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Motivation 2(17)

Loop closure detection is an important and difficult problem:

• Loop closure central in
SLAM.

• Range sensors are
common.

• Difficult in dynamic
environments due to
occlusion, different
view points, etc.
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Same location?

We need a method that is robust against misclassification
and invariant to rotation.
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We need a method that is robust against misclassification
and invariant to rotation.
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Our Approach 3(17)

• SICK 2D lasers used to collect suburban data.

• Geometric features are extracted from laser range scans.

• Weak classifiers based on absolute difference of features.

• Strong classifier learned from weak classifiers using AdaBoost.

A machine learning approach for the loop closure detection
problem using range sensors.
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Relation to Related Work 4(17)

• Raw laser sensor data instead of classic landmarks. Main
advantage is the general representation of the environment.

• Using submaps of consecutive laser scans, loop closure
detected 51% detection rate at 1% false alarm rate [Bosse,
2008].

• Laser features and AdaBoost used to detect humans in office
environment. Detection rates of over 90% [Arras, 2007]. Place
recognition performed indoors [Mozos, 2005].

Our results: 85% detection rate at 1% false alarm rate.
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Features 5(17)

We use 20 features, f1(Li), . . . , f20(Li), that describe different
geometric properties of a range scan Li, e.g:

• Area

• Distance

• Centroid

• Circularity

• Group

Invariant to rotation.
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Features 6(17)

Given two scans indexed m and n, we take the absolute difference

fi(Lm, Ln) = ‖fi(Lm)− fi(Ln)‖ .

The set of extracted features F is

F(Lm, Ln) = [f1(Lm, Ln), . . . , f20(Lm, Ln)] .

Thus, in the case of using two SICK lasers with 361 returns each:

The data dimension is reduced from 722 laser poins to just
20 features.
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Weak Classifiers 7(17)

We use weak classifiers that are defined as:

c(F(Lm, Ln), θ) =
{

1 if pfi < pλ
0 otherwise

with parameters θ = {i, p, λ}.

• i is index to the particular feature selected.

• λ is a threshold.

• p is polarity (p = ±1).
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Strong Classifier 8(17)

AdaBoost used to learn a strong classifier from the weak classifiers.
• Learning phase is an iterative procedure:

• Train for T iterations.
• Find weak classifier that best improves performance.
• Higher weight to misclassified data pairs.

• + Low sensitivity to overfitting.

• – Sensitive to noisy data and outliers.

• Input: N pre-labeled range data pairs.

• Output: nonlinear strong classifier c (F(Lm, Ln)).

We use c (F(Lm, Ln)) to detect loop closure in SLAM.
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Data used for training and experiments 9(17)

We used data from four outdoor urban/suburban data sets:
• Three data sets were used to find laser range pairs for training.

• Two from the University of Sydney area.
• Third from Kenmore, QLD. Publicly available on
radish.sourceforge.net.

• 800 range data pairs, 400 matching and 400 non-matching.

• Fourth data set used for SLAM experiment. Also from University
of Sydney area.
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Overfitting Tests 10(17)

We trained strong classifiers using the 800 range data pairs for
different values of T ranging from 1 to 1000.

• Strong classifier evaluated
with 10-fold cross validation.

• Error rates approx. constant
after 50 rounds, T = 50 used
experiments.

• Overfitting not a concern.
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Reciever Operating Characteristic - ROC 11(17)

Using the same 800 data pairs, Receiver Operating Characterisic
evaluated with 10-fold cross validation.

• 85% detection rate at
1% false alarm rate.

• Area under curve
approximately 0.99.
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Best features for Loop Closing 12(17)

• Best feature selected in each training iteration ⇒ most
significant features chosen first.

• Strong classifiers trained while removing features one at a time
⇒ affects FA and MD rates.

• Two most significant features

−50 −40 −30 −20 −10 0 10 20 30 40

−50

−40

−30

−20

−10

0

10

20

1. Close Area

−50 −40 −30 −20 −10 0 10 20 30 40

−50

−40

−30

−20

−10

0

10

20

2. Area

K. Granström, J. Callmer, F. Ramos, J. Nieto

Learning to Detect Loop Closure from Range Data, ICRA 2009
englogo



Best features for Loop Closing 12(17)

• Best feature selected in each training iteration ⇒ most
significant features chosen first.

• Strong classifiers trained while removing features one at a time
⇒ affects FA and MD rates.

• Two most significant features

−50 −40 −30 −20 −10 0 10 20 30 40

−50

−40

−30

−20

−10

0

10

20

1. Close Area

−50 −40 −30 −20 −10 0 10 20 30 40

−50

−40

−30

−20

−10

0

10

20

2. Area
K. Granström, J. Callmer, F. Ramos, J. Nieto

Learning to Detect Loop Closure from Range Data, ICRA 2009
englogo



SLAM experiment - platform 13(17)

The strong classifier was tested in an outdoor SLAM experiment.

• SICK laser range sensor.

• GPS
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SLAM experiment - estimation 14(17)

• Exactly Sparse Delayed-state Filter ⇒
trajectory based state vector containing a
history of robot poses.

• Each pose in the state vector is associated to
a laser scan ⇒ the map is represented by the
state vector and laser scans.

• ICP/CRF-match used for estimation of relative
pose.
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SLAM experiment - results 15(17)

Results

• 1800 robot poses.

• 85759 pairs tested.

• 100% D-rate,
0.05% FA-rate.

• All FA rejected
during scan
alignment.
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Conclusions 16(17)

A machine learning approach for the loop closure detection
problem using range sensors.

• 20 rotation invariant features combined with AdaBoost.

• Loop closure can be detected from arbitrary direction.

• High detection 85% for low false alarm 1%.

• SLAM experiment shows the method works in a real problem.
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The End 17(17)

Thank you for listening!

Any questions?
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