches to TRFE have been tried:

{ Use the so called wheel slip, that is, the di�erence in wheel velocities of driven
and non-driven wheels.

{ Use optical sensors installed at the very front of the car. The reections from
the surface are used to estimate the road surface and possible lubricants. This
approach has the advantage of being able to estimate the friction slightly before
the tires reach for instance an icy spot. A di�culty here is to keep the sensors
clean.

{ Acoustic sensors can be used to listen to the tire noise, which gives some infor-
mation about the surface.

{ Supply the tires' tread with sensors for measuring stress and strain. This solution
is technically very complicated and expensive.

The last three approaches are investigated in [2]. The use of optical and acoustic
sensors is particularly promising for detecting wet surfaces and risk for aqua-planing.
The use of acoustic sensors in combination with a neural net is examined in [3]. There
are also methods for estimating the friction during excitation, for instance using an
active ABS system as described in [4].

In this work, we follow the �rst approach. It should be remarked that this approach
has been tried at least twice only in Sweden with a negative result, probably due
to insu�cient measurement accuracy and �ltering techniques. Recently, the relation
between wheel slip and friction was reported in [5] for several tires and some di�er-
ent surfaces. Perhaps the most important feature is that only existing sensors are
needed if the car is supplied with ABS brakes. It works for two-wheel driven vehicles
and during normal driving, but not when braking. The goal is to compute certain
parameters from available standard sensors in the car, which depend directly or in-
directly on the friction, and to �nd rules how to evaluate the maximal friction forces
that can be used for braking or cornering. There are two problems of theoretical
interest in this approach:

{ Design an adaptive parameter estimator suitable for this application. It must give
accurate estimates and at the same time be able to track fast variations.

{ Determine the physical relation between these parameters and the maximal fric-
tion forces.
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We will here focus on the �rst problem and briey summarize the results of the
tests.

The basic assumption on a relation between slip and friction is in fact in contra-
diction to classical tire friction theory, but it has been supported in [5] and it is
strongly con�rmed in this work and empirical evidence will be presented. However,
the di�erence in slip on di�erent surfaces is quite small, which might be the reason
why this relation has not been discovered until recently.

The �lter used in [5] is based on a time average of one parameter. To compute
this, another parameter needs to be estimated, which is done during free-rolling.
The proposed �lter is based on modern model based signal processing where both
these parameters are estimated simultaneously and adaptively and no free-rolling
is needed. Furthermore, a change detection algorithm is used for detecting and es-
timating abrupt changes quickly. Another major contribution here is a systematic
test plan including many winter tests on ice and snow, which are two surfaces not
tested at all in [5].

An introduction and summary of the project can be found in Section 2. The out-
line follows the signal ow depicted in Figure 1. The block labeled \Measuring"
represents the metrology. The measured quantities are used to compute physical
quantities in a straightforward manner as detailed in Appendix A. These quantities
are in the next block used to �lter out parameters related to the friction. The critical
design of the �lter is presented in Section 3. In the last block, the �ltered parame-
ters are used to classify what the friction is. To design a classi�er a large number
of tests is required, and the results of these are summarized in Section 4. Finally,
conclusions are found in Section 5. Readers only interested in parameter estimation
for this application can skip Section 4, while readers not familiar with estimation
theory may skip Section 3, since Section 2 provides the context in both cases. A
short version of this work was presented in [6].

- Info. unit - Driver - Car

�Measuring�Calculations�Filtering�Classi�cation

Fig. 1. Signal ow
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2 A brief outline

This section is a short guide to the content of this work where the most important
quantities for friction estimation are de�ned.

The basic idea in the chosen approach is to study the friction dependency in the so
called slip. The slip is de�ned as the relative di�erence of a driven wheel's circum-
ferential velocity, !wrw, and its absolute velocity, vw:

s =
!wrw � vw

vw
; (1)

where rw is the wheel radius. This is the de�nition suggested in [7]. Another common
de�nition is s = !wrw�vw

!wrw
, see e.g. [8]. For small slip values, as considered here, these

de�nitions give almost the same value.

The absolute velocity of a driven wheel is computed from the velocities of the two
non-driven wheels and geometrical relations in a straightforward manner.

We also de�ne the friction coe�cient (�) as the ratio of traction force (Ff) and
normal force (N) on one driven wheel,

� =
Ff

N
: (2)

A plot of the friction coe�cient versus the slip, � = �(s), shows a very signi�cant
characteristics which depends on the combination of tire and road. Examples on slip
curves are sketched in Figure 2. We are of course interested in the maximal friction
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coe�cient �max, but during normal driving only small values � < 0:2 are observed.
The question is if these observations can be used to predict �max.

Figure 3 shows examples of test drives on asphalt and ice, respectively. Visual in-
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Fig. 3. Samples of � and s, computed from ABS signals on the right side of the car, on
dry asphalt (left) and hard snow (right), respectively. Crosses denote measurements and
the solid line is a straight-line approximation.

spection reveals a slight di�erence in slope, so we de�ne

k =
d�

ds

�����
�=0

(3)

This slope k is commonly referred to as the longitudinal sti�ness since it can be
justi�ed theoretically from the tire characteristics alone. A sti� tire gives a large
k. Since this theory does not explain the friction dependency, we prefer to call it
simply the slip slope. The hypothesis is that

{ the slip slope contains su�ciently much information to provide an accurate value
of the friction (�max).

The slip slope is estimated from the straight-line assumption � = ks for small
slip values. We stress that standard models of the �{s relation, like the physical one
outlined in [8] and the model � = ks=(as2+bs+1) in [9], have constant initial slope.
A more general model D sin(C arctan(B((1� E)s + E=B arctan(BX)))) suggested
in [10] was used to generate the arti�cial curves in Figure 2.

When trying to compute the slip from the linear approximation s = �=k in (3), one
will notice a signi�cant o�set (not illustrated in Figure 2),

� = sj�=0 : (4)

That is, the slip is not zero when the traction force is zero. This is mainly due to a
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small di�erence in e�ective wheel radii, and must be compensated for when the slip
slope is estimated. Much of the details in the algorithm concern questions how to
compensate for this o�set, cornering etc when computing the slip.

The precision of the estimates of k and � hinges on the quality of the data. Apart from
abnormal measurements, the data quality is e�ectively assessed by the variation in
�(t) to be de�ned later. If the variation is small, the estimates will be stochastically
uncertain and the slip slope might be overestimated as well. That is, to get reliable
estimates the driver should change the position of the gas pedal regularly.

If only the slip slope was used to estimate the friction, we would face problems on
gravel roads. It has turned out that the slip slope can take on almost any value on
gravel. Before going on, we make the following assumptions about gravel roads:

{ Of course the driver knows when he is driving on gravel. We still need to detect
gravel, partly in order not to confuse him by random friction information and
partly because other functions might need the information.

{ We do not intend to distinguish di�erent frictions levels on gravel.

The very course surface texture on gravel roads opens a possibility to classify gravel
separately. The surface's coarseness gives a random contribution to the measurement
of the angular velocity. Consider the relation between the angular velocity of one
free-rolling wheel and its horizontal velocity

!w = vw=rw + e: (5)

That is, v=rw is the angular velocity one would get on a perfectly even surface. Now,
we can de�ne

 = 4 Var(e) (6)

and use it for detecting gravel. The factor 4 will be explained later.

To conclude this discussion, we have three quantities which could depend on the
friction: k, �, . Suppose now that we make a number of test drives on surfaces with
known properties. We can then illustrate each test as a point in the space (k; �; ).
To each point we hang on a surface label. Then, omitting the o�set �, we get for
instance a plot as shown in Figure 4. This and similar tests are presented in Section
4. It is clear from the �gure that we can construct a classi�er which works for this
car and these tires and at this time. For instance, the following classi�er can be
used:

Gravel (� � 0:5) if  > 0:027.
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Asphalt (� > 0:8) if  < 0:027 and k > 30.
Snow or ice (� < 0:3) if  < 0:027 and k < 30.

20 25 30 35 40 45 50 55 60
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
k--gamma plot for Eurofrost

slip slope k

T
ex

tu
re

 m
ea

su
re

 g
am

m
a

aa aa a
a a

a
a a

a
a

a a
a

a
a

a

a
a

aa a

a
a aa aa

a

a a

a
a

a

g

g

g
g

g
g

g

g

g
g

g
g

s
s s

s

i
i

i

i
i

i
i

Fig. 4. Slip slope and texture measure as a function of surface for the winter tire \Eu-
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As indicated above, it is not at all sure that this classi�er works half a year later, or
with di�erent tires or even on another car. This implies that the classi�er has to be
adaptive, which is a major problem. However, detection of slow and abrupt changes
in friction is still possible.

3 Filtering

In this section, we will assume that we have measurements of the slip s and the
normalized traction force � = Ff=N . An index m will be used to distinguish the
measured quantities from the true ones. Both s and � are computed, without �lter-
ing, from measured quantities as described in Appendix A.

The slip slope k we want to compute is de�ned in (3) which for small � reads (using
(4))

� = k(s� �) (7)
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where also � is unknown. The approach in [5] is to estimate � separately during free-
rolling, when � = s, and then compute k from (7) directly, or some moving average
value to increase the accuracy. One drawback with this two-step method is that �
may vary with the surface, and this might cause problems. The averaging introduces
an undesired estimation delay, and the tradeo� between estimation accuracy and
short time delay is tricky. Here, we will make use of sophisticated �ltering where k
and � are estimated simultaneously. The design goals are

{ to get accurate values on k while keeping the possibility to track slow variations
and at the same time

{ detect abrupt changes in k rapidly.

This will be solved by a Kalman �lter supplemented by a failure detection algorithm.

3.1 Time-invariant estimation

To begin with, we will formulate the problem as a time-invariant one. This allows
us to gain useful insight into the problems that may occur in the general case,
and will also simplify the derivation of the time-varying estimator. We can also
think intuitively of time-varying estimation as a time-invariant one over a short
data window.

3.1.1 Choosing a linear regression model

Equation (7) expressed as

� = ks� k� (8)

is a linear model for s and �, where k and k� are two unknown parameters. However,
there are two good reasons for rewriting it as

s = �
1

k
+ �: (9)

That is, we consider s to be a function of � rather than the other way around. The
reasons are

{ The measurement noise variance is much larger for s than for �. We will mostly
neglect the latter uncertainty. In that case the measurement noise will be additive
to (9) while it is multiplied by k in (8).
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{ Both parameters k; � are time-varying, where k is supposed to vary much faster
than �. This implies that (8) has two rapidly changing parameters k and k� while
(9) will have one rapidly and one slowly varying parameter, which is a much easier
�ltering problem.

Introducing measurement noise on s, we get the following linear regression model:

sm(t)=�(t)
1

k
+ � + e(t)

= (�(t) 1)

0B@ 1

k

�

1CA+ e(t)

=H(t)x+ e(t): (10)

Here x = (1=k; �)T is a vector of unknown parameters, H(t) is a regression vector
(�(t); 1) and e(t) is a term to catch measurement errors and model mismatch where
it will be assumed that e(t) is white noise with variance �2. There are two linear
regression models (10), one for each driven wheel.

3.1.2 The least squares estimate

Classical least squares theory gives that the best parameter estimate that can be
formed from N measurements of sm(t) and H(t) is given by

x̂N =

 
NX
t=1

HT (t)H(t)

!
�1 NX

t=1

HT (t)sm(t) (11)

The measure of �t

c�2 = 1

N

NX
t=1

(sm(t)�H(t)x̂N)
2 (12)

is the natural estimate of measurement error variance.

In the next two subsections we analyse two problems that may not only occur here,
but also in the general time-varying case.

3.1.3 Biased estimates caused by errors in �(t)

A well-known problem in the least squares theory occurs in the case of errors in the
regression vector. This is usually referred to as errors in variables or the total least
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squares problem, see [11]. In our case, we have measurement and computation errors
in the normalized traction force �(t). Assume that

�m(t) = �(t) + v�(t); Var(v�(t)) = �� (13)

is used in H(t) in (11). Here Var(v�(t)) means the variance of the error in the
measurement �m(t). It can easily be shown that it leads to a positive bias in the slip
slope

k̂ � k
Var(�) + ��

Var(�)
> k (14)

Here Var(�) is the variation of the normalized traction force de�ned as

Var(�) =
1

N

NX
t=1

�2t �
 
1

N

NX
t=1

�t

!2
: (15)

This variation is identical to how one estimates the variance of a stochastic variable.
Normally, the bias is small because Var(�) >> ��. That is, the variation in traction
force is much larger than its measurement error.

3.1.4 Uncertain estimates caused by lack of excitation

A conceptually di�erent phenomenon is caused by the same reason as the parameter
bias. The quality of the estimates is namely also related to the variation of traction
force.

The covariance matrix of the parameter estimate is

PN = Cov(x̂N ) = �2
 

NX
t=1

HT (t)H(t)

!
�1

: (16)

If the matrix to be inverted is close to singularity, its inverse will be large and the
estimates very uncertain. We can check how close this matrix is to singularity by
computing its determinant

det

 
NX
t=1

HT (t)H(t)

!
=det

0B@PN
t=1 �

2(t)
PN

t=1 �(t)PN
t=1 �(t)

PN
t=1 1

1CA
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=N
NX
t=1

�2(t)�
 

NX
t=1

�(t)

!2
=N2Var(�(t)): (17)

That is, if the variation in traction force is small during the time constant of the
�lter (N here), the parameter uncertainty will be large.

3.1.5 Inuence of driving style

To investigate the inuence of driving style, a number of tests were performed where
three di�erent possibilities were compared:

{ Poor excitation and a constant velocity of 70 km/h.
{ Poor excitation and a constant velocity of 90 km/h.
{ High excitation. The speed was changed back and forth between 70 km/h and 90
km/h.

The same asphalt road was used in all tests and they were all performed on the
same day. Table 1 summarizes the result.

According to the discussions in subsections 3.1.3 and 3.1.4 low excitation could give a
bias and uncertain estimates. This is con�rmed in Table 1 where high excitation gives
an extremely small variation between di�erent drives (small standard deviation) and
a slip slope that is signi�cantly smaller than for the non-exciting drives.

Tire 70 km/h 90 km/h High excitation Number of tests

MXT 52.5 (1.6) 53.8 (2.3) 48.7 (0.7) 4

Eurofrost 39.9 (2.1) 35.0 (3.3) 33.2 (0.8) 10

Table 1
Mean and standard deviation of estimated slip slope for di�erent driving styles

3.1.6 What to do during poor excitation

An intuitive explanation to the two aforementioned problems is as follows: If the
variation of �(t) is very small during the time constant of the �lter (N), we are
e�ectively collecting data clustered around one and only one point in a (k; s) plot.
A straightline approximation of these data points can then take on almost any slope
and o�set. Ideally, the driver should switch traction force between one large and one
small value. Then it would be easy to get an accurate estimate of the slip slope.
This is also the philosophy in many of the test drives in Section 4.
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A remedy to the problems caused by lack of excitation in traction force is suggested
as follows: In the car we have access to almost in�nitely many data. We also know
that the parameter � is almost constant. These two facts mean that each time we
start a time-invariant estimation as in (11) over a short time window there is very
certain prior information about � available. If we know that the traction force is not
excited su�ciently, we could turn o� the tracking ability of � and concentrate on
estimating time-variation in k only, until the excitation gets better. There would be
no bias nor uncertainty caused by lack of excitation then.

The only remaining task is to decide when the variation of �(t) is large enough
to assure good performance of (11). The noise variance �� can be considered as a
constant depending only on the engine. A rough estimate of �� can be obtained from
data. This is done by using two test drives on the same road the same day, one with
very poor and one with good excitation. The well excited one gave k̂ � k � 84, while
the poorly excited one gave Std(�) = 0:009 and k̂ = 148. A time-invariant estimator
is used and there are many samples (N large) so the estimates are fairly accurate
according to (17). Equation (14) now gives �� = 0:0092(148=84 � 1) = 0:0082. To
have, say, less than 10 % bias, we must require that

Var(�) >
0:0082

0:1
= 6:4 � 10�4 � 0:0252: (18)

This limit has been con�rmed to be e�ective in practice. It also gives an upper bound
on the stochastic uncertainty in the estimated slip slope, as follows from (17).

3.2 Time-varying estimation

We will now allow time variability in the parameters, k(t) and �(t). Basically, there
are three methods to estimate time-varying parameters, namely Least Mean Squares
(LMS), Recursive Least Squares (RLS) with forgetting factor and the Kalman �lter,
see [12] for instance. All these methods contain some design variable to tune the
time constant of the �lter. This time constant can then be interpreted as the data
size N used in the previous section, and the bias (14) and variance (17) measures
can be evaluated, at least approximately.

LMS is much too slow for this application. RLS has just one degree of freedom to
adjust the adaptivity. We propose to use the Kalman �lter, because it is easily tuned
to track parameters with di�erent speeds. To estimate the model quality parameters
�, Var(�) and the texture measure  simple lowpass �lters of their momentary values
are used.
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3.2.1 The Kalman �lter

Equation (10) is extended to a state space model where the parameter values vary
like a random walk. At the same time, we introduce one independent model for each
driven wheel:

x(t + 1)= x(t) + v(t)

y(t)=H(t)x(t) + e(t) (19)

where

Q(t)=Ev(t)vT (t)

R(t)=Ee(t)eT (t)

y(t)=

0B@ sm;l(t)

sm;r(t)

1CA

H(t)=

0B@�l 0 1 0

0 �r 0 1

1CA
x(t)=

 
1

kl(t)
;

1

kr(t)
; �l(t); �r(t)

!T
:

The indeces l and r refer to left and right side of the car, respectively. Here v(t)
and e(t) are considered as independent white noise processes. With this assumption,
the Kalman �lter (see [13]) gives the optimal (in the minimum variance sense) state
estimates x̂(t):

S(t)=P (t� 1) +Q(t� 1)

K(t)=S(t)HT (t)
�
H(t)S(t)HT (t) +R(t)

�
�1

x̂(t)= x̂(t� 1) +K(t) (y(t)�H(t)x̂(t� 1))

P (t)=S(t)�K(t)H(t)S(t): (20)

Here P (t) is interpreted as the covariance matrix of the parameter estimates.

3.2.2 Choosing the design parameters

The Kalman �lter equations contain four free matrices, the initialization x(0); P (0)
and the noise covariance matrices Q(t); R(t).
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Initialization is not a problem in this application since the �lter is running since it
was started the �rst time. Each time the car's engine is turned o� the �lter states
are stored and used when the car is started again.

The well-known and quite tricky problem is how to determine feasible values on the
covariance matrices Q(t) and R(t). Concerning irrelevant scalings of the covariance
matrices, it is well-knonw that it is only the ratio kQk=kRk that matters, so one of
them can be normalized. Here we take R(t) = I. It is assumed that the parameters
vary independently, so we can write

Q(t) = diag (qk(t); q�(t); qk(t); q�(t)) : (21)

Another idea, not investigated here, is to assume dependence between the slip slope
of the left and right side, so Q13 = Q31 > 0. The magnitudes of qk(t) and q�(t) decide
the time constants for estimating k and �, respectively. The variation in wheel radii
reected in � can be assumed to be rather slow compared to the variation in k(t),
which must be allowed to vary rather rapidly due to the problem formulation. On
the other hand, we have no prior information about when large variations can be
expected, so we can choose Q(t) = Q time-invariant. Thus we choose qk >> q�. The
actual magnitude of the elements of Q is chosen such that the time constant for
estimating k is of the order a minute and about ten times larger for �.

Relating this design choice to the discussion on parameter bias and estimation un-
certainty, we can conclude that good excitation depends on how much the traction
force has changed, roughly, the last ten minutes.

3.2.3 The CUSUM detector

The tracking ability is proportional to the size of the entries of Q. The Kalman �lter
is required to give quite accurate values on the slip slope and must by necessity
have small values on the entries of Q, see [13]. On the other hand, we want the �lter
to react quickly to sudden decreases in k due to worse friction conditions. This is
solved by running a failure detection algorithm in parallel with the Kalman �lter.
If it indicates that something has changed, then all entries of Q are increased to a
large value, yielding a time constant less than a second for estimating the slip slope.

There are many conceivable change detection algorithms. The main candidates are
the CUSUM test, see [14] or [15] for a thorough treatment, and the Generalized
Likelihood Ratio (GLR) test, see [16] or [17] for some recent ideas.

{ The CUSUM test is computationally very simple, intuitively easy to understand
and can be motivated to be fairly robust to modeling errors and the di�erent
types of changes (abrupt or incipient) that can occur here.
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{ The GLR test requires parallel �lters, delivers an estimate of the change and has
the potential to locate the change time accurately. The last two properties are a
bit questionable for incipient changes.

The CUSUM test is proposed here, mainly because of its simplicity. See [18] for a
comparison of di�erent change detection algorithms for this particular problem. In
words, the CUSUM test looks at the prediction errors "t = sm(t)�H(t)x̂(t) of the
slip value. If the slip slope actually has decreased, we will get predictions that tend
to underestimate the real slip. The CUSUM test gives an alarm when the recent
prediction errors have been su�ciently positive for a while. Mathematically, the test
is formulated as the following time recursion:

g0=0

gt= gt�1 + "t � � (22)

gt=max(gt; 0)

if gt>h then alarm and gt = 0

where � and h are design parameters. This test is known to have a number of good
properties, robustness being one of them. After an alarm, the state noise covariance
matrix Q(t) is increased a factor, allowing quick tracking in the Kalman �lter. Since
it will take at least one more sample until the Kalman �lter converges and the driver
can be informed about the new situation, such an alarm about a decrease in friction
potential should immediately be delivered to the driver.

The CUSUM test (22) gives an alarm only if the slip slope decreases. A similar test
is used also for an increasing slope, using two other design parameters � and h.
However, an alarm in this test is not important to the driver.

3.3 Example of �lter response

In this section, an example is given to illustrate the interaction between the Kalman
�lter and the change detector, using data collected at the test track CERAM, Paris.
A road with a sudden change from asphalt to gravel and then back to asphalt is
considered. Figure 5 shows the estimated slip slope as a function of time in one of
the tests, where the gravel path starts after 7 seconds and ends after 16 seconds.

Note that the Kalman �lter �rst starts to adapt to a smaller slip slope but after
3 samples (0.6 s) something happens. This is where the CUSUM detector signals
for an alarm and we have convergence after one more sample. A similar behavior
is noted at the end of the gravel path. The Kalman �lter �rst increases k slightly
and after some samples it speeds up dramatically and it takes a couple of seconds
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Fig. 5. Slip slope as a function of time. After 7 s an asphalt road changes to a short gravel
path that ends at 16 s.

to converge to a stable value.

3.4 Outliers and model mismatch

Due to a number of reasons, some measurements of � and s are useless. In these cases,
the �lter should be made inactive, which can be formulated mathematically (but not
practically) as letting Q(t) = 0 and R(t) =1. Therefore, a number of more or less
heuristic rules concerning the validity of the engine torque model, normal force and
curve radius computation and friction model are used.

3.5 A measure of surface coarseness

Basically, it should be possible to classify gravel roads by its rough surface. Consider
for instance the high frequency content of a non-driven wheel velocity. This is clearly
a measure of the surface texture and it is large when the surface is uneven. On the
other hand, it is also a function of the velocity of the car. Accelerations and especially
a discontinuity in the velocity measurement at 8 km/h in the ABS sensors give a
contribution as well, so soft driving on gravel might be classi�ed as asphalt, while
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wild driving on asphalt with many starts and stops could be mixed up with gravel.
The approach outlined below has overcome these di�culties.

During one sample interval of 0.2 seconds, corresponding to approximately 4 meters
for a velocity of 20 m/s, many small holes and ridges in the surface add up to a total
error. According to the central limit theorem, this error will be Gaussian. This line
of argumentation is supported by data as an example in [19] shows. A good model
is that the true angular velocity on the left and right non-driven wheel, respectively,
is a sum of a velocity dependent term and noise. Rewriting (5) we get

!l(t)= vl(t)=rw + el(t)

!r(t)= vr(t)=rw + er(t)

The variance of el and er contains information about the coarseness of the surface.
That is, to detect gravel we would like to estimate the size, or variance, of el and er
(which should be of the same magnitude on both sides normally). A natural idea is
to study the di�erence !l � !r which is independent of the velocity as long as the
car is going straight ahead (when vl = vr).

However, in curves there will be a small bias caused by the di�erence in vl � vr. If
this di�erence is constant in time, its inuence can be removed by considering the
time di�erence. That is, we propose to estimate the following quantity

 = E(!l(t)� !r(t)� !l(t� 1) + !r(t� 1))2 (23)

to detect gravel. The variance  will be four times larger than the variance of e, which
explains the factor 4 in (6). The point is that !l(t)�!r(t)�!l(t�1)+!r(t�1) has
zero mean when the turn rate is constant or when the car is going straight ahead,
so E(�)2 = Var(�). An alternative to (23) is presented in [19], but it is not yet clear
how to implement that algorithm recursively.

4 Test drives

The friction estimator was developed in parallel with test drives. It has been running
more than 15000 km on the test car, a Volvo 850 GLT. About 1000 data �les
have been saved in test drives both on public roads under various conditions and
on test tracks in Gothemburg (owned by Volvo), Arvidsjaur (TEVES), Wolfsburg
(Volkswagen) and Paris (Renault/Matra). Among these, 300 have been put in a
database for automated analysis. Here a fraction of these are presented.
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4.1 Preliminaries

Tests on the following surfaces and tires will be presented.

{ Surface: asphalt (a), wet asphalt (w), gravel (g), snow (s) and ice (i) determined
by visual inspection.

{ Tire: MXT, MXV2 (almost worn out), NCT2, and Eurofrost (winter tires).

The discussion will be in terms of slip slope k and the texture parameter . It is
important to note the following assumptions in the estimation.

{ The �lter starts from the same initial condition in each test drive. This simpli�es
a direct comparison. The initial covariance matrix P (0) is chosen large to get a
short transient.

{ The �lter assumes time invariance, that is, (11) is used. This makes the estimation
task partly easier, partly harder, compared to an on-line �lter. Assuming time in-
variance gives more accurate estimates since no data forgetting has to be included
in the �lter. On the other hand, prior information of the very slowly time-varying
slip o�set from previous drives is not incorporated into the �lter. This sometimes
leads to biased estimates (slip slope and slip o�set overestimated, see (14)) when
the excitation is poor.

Each data set contain data from about two minutes, which is close to the time
constant of the Kalman �lter. That is, the parameter uncertainty using the �lter of
this section and the Kalman �lter should be of the same order.

Test brakes were performed, where the mean deceleration was used as an estimate of
�max. This turned out to work well on slippery roads, but the result for high values
on �max are uncertain.

4.2 Test results for di�erent tires

Figure 6 shows  and k for several tests, one plot for each tire. We will comment
on each plot and explain unexpected results. These can be explained by either poor
excitation or the ambiguity in visual inspection of surfaces.

Comments on MXT:

{ The asphalt drive with a small k = 45 was performed on a salted road after a
snow fall and should perhaps be classi�ed as snow or wet asphalt. A test brake
showed a small �max = 0:41.
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Fig. 6. Slip slope and texture measure as a function of surface

{ The snow drives with k > 40 were all performed on the same road with friction
�max � 0:4. The snow drives with k < 40 corresponds to lower friction roads
�max = 0:3 to �max = 0:35.

{ The ice drives are all from the same occasion. High humidity caused tra�c prob-
lems on a major highway with an invisible ice covered asphalt surface. The friction
was �max � 0:4. The prototype successfully gave alarm and a correct friction es-
timate in this real and dangerous situation.

{ Thus, three di�erent friction conditions seem to be distinguished. The friction
classes �max < 0:35, 0:35 < �max < 0:45 and �max > 0:45 can in almost all cases
be distinguished by the classi�er k < 40, 40 < k < 47 and k > 47.

{ All tests have  < 0:03.

Comments on MXV2:

{ The slip slope is systematically larger here due to the worn tires.
{ The slip slope on gravel is smaller than on asphalt and shows a huge variation.
{ Gravel drives can be distinguished from asphalt by checking if  > 0:017.

Comments on NCT2:
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{ A k threshold of 45 classi�es asphalt and snow correctly.
{ The slip slope and o�set are over-estimated in one snow drive.
{ One wet asphalt drive shows a remarkably high slip slope (k = 80). The excitation
is very good (Var(�) = 0:0502) and model error small (� = 0:5) so it is a reliable
result.

Comments on Eurofrost:

{ This is the most promising result in this report, where all surfaces are well clus-
tered.

{ There is a clear di�erence between asphalt and snow/ice with threshold k = 30.
{ The distinction between ice and snow is ambiguous. The friction on snow was 0.3
and on the icy surface 0.35. Test brakes shows a certain correlation between �max

and slip slope.
{ Gravel roads are characterized by  > 0:027.
{ The ice drive with the largest slip slope, k = 29, is likely to have a signi�cant bias
according to Equation (18), since Var(�) = 0:0252.

Clearly, the threshold needed in a classi�er di�er for di�erent tires. Furthermore, a
winter tire with knobs showed a very small slip slope in the order of 15. Therefore,
the thresholds must be adaptive with respect to tire changes and wearness. Note,
however, that these results support the functionality of a relative friction estimator.
That is, a skid detector should work with high signi�cance level.

4.3 Inuence of external factors

A lot of tests were conducted to examine the inuence of external factors. The results
of these are summarized below:

{ The accuracy of k when a test is repeated at another occasion is in the order of
10%. Since the time constants of both the Kalman �lter and the �lter used in this
section are of the same order, the accuracy of k from the Kalman �lter can be
expected to 10% as well.

{ Cruising with constant speed normally gives a bias less than 10% in k.
{ A decrease in tire ination pressure for a driven (front) wheel of 0.5 bar gives a
20% decrease in k, while a change in a non-driven wheel does not inuence the
slip slope.

{ A change of tire ination pressure larger than 0.2 bar in any tire, shows up as a
change in the o�set � with one per mille. Therefore, abnormal ination pressure
can be detected if the estimated slip o�sets on the left and right side di�ers more
than 1 per mille (which is larger than its estimation uncertainty).
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{ Cold tires and also a cold engine contribute to overestimate k, the actual amount
being slightly correlated to outdoor temperature. After 10 km drive the estimate
of k has converged to its stationary value.

{ The computation of engine torque is accurate only when the torque is almost
constant (the model is static) in which case the �lter is active. The time constant
of the engine is of the order of one second, so a few samples have to be thrown
away when the torque is changed.

{ The computation of normal force is inaccurate in bends using the simple mechan-
ical model in appendix A.4. This is especially true on the outer wheel, which
implies a lower bound on curve radius where the model is valid.

{ A change in load, like going from no to three passengers, does not seem to a�ect
the slip slope.

That is, the friction classi�er should be inactive the �rst 10 km of drive, when an
abnormal ination pressure is detected, in bends (detected by a small curve radius)
and during non-static torque. The ad-hoc rules that have been implemented lead to
a 90% availability. The resolution of the slip slope cannot be higher than 10%. A
relative friction estimator can, however, be used all the time.

4.4 The classi�er and self calibration

The suggested classi�er uses the slip slope k and the texture measure  and has the
following form, where we also suggest a self-calibration procedure:

(i) If  > 0:03, then the surface is gravel (� � 0:6) no matter what k is.
(ii) If  < 0:03 and k > 0:9k0, then the surface has high friction (� > 0:7).
(iii) If  < 0:03 and 0:7k0 < k < 0:9k0, then the surface is slippery (� � 0:4).
(iv) If  < 0:03 and k < 0:7k0, then the surface is very slippery (� < 0:3).
(v) In addition to the rules above, use a 10% hysteresis around the limits to avoid

repeatedly switching between two states.
(vi) The classi�er is inactive the �rst 10 km and when the tire ination pressure is

detected to be abnormal.
(vii) Detection of abrupt friction changes is done all the time without the need for

self calibration.

In a protype developed in this project, the driver information unit consists of a LED
display where the number of active LED's is inversely proportional to the �-value
indicated above. Furthermore, the unit alarms for sudden skid when the change
detector gives an alarm.

The limit of 0.03 for gravel detection seems to work for reasonably worn tires. Here
k0 is a tire dependent limit which must be adaptive. We suggest to update it to
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the current estimate of k each time  � 0:01 and the excitation is good. These
circumstances are characteristic for asphalt roads with little bias on k. This means
that the classi�er will adapt itself after a tire change once the car enters an asphalt
road with acceptable excitation. This is the principle of the self-calibration.

5 Conclusions

An algorithm for estimating tire-road friction during normal driving and using only
standard sensors has been presented. The approach works on two-wheel driven ve-
hicles during normal driving. The algorithm is based on a Kalman �lter supported
by a change detection algorithm to give reliable and accurate estimates of the so
called slip slope and, at the same time, to be able to follow abrupt changes quickly.

Results from extensive tests were presented. There is no doubt that two, probably
three, di�erent friction conditions can be classi�ed from an estimated slip slope. Es-
pecially changes in friction can be detected quite accurately. To get a more accurate
relationship between slip slope and friction, an additional friction sensor is needed
to replace the test brakes used here. The algorithm was designed to work during
normal driving and availability is restricted in that the algorithm is inactive during
sharp bends, braking, torque changes, skidding and when the engine is cold.

This work may be seen as a thorough veri�cation of the slip-based approach and
there remain a number of topics for further research before a possible implemen-
tation. Firstly, the availability can be increased. A dynamical engine model would
allow data immediately after a torque change to be used. With a better model for
the normal forces, sharper bends can be tolerated. An accelerometer and gyro, or
an image based sensor of velocity, are needed if information during skidding and
braking is to be included. Finally, measurements of engine and outdoor temperature
might be used to improve availability before the engine is warm-up. Secondly, the
bene�ts of increasing the estimation accuracy using additional hardware should be
studied. A gyro would increase the accuracy of curve radius during bends, which
a�ects one of the �lter inputs. Then, also the slip angle can be used during bends in
a similar way as the longitudinal slip. Very accurate friction estimation is probably
only possible during high excitation as braking and spinning, so available friction in-
formation from the ABS and a traction control system during high excitation should
be incorporated in an implementation.

The major problem with this approach if absolute and not only relative friction
information is needed, is the sensitivity to tire type and condition. Before imple-
mentation, the matter of self-calibration should be carefully investigated and the
suggestion presented herein evaluated on a long-term basis.
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A Modelling

The inputs to the �lter are the slip s and the friction coe�cient Ff=N . We will here
describe how the three quantities s; Ff ; N can be computed. Related formulas for
ground vehicles can be found in [20,8].

A.1 Slip bias

A �rst problem in computing the slip (1) is that the wheel radii are not the same,
so we cannot compute the wheel velocities directly. The reason why the wheel radii
di�er is a combination of di�erent load on each wheel, di�erent tire ination pressure,
perhaps even di�erently worn tires and other factors. Suppose we de�ne the relative
di�erence in wheel radius on both ends of the car by �w

rf = rr(1� �w): (A.1)

Here the indeces f and r stand for front and rear, respectively. The slip is then

s =
vf � vr
vr

=
vf
vr
� 1 =

!frf
!rrr

� 1 =
!f
!r

(1� �w)� 1: (A.2)

Since �w is unknown, we must con�ne with using the quantity sm de�ned by

sm =
!f
!r

� 1 (A.3)

as input to the �lter. Combining (A.3) and (A.2) gives

sm =
s+ �w
1� �w

= (s+ �w)(1 + �w + �2w + :::) � s+ �w: (A.4)

Since both s and �w are of the order of a few per mille and the presence of other
uncertainties in the model make that we can dismiss with higher order terms. This
means that the slip o�set � de�ned in (4) and the relative di�erence in �w de�ned
in (A.1) can be considered to be the same. That is, we have derived the source of
the observed o�set in slip measurement. The di�erence in wheel radii thus leads to
a (slowly time-varying) o�set in the slip measurements.
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A.2 Slip computation in curves

While driving in a curve, all four wheels have di�erent angular velocities. This is
easily seen from Figure A.1, where the di�erent wheel radii to the momentary pole
are de�ned.

x

y

B

L

R rr

R fr

R fl

R rl

Fig. A.1. Geometric relations for the wheel velocities during cornering.

By introducing the radius R = Rrr, simple geometry gives

Rrr=R

Rrl=R� L

Rfr =
p
R2 +B2

Rfr =
q
(R� L)2 +B2:

We can use geometry and the di�erence of the non-driven rear wheels to compute
the curve radius R. De�ne the angular velocity around the curve center as !z. Using
the relations

!rlrrl=!zRrl = !z(R� L)

!rrrrr=!zRrr = !zR (A.5)
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and assuming equal wheel radii, rrl = rrr = rfl = rfr = rw, give

R =
L

1� !rl
!rr

: (A.6)

Here it should be remarked that the curvature R�1 rather than R itself shall be
computed to allow straight ahead driving (R�1 = 0). The value of R is not very
accurate, since the denominator is as sensitive to di�erences in wheel radii as the
slip. A gyro would give a much more accurate value. A complication which is di�cult
to model is the asymmetric compression of the inner/outer wheels in curves.

The same relations can be used for computing the z-component of the angular
velocity of the car, !z. Solving (A.5) for !z gives

!z =
(!rl � !rr)rw

L
(A.7)

We will now compute the slip values on the right and left side. Here we will distin-
guish the di�erent front and rear wheel radii in order to get accurate expressions
on this very important parameter. We immediately get the velocity of the driven
wheels as

vfr =!z
p
R2 +B2

vfl=!z
q
(R� L)2 +B2: (A.8)

This can be written as

vfr =!rrrrr

s
1 +

B2

L2
(
!rl
!rr

� 1)2

vfl=!rlrrl

s
1 +

B2

L2
(1� !rr

!rl
)2: (A.9)

Notice that the geometry just introduces a correction factor in the velocity compu-
tations. The slip at each driven wheel is thus

sfr =
!frrfr
vfr

� 1 =
!frrfr

!rrrrr
q
1 + B2

L2 (
!rl
!rr

� 1)2
� 1

sfl=
!flrfl
vfl

� 1 =
!flrfl

!rlrrl
q
1 + B2

L2 (1� !rr
!rl

)2
� 1 (A.10)
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Because we only know the approximate value rw on the wheel radii, we use the
de�nition (4) and the ideas developed in subsection A.1. We then get

sfrm=
!fr

!rr
q
1 + B2

L2 (
!rl
!rr

� 1)2
� 1

sflm=
!fl

!rl
q
1 + B2

L2 (1� !rr
!rl

)2
� 1 (A.11)

where

sfrm� sfr + �r (A.12)

sflm� sfl + �l (A.13)

Again, we obtain the standard slip expression with a correction factor depending on
the geometry.

We have here assumed that the car is front wheel driven. However, similar expres-
sions for how to compensate for cornering are easily derived for rear wheel driven
cars as well.

A.3 Determining the traction force

The engine's torque T is computed from measured injection time and engine speed
using a tabulated model. Since the model was obtained in a test bench using static
engine load, we do not expect good accuracy when the measured quantities vary
quickly. Neglecting the inertia of the wheels and driving line, the traction force
is given by Ff = 0:5T i=r, where r is the wheel radius and i the gearing ratio
determined by comparing engine speed and wheel speed.

A.4 Normal forces during accelerations

Basically, the normal forces are given by the mass of the car and the position of the
center of gravity. Nevertheless, the normal forces are changed drastically during for
instance cornering. We will derive some relations, but we want to point out that some
of these only give marginal e�ects and there might be other ones which are more
important. However, most of the problems experienced in cornering vanished when
using the formulas presented below, although there is a tendency to overcompensate.
That is, the formulas give normal forces that are too large on the outer wheels.
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If the velocity is constant, the normal force is given by the car's mass and geometry.
A reasonable assumption is that the time constants of the accelerations are consid-
erably larger than for the dynamics of the springs. We can then express the normal
forces as static relations. With notation as in Figure A.2, the total normal force at
the two driven front wheels is

Nf = Mg
xb

xb + xf
:

If we take the e�ects of acceleration Fx and air drag Fa into account, we get

Nf =
Mgxb + Fxzg � Fa(zg � za)

xb + xf
: (A.14)

x

Mg

zg

za

b xf
Nf

Ff

Fa

Fx

Fig. A.2. Geometric relations of the normal force and the acceleration.

In curves we have the lateral acceleration Fy = mv2

R
, with notation as in Figure

A.1. This acceleration gives the contribution Fy
zg
yf

to the normal force on the outer

wheels of which the front wheel gets the contribution Fy
zg
yf

xb
xb+xf

, and we get

Nfl=
Mgxb + Fxzg � Fa(zg � za)� 2Fy

zg
yf
xb

2(xb + xf )
(A.15)

Nfr =
Mgxb + Fxzg � Fa(zg � za) + 2Fy

zg
yf
xb

2(xb + xf )
; (A.16)

where we can use

Fa= �cwAxv
2

Fx=Max

Fy =
m!2rrr

2
w

R
: (A.17)

The air drag Fa depends on the front area Ax, the air density � and the aerodynam-
ical coe�cient cw. Here R is given by (A.6). We have so far assumed a turn to the
left, but notice that these expression still holds for right turns (where R is negative).
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