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ABSTRACT

A GM-PHD filter is used for pedestrian tracking in a crowd
surveillance application. The purpose is to keep track of the
different groups over time as well as to represent the shape of
the groups and the number of people within the groups. In-
put data to the GM-PHD filter are detections using a state of
the art algorithm applied to video frames from the PETS 2012
benchmark data. In a first step, the detections in the frames
are converted from image coordinates to world coordinates.
This implies that groups can be defined in physical units in
terms of distance in meters and speed differences in meters
per second. The GM-PHD filter is a Bayesian framework that
does not form tracks of individuals. Its output is well suited
for clustering of individuals into groups. The results demon-
strate that the GM-PHD filter has the capability of estimating
the correct number of groups with an accurate representation
of their sizes and shapes.

Index Terms— Multi target tracking, group target track-
ing, GM-PHD, groups.

1. INTRODUCTION

Multiple Target Tracking (MTT) in crowded scenes is a com-
plex and difficult task. A crucial part for MTT is person de-
tection and data association, where data association is the pro-
cesses of recognizing the same person, among other persons,
in consecutive frames. Typical techniques for single target
state estimation include Kalman filtering, extended Kalman
filtering and particle filtering, see e.g. [1–3]. Typical tech-
niques for data association for multiple targets include the
Joint Probabilistic Data Association Filter (JPDAF) and Multi
Hypothesis Tracking (MHT), see e.g. [2]. In crowded scenes
detections may not always be received from all persons in
all frames because of occlusion. Therefore fewer tracks may
be present than the actual number of persons. Moreover, the
tracks may easily switch identities. In crowded scenes group
tracking is often a better and more effective alternative since

the handling of the different objects (which are one or more
groups) can be made easier in the tracking algorithm and,
moreover, we do not always need to track and identify each
person in the groups. Group tracking has been investigated in
several studies and for several applications, see e.g. [4–10].

A related problem to group tracking is the tracking of so-
called extended targets. An extended target is a target that
potentially gives rise to more than one measurement per time
step. Solutions for multiple extended target tracking, e.g. [11–
14], can be used for multiple group tracking.

Approaches for solving group tracking can roughly be di-
vided into the following [2]:

1. Group tracking without individual tracks;

2. Group tracking with simplified individual tracks;

3. Individual target tracking which is supplemented by
group tracking.

The most suitable approach largely depends on the applica-
tion. In crowded scenes, with many potentially false detec-
tions and clutter, 1. or 2. would probably be the most practi-
cal approaches since tracks of all individuals within the group
will be difficult to initiate and maintain.

Group tracking uses the same processes as conventional
tracking methods, i.e. detection, association and prediction.
An additional step required for group tracking is the repre-
sentation of the group, in the form of shape and size. The
shape and size of the group can also be used to estimate the
behavior of the group. This is done in for example [15], using
clustering techniques, and in [16], using the PHD filter. The
behavior of the group is in these studies represented by group
activity (e.g. fights), merge and split.

In this paper we continue the work from [15] and inves-
tigate the advantage of the GM-PHD filter for handling, in
video surveillance, a varying number of groups over time.
The novelty of this paper is that we investigate the GM-PHD
filter together with the detection step (including the conver-
sion from image coordinates to world coordinates) and that



we test the approach on real video data. In this way we can
produce real detections from the video data to use as input
data to the GM-PDH filter, and thereby consider also the im-
portant detection uncertainties.

2. METHOD AND APPROACH

The proposed approach is outlined below.

1. For each image frame, pedestrians are detected by a
state of the art method [17, 18]. Each pedestrian is rep-
resented with a rectangle, and we pick the mid point
of the lower side as an estimate of each pedestrian’s
footprint. The output of the algorithm is a point pI in
image coordinates. Future work will study if a realistic
covariance matrix PI can be derived as well.

2. These points are transformed to world coordinates pW
with covariance PW . This assumes that the video cam-
era is placed on an elevated position, and that a terrain
elevation map is available for the scene.

3. The GM-PHD filter represents the multi target infor-
mation with a Gaussian Mixture (GM) approximation
of the PHD intensity vk(x) over the state space xk,

vk(x) =
∑
i

w
(i)
k N

(
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(i)
k , P

(i)
k

)
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In this paper we have xk = [pTk , v
T
k ]
T , where pk is the

position and vk is the velocity at time k. It is impor-
tant to note that the modes in the PHD intensity vk(x)
do not correspond to individuals, unlike classical filter-
bank target tracking methods, see e.g. [1]. Instead the
PHD intensity is defined by the property that the inte-
gral ∫

A,V

vk
(
[pT , vT ]T

)
dp dv (2)

is the expected number of pedestrians within the areaA
and velocity interval V . The GM-PHD filter approxi-
mates the Bayesian solution of this using the detections
pW in world coordinates as the only input.

Though we here study a single camera application, the
PHD filter framework can also handle multiple sen-
sors. Theory and application on PHD filters for mul-
tiple sensors are discussed and presented in for exam-
ple [19–21].

4. The final step is to apply a clustering algorithm to the
GM-PHD filter output. The GM representation is par-
ticularly well suited for clustering. The main idea in
the clustering for this application is to find level curves
separating the groups in both position and velocity. The
integral of the GM-PHD density within each contour
estimates the size of the group.

It should be stressed that all steps are within a sound Bayesian
framework, where the approximation in the algorithm can be
arbitrarily small by increasing the size of the GM. It is only
the final clustering step that is ad-hoc, but it has no memory.
The main challenge is the tuning part where the design pa-
rameters in the filter are chosen.

3. DETECTION OF PEDSTRIANS

3.1. Detection in Image Frames

For detection of pedestrians in the dataset the methods
and code presented by Piotr Dollár [17, 18] are used. The
detection algorithm uses integral channel features for ex-
tracting pedestrians from a single image, no prior infor-
mation is needed for the detections. Dollár concludes that
this method outperforms for instance the method based
on histogram of oriented gradients. The detection algo-
rithm was run with the settings: resize=1.2 ,fast=0,
modelNm=ChnFtrs01.

Partly due to the lack of prior knowledge the algorithm
has difficulties detecting pedestrians that are partly or fully
obscured by other objects. This gives rise to missed detec-
tions. This is handled by the PHD filter by the parameter pD,
which is assumed to be known for each scenario.

The algorithm returns a bounding box for each detected
pedestrian. It is not in the scope of this paper improving this
algorithm. It is only used for extracting measurement from
the dataset.

3.2. Camera Calibration

The data from PETS 2012 [22] includes a camera calibra-
tion file. The file contains different calibration parameters
that have been determined by using Tsai camera calibration
model [23]. These parameters can be used to transform image
coordinates (xf , yf ) to ground plane coordinates (x, y, z).

The first step is to transform the image coordinates
(xf , yf ) into distorted image coordinates (xd, yd).

xd = dx(xf − Cx)/sx, yd = dy(yf − Cy), (3)

where dx, dy are center to center distance between adjacent
sensor elements in x and y direction respectively, Cy, Cx are
coordinates of center of radial lens distortion and sx is a scale
factor compensating for uncertainty imperfections in hard-
ware timing for scanning and digitisation.

The second step is to transform the distorted coordinates
into undistorted image coordinates (xu, yu).

xu = xd(1 + κr2), yu = yd(1 + κr2). (4)

where r =
√
x2d + y2d and κ is the radial lens distortion coef-

ficient.



3.3. Conversion to Ground Plane

Tracking objects in the image plane is possible, but the draw-
back is that physical motion of pedestrians is harder to model
in the image plane. Further, clustering is easier to perform
in physical quantities. Instead of tracking in the image plane
the goal is to follow both individuals and groups in the ground
plane, i.e. in world coordinates. Hence the center point for the
lower edge of each bounding box is transformed into world
coordinates, which are used as measurements. This is easily
done by assuming that all targets move in the ground plane
defined by z(x, y) given by a terrain elevation map (TEM).

The transformation in general is given by the following
system of equations:[
xuzc/f yuzc/f zc

]T
= R

[
x y z(x, y)

]T
+ T, (5)

where f is the focal length, zc is the camera’s z-coordinate
which is unknown,R is a rotation matrix, and T = [Tx, Ty, Tz]

T

is a translation vector. The solution for a flat world z(x, y) = 0
is given by

x =
(Tx−xuTz/f)(yuR3,2/f−R2,2)−(xuR3,2/f−R1,2)(Ty−yuTz/f)

(xuR3,1/f−R1,1)(yuR3,2/f−R2,2)−(xuR3,2/f−R1,2)(yuR3,1/f−R2,1)
(6)

y =
(xuR3,1/f−R1,1)(Ty−yuTz/f)−(Tx−xuTz/f)(yuR3,1/f−R2,1)

(xuR3,1/f−R1,1)(yuR3,2/f−R2,2)−(xuR3,2/f−R1,2)(yuR3,1/f−R2,1)
. (7)

This solution provides a good initial value for non-flat worlds,
where a few gradient or Gauss-Newton steps should suffice to
improve the solution.

4. GAUSSIAN MIXTURE PROBABILITY
HYPOTHESIS DENSITY FILTER

The PHD filter is a rigorous Bayesian solution to the multi-
target tracking problem [24, 25]. Its Gaussian Mixture im-
plementation, called the GM-PHD filter, is presented in [26].
Below we give the modelling choice that were made in this
work. Refer to [26] for the PHD-filter equations and pseudo
code. The state vector x contains four states: position in both
x- and y-direction, and corresponding velocities. The sam-
pling time is Ts = 1/7.

4.1. Initialization

The GM-PHD intensity is initialized with J0 = 4 components

v0(x) =

J0∑
i=1
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)
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w
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0 = 1, (8b)

m
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]T
, (8c)

m
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0 =
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]T
, (8d)

m
(3)
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[
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]T
, (8e)

m
(4)
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[
−7.9414 4.3781 0 0

]T
, (8f)

P
(1)
0 = P

(2)
0 = P

(3)
0 = P

(4)
0 = diag (0.1, 0.1, 1, 1) . (8g)

4.2. Prediction

For surviving targets the probability of survival is set to
pS = 0.99. The motion of the targets is modelled according
to a constant velocity model. The uncertainty of the model
is modelled as white Gaussian noise with covariance matrix
Qk = Gkdiag (1, 1)G

T
k where

Gk =

[
T 2
s

2 0 Ts 0

0
T 2
s

2 0 Ts

]T
. (9)

The spontaneous birth PHD has Jγ = 3 components

γk(x) =

Jγ∑
i=1

w(i)
γ N

(
x;m(i)

γ , P (i)
γ

)
(10a)

w(1)
γ = 0.01, w(2)

γ = 0.001, w(3)
γ = 0.0001, (10b)

m(1)
γ =

[
−8 6 0 0

]T
(10c)

m(2)
γ =

[
−10 −15 0 0

]T
(10d)

m(3)
γ =

[
15 −8 0 0

]T
(10e)

P (1)
γ = P (2)

γ = P (3)
γ = diag (1, 1, 1, 1) . (10f)

This means that new targets are modelled as being likely to
appear at the places where the road intersects the camera’s
field of view. Target spawning is omitted in this work.

4.3. Measurement Update

The target detections are modelled as linear measurements
of the target position. The uncertainty of the measure-
ments is modelled as Gaussian white noise with covariance
R = diag (0.5, 0.5, 0.5, 0.5). The probability of detection is
set to pD = 0.7 and the parameter modelling the clutter is set
to κ = 10−8.

4.4. Merging and Pruning

Pruning and merging is employed to keep the number of PHD
components at a tractable level. After the measurement up-
date, components with weight w(i)

k < 10−5 are pruned. Next
components with Mahalanobis distance less than U = 2 from
eachother are merged. If there still are too many components
after merging only the Jmax = 100 components with the
highest weights are saved.

5. CLUSTERING OF GROUPS

After pruning and merging in the GM-PHD filter, the Gaus-
sian components are divided into groups. The division is done
by calculating the euclidean distance and difference in ve-
locity for all combinations of Gaussian components above a



given weight. If the distance and difference in velocity be-
tween two components are below some thresholds Tp = 2[m]
and Tv = 1[m/s], they are considered to be connected. All
components that in some way are connected are considered to
be a part of the same group.

For each group i the GM-PHD surface is calculated as

v
(i)
k|k(x) =

Ji,k|k∑
j=1

w
(i,j)
k|k N

(
x;m

(i,j)
k|k , P

(i,j)
k|k

)
, (11)

and intersected at a desired height, which in this study is 0.1.
This intersection is interpreted as an approximation of the
groups’ shapes and sizes. To estimate the number of mem-
bers in a group the corresponding weights are summed up
according to

N̂
(i)
k|k =

Ji,k∑
j=1

w
(i,j)
k|k . (12)

6. EXPERIMENTS

This section presents results from the experiments that have
been performed. The dataset used for the group tracking is
Flow Analysis and Event Recognition, marked 13:57 using
camera view 1, from the PETS 2012 dataset [22]. In the sce-
nario several groups of people move along a road from one
edge of the image to the other. All groups move in the same
direction (right to left in the image), with the exception of a
single person which is moving in the opposite direction.

Figure 1 displays the estimated shape of the groups and
the estimated number of individuals in respective group. The
estimated number of individuals in the whole scene and an es-
timated number of groups can be seen in Figure 2. The results
can also be seen in a video at youtu.be/aAz3poW49CU.

7. CONCLUSIONS

The GM-PHD filter provides a computational engine suitable
for post-processing of the information in image detections.
We applied a simple clustering algorithm to its output, which
can readily solve the group clustering in physical units. That
is, we can define a group as individuals closer to each other
than two meters and with a velocity within one meter per sec-
ond.

Further, the GM-PHD surface presents a nice visualisa-
tion of the groups’ estimated extensions, suitable as a high-
level presentation for manual operators in surveillance ap-
plications. It is also possible to predict groups that are ap-
proaching, and thus give an early warning and potential con-
flict alerts.

The low probability of detection implied by image detec-
tion algorithms is a slight problem for the GM-PHD filter. If
a group is obscured by another group for several frames the
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Fig. 1: (a,c,e,g) The scene with rectangles denoting detec-
tions in frame number 10, 40, 80 and 120. (b,d,f,h) Estimated
groups in frame number 10, 40, 80 and 120. The numbers
adjacent to the groups are the estimates of the numbers of in-
dividuals in the respective groups, the measurements are de-
noted with crosses, and the dashed lines are the camera’s field
of view, and the edges of the road, respectively.

group will disappear from the filter. Consequently, the es-
timated number of individuals is a rough approximate which
can be seen in Figure 2. However, this estimate is significantly
better than taking the number of detections as an estimate of
the number of individuals. Future work will develop refined
merging and pruning steps for the GM-PHD filter. Another
possible remedy is provided by the cardinalized GM-PHD fil-
ter.
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Fig. 2: Results from experiment. (a) Plot displaying total
number of estimated individuals in the scene compared to the
actual number of individuals and the number of detections.
(b) Plot displaying the estimated number of groups in image
over frames.
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