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Abstract—This paper considers extended targets that have
constant extension shapes, but generate measurements whose ap-
pearance can change abruptly. The problem is approached using
multiple measurement models, where each model corresponds to a
measurement appearance mode. Mode transitions are modeled as
dependent on the extended target kinematic state, and a multiple
model extended target PHD filter is used to handle multiple targets
with multiple appearance modes. The extended target tracking
is evaluated using real world data where a laser range sensor is
used to track multiple bicycles.

I. INTRODUCTION

Multiple target tracking can be defined as the processing of
multiple measurements obtained from multiple targets in order
to maintain estimates of the targets’ current states, see e.g. [1].
In this context an extended target is defined as a target that
potentially gives rise to more than one measurement per time
step.

In extended target tracking measurement modeling is of
high importance. Part of the measurement modeling is to
model the target’s extension, i.e. the shape and the size of
the target. The extension parameters are estimated using the
multiple measurements, and subsequently the appearance of
the measurements in the measurement space is important both
for the choice of shape model, and for the modeling of how the
measurements relate to the shape parameters. For example an
extended target with a rectangular extension will, if measured
by a laser range sensor, give rise to measurements whose
appearance is either line-shaped or L-shaped [2].

In this paper we consider tracking of extended targets
with a constant shape and an appearance in the measure-
ment space that can change significantly with the sensor to
target geometry. Specifically we are concerned with targets
whose measurement appearance changes abruptly, and we do
not consider targets whose appearance changes slowly w.r.t.
sample time. Thus while the target shape is constant, there
are several measurement appearance modes between which
the target switches. Depending on the appearance mode, the
different state variables may or may not be observable. The
different ways to model this type of extended target tracking
scenario are here divided into three complexity levels:

1: The most advanced approach is to construct a measure-
ment model that is capable of handling a broad variety of both
different shapes and different measurement appearances. While
such a model would be most general, it could also prove to be
overly computationally complex.

2: A simpler level of modeling is to assume a specific
geometric shape for the target, such as an ellipse, a line or

a rectangle. The measurement model must then include a
capability of distinguishing which appearance mode the current
measurements are in.

3: The simplest level of modeling is to not model the shape
at all, i.e. to only estimate the target’s kinematic properties.
This approach has lowest computational complexity and the
flexibility to track different type of targets is high because this
model, even though it is simplistic in terms of target shape,
is applicable (with varying degree of accuracy) to all of the
appearance modes.

In this paper the problem of extended target tracking under
multiple appearance modes is given a practical context by
considering bicycle tracking using a laser range sensor. The
shape of a bicycle does not change over time, and from a
bird’s-eye view the shape can be approximated as a thin stick.
Under an assumed stick shape, for each appearance mode the
measurement model, according to level 2 above, must describe
how the measurements relate to the position, the orientation
and the length of the stick.

Fig. 1 shows three examples of laser range measurements
caused by a bicycle. From the data in Fig. 1a the position,
orientation and length of a stick target is observable. In
comparison, the data in Fig. 1c is more suitable for a target
modeled without a shape (level 3 above), since the length is
not observable from this type of data, and the orientation can
only be observed using a sequence of measurement sets under
the assumption that the orientation and the target’s heading
coincides. The data in Fig. 1b resides somewhere in between
the stick model and the point model: it is difficult to determine
which is the most appropriate model. r Due to the difficulty of
deciding which appearance mode that laser range data is in,
in this paper we do not construct a single measurement model
that incorporates a measurement mode decision. Instead we use
multiple measurement models that correspond to the multiple
appearance modes. For bicycles measured by a laser sensor a
stick shape is assumed and two measurement models are used:
one line model that corresponds to Fig. 1a and one point model
that corresponds to Fig. 1c. The multiple measurement models
are used together with multiple motion models in a multiple
model (MM) framework, a model for state dependent mode
transitions is suggested, and multiple stick shaped extended
targets are handled with a MM extended target probability
hypothesis density (MM-ET-PHD) filter.

The paper is outlined as follows: Related work is described
in Section II, the MM-ET-PHD filter is described in Section
III, the multiple models are given in Section IV, results are
presented in Section V and Section VI concludes the paper.
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Fig. 1. Real world data examples from bicycle tracking using a laser range sensor, the target shape is modeled as a thin stick (gray). (a) The measurements
(red) are spread along the entire length of the target. (b) The measurements are spread in a way that makes it difficult to say whether or not they were caused
by the center of the target, or its entire length. (c) The measurements are spread around the center of the target. An extended target measurement model must
be able to handle both ambiguous cases (e.g. (b)) and unambiguous cases (e.g. (a) and (c)).

II. RELATED WORK

Spatial distribution models in extended target tracking
appeared in [3], [4]. Under this model each extended target
measurement is a random sample of a distribution that is
dependent on the extended target state. A number of different
extended target measurement models have been presented,
where the targets are modeled as sticks [4]–[6], circles [7],
ellipses [2], [8]–[14], rectangles [2], or general shapes [15],
[16].

To use multiple models, in the literature also called jump
Markov system models, have proven to be a powerful way
to model target tracking. The interactive multiple model IMM
algorithm [17] represents a good trade-off between compu-
tational complexity and tracking performance, and has been
shown to perform well for maneuvering single point target
tracking. Multiple models have been used in extended target
tracking for different types of motion [13], [18]. Multiple
measurement models were used for elliptical and rectangular
extended targets in [2], however it was assumed that a target
cannot transition between different shapes and therefore a MM
framework was not necessary.

Finite set statistics (FISST) [19] represents a rigorous
approach to multiple target tracking. It has led to the point
target probability hypothesis density (PHD) filter [20], with its
Gaussian mixture (GM) implementation [21]. An extension of
the PHD filter to handle extended targets of the type presented
in [3] is given in [22], with implementations in [23]–[25]. An
overview of MM-PHD filters is given in [26], and [27] is pointed
out as the preferred MM-PHD approach.

TABLE I. NOTATION

• Rn is the set of real n-vectors, Sn+ is the set of symmetric positive semi-definite
n× n-matrices, and N+ is the set of natural numbers.

• At discrete time tk , xk ∈ Rnx is the extended target kinematic state, ok ∈M ⊂
N+ is the extended target mode, and ξk = (xk , ok) ∈ X0 = Rnx ×M
is the augmented extended target state.

• N (x ; m,P ) denotes the probability density function (pdf) of a Gaussian
distribution defined over the vector x, with mean vectorm ∈ Rn and covariance
matrix P ∈ Sn+. The short hand notation N (x,Θ) is also used, where
Θ = (m,P ).

• Zk =
{
z
(j)
k

}Nz,k

j=1
is a measurement set at time tk , where z

(j)
k ∈ Rnz , ∀j.

• p∠Z denotes all the partitions p of the set Z. A partition p is a set of non-empty
subsets W called cells. The union of all cells W is equal to the set Z. The
cardinality of a cell W is denoted |W |.

• δi,j is the Kronecker delta, and ⊗ is the Kronecker product.

• f [g(x)] denotes the integral
∫
f(x)g(x)dx.

• sinc(t) = sin(t)/t is the sinc function.

• In is a n× n identity matrix and 0n is a n× n all zero matrix..

III. MM-ET-PHD

In this section we describe a MM extended target PHD
filter (MM-ET-PHD). The filter is an adaptation of the GM
implementation [23], [24] of the extended target PHD filter [22]
into the MM framework in [26], [27]. Due to space constraints
derivations are omitted. Notation is presented in Table I.

Given a predicted PHD Dk|k−1(ξ) and a set of measure-
ments Zk the posterior PHD is [22]

Dk|k(ξ) =LZ(ξ)Dk|k−1(ξ), (1a)

LZ (ξ) =
(

1− e−γ(ξ)
)
PD (ξ) + e−γ(ξ)PD (ξ) (1b)

×
∑

p∠Zk

ωp

∑
W∈p

γ(ξ)|W |

dW

∏
zk∈W

ϕzk
(ξ)

λkck (zk)
,

ωp =

∏
W∈p dW∑

p′∠Zk

∏
W ′∈p′ dW ′

, (1c)

dW =δ|W |,1 (1d)

+Dk|k−1

[
PD(ξ)γ(ξ)|W |e−γ(ξ)

∏
zk∈W

ϕzk
(ξ)

λkck (zk)

]
,

where PD(ξ) is the probability of detection, γ(ξ) is the
measurement rate, ϕzk

(ξ) is the likelihood function for a
single target generated measurement, and λkck (zk) is the
clutter likelihood. The measurements are modeled using a state
space model

zk = hk (ξk) + ek, (2)

where ek is zero mean Gaussian measurement noise, and the
measurement model h( · ) : X0 → Rnz is generally non-linear.

Given a posterior PHD Dk|k(ξ) the predicted PHD is [19]

Dk+1|k(ξ) =Db
k (ξ) +

∫
PS(ξ′)p(ξ|ξ′)Dk|k(ξ′)dξ′, (3)

where Db
k (ξ) is the birth PHD, PS(ξ) is the probability of tar-

get survival, and target spawning has been omitted for the sake
of simplicity, see [28] for work on extended target spawning.
The single target transition density p (ξk+1|ξk) describes the
time evolution of the extended target state from time tk to time
tk+1. The transition density can be decomposed as follows

p (ξk+1 |ξk ) =p (xk+1 |ok+1,xk, ok ) p (ok+1 |xk, ok ) (4a)
=p (xk+1 |ok+1,xk ) p (ok+1 |xk, ok ) , (4b)

where the second equality follows from a standard Markov-
type assumption. In much previous MM target tracking, see



e.g. [27], [29], it is assumed that the mode transition density
is independent of the kinematic state, i.e. it is assumed that
p (ok+1 |xk, ok ) = p (ok+1 |ok ).

This assumption holds when the different modes corre-
spond to different types of kinematic motion, e.g. probability of
a switch from CT motion to CV motion can reasonably be seen
as independent of the target kinematics. However, as will be
illustrated in Section IV, the assumption does not necessarily
hold when the modes also correspond to different measure-
ment models. Therefore the assumption p (ok+1 |xk, ok ) =
p (ok+1 |ok ) is relaxed in this paper. The mode transition
probabilities are organized in a transition probability matrix
Tk+1|k (xk), where the ith row and jth column correspond to
p (ok+1 = j |xk, ok = i ).

The time evolution of the target kinematics is described by
a state space motion model

xk+1 = fk (xk, ok+1) + wk+1, (5)

where wk is zero mean Gaussian process noise. The motion
model f( · ) : X0 → Rnx is generally non-linear, a thorough
overview of state transition functions is given in [30].

Assumptions are listed in Section III-A and the correction
and prediction are given in Section III-B and Section III-C,
respectively. Complexity reduction of the MM-ET-PHD filter is
discussed in Section III-D.

A. Assumptions

Assumption 1: The probability of detection, the probability
of survival and the measurement rate are constant, i.e.,

PD,k (ξ) = PD, PS,k (ξ) = PS , γ (ξ) = γ. (6)

These assumptions are not immediately necessary to obtain an
MM-ET-PHD filter, in this paper they are made for the sake of
simplicity. �

Assumption 2: For the mode transition density,

p (ok+1|xk, ok)N
(
xk ; Θ

(j)
k|k(ok)

)
(7)

≈p
(
ok+1

∣∣∣m(j)
k|k(ok), ok

)
N
(
xk ; Θ

(j)
k|k(ok)

)
is assumed to hold for all components j. The transition density
is abbreviated as p(j)

k+1|k (o|o′) = p
(
ok+1|m(j)

k|k(ok), ok

)
. Triv-

ially this assumption holds if the mode transition is indepen-
dent of the kinematic state. In general assumption 2 holds when
the transition density does not vary much in the uncertainty
zone of the kinematic state space, determined by P

(j)
k|k(ok).

This is true either when p (ok+1|xk, ok) is a sufficiently smooth
function w.r.t xk, or when the uncertainty zone is sufficiently
small. �

Assumption 3: Similarly to previous distribution mixture
implementations of the PHD filter, see e.g. [21], [23]–[25], the
birth PHD is assumed to be a GM,

Db
k (ξ) = πk (o)

Jk(o)∑
j=1

w
(j)
b,k (o)N

(
x ; Θ

(j)
b,k (o)

)
. (8)

The specific form used here was given in [27]. �

B. Correction

If the predicted PHD has the following GM representation

Dk|k−1 (ξ) =

Jk|k−1(o)∑
j=1

w
(j)
k|k−1 (o)N

(
x ; Θ

(j)
k|k−1 (o)

)
, (9)

the posterior intensity has the following GM representation

Dk|k (ξ) = (1− PD)Dk|k−1 (ξ) (10a)

+
∑

p∠Zk

∑
W∈p

Dz
k|k−1 (ξ,W )

Dz
k|k−1 (ξ,W ) =

Jk|k−1(o)∑
j=1

w
W,(j)
k|k (o)N

(
x ; Θ

W,(j)
k|k (o)

)
.

(10b)

Measurement set partitions p are obtained using the Distance
Partition algorithm from [23], [24]. The corrected Gaussian
parameters are

Θ
W,(j)
k|k (o) =

(
m
W,(j)
k|k (o) , P

W,(j)
k|k (o)

)
(11a)

m
W,(j)
k|k (o) =m

(j)
k|k−1 (o) +K

W,(j)
k (o)ε

(j)
W (o) (11b)

P
W,(j)
k|k (o) =

(
I−KW,(j)

k (o)H
(j)
k (o)

)
P

(j)
k|k−1(o) (11c)

ε
(j)
W (o) =zW − ẑ

(j)
W (o) (11d)

S
W,(j)
k (o) =H

(j)
k (o)P

(j)
k|k−1(o)

(
H

(j)
k (o)

)T

+Rk(o) (11e)

K
W,(j)
k (o) =P

(j)
k|k−1(o)

(
H

(j)
k (o)

)T (
S
W,(j)
k (o)

)−1

(11f)

where zW is a vertical vectorial concatenation of the mea-
surements in the cell, ẑ(j)

W (o) is the corresponding predicted
measurement and H(j)

k (o) is the Jacobian of ẑ(j)
W (o) w.r.t. xk,

evaluated at m(j)
k|k−1(o). The corrected weights are

w
W,(j)
k|k (o) =

ωp

dW
ΓWΦ

(j)
W (o)w

(j)
k|k−1(o), (12a)

ΓW =e−γγ|W |PD (12b)

Φ
(j)
W (o) =ϕ

(j)
W (o)

∏
zk∈W

1

λkck (zk)
(12c)

dW =δ|W |,1 +
∑
o

Jk|k−1(o)∑
`=1

ΓWΦ
(`)
W (o)w

(`)
k|k−1(o) (12d)

where ωp is given in (1c) and ϕ
(j)
W (o) is the measurement

likelihood of W w.r.t. the jth component.

C. Prediction

If the posterior PHD has the following GM representation

Dk|k (ξ) =

Jk|k(o)∑
j=1

w
(j)
k|k (o)N

(
x ; Θ

(j)
k|k (o)

)
, (13)

the predicted PHD has the following GM representation [27]

Dk+1|k (ξ) = Db
k (ξ) +Df

k+1|k (ξ) . (14)



The birth PHD was given in assumption 3, and the prediction
of existing targets is a GM

Df
k+1|k (ξ) =

∑
o′

Jk|k(o′)∑
j=1

w
(j)
k+1|k (o, o′)N

(
x ; Θ

(j)
k+1|k (o, o′)

)
(15a)

w
(j)
k+1|k (o, o′) =PSp

(j)
k+1|k (o|o′)w(j)

k|k (o′) (15b)

Θ
(j)
k+1|k (o, o′) =

(
m

(j)
k+1|k (o, o′) , P

(j)
k+1|k (o, o′)

)
(15c)

m
(j)
k+1|k (o, o′) =fk

(
m

(j)
k|k (o′) , o

)
(15d)

P
(j)
k+1|k (o, o′) =F

(j)
k (o)P

(j)
k|k (o′)

(
F

(j)
k (o)

)T

+Qk+1 (o) .

(15e)

where p
(j)
k+1|k (o|o′) is the transition probability computed

under Assumption 2, and F
(j)
k (o) is the Jacobian of fk ( · )

w.r.t. xk, evaluated at m(j)
k|k(o′).

D. Complexity reduction

Just as in the other distribution mixture implementations of
the PHD filter [21], [23]–[25], [27], the number of components
in the PHD intensity increases after prediction and correction.
This problem can be alleviated by using mixture reduction
procedures, like pruning and merging. In this paper, after each
PHD correction, components with weight w(j)

k|k(o) < τ are
pruned. After pruning, components are merged using a merging
algorithm similar to the one suggested in [21, Table II]. The
Kullback-Leibler difference, see e.g. [31, Equation (17)], is
used as merging criterion. Merging is only performed within
the modes, i.e. Gaussian components are not merged if they
have different modes.

IV. MULTIPLE MODEL FRAMEWORK FOR BICYCLE
TRACKING USING LASER DATA

In this section we describe the multiple models that are
used for bicycle tracking using laser data. The kinematic state
vector xk is chosen to be

xk = [xk, yk, vk, φk, ωk]
T
, (16)

where (xk, yk) is the position in Cartesian coordinates, vk
is the speed, φk is the heading and ωk is the turn-rate. For
sake of simplicity it is assumed that all bicycles are of equal
length `, and it is assumed that target’s heading and the
stick’s orientation coincides. It is straightforward to adapt the
models below to allow for estimation of the bike length. Mode
transitions are described in Section IV-A, and two different
types of motion modes are considered in Section IV-B. Motion
along a fixed heading at constant speed can be described by a
constant velocity model (CV) and a turn can be described by a
coordinated turn model (CT). Furthermore two different types
of measurement models, a point (P) and a line (L) model, are
used to describe the relation between the measurements and
the state variable, see Section IV-C. This gives four different
modes in total (i.e. M = {1, 2, 3, 4}):

1) CT motion, P measurements (CTP),
2) CV motion, P measurements (CVP),
3) CT motion, L measurements (CTL),
4) CV motion, L measurements (CVL).
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Fig. 2. Illustration of sensor to target geometry. The stick target (gray) has
center position (x, y) = (5, 2) and heading φ. The point mode is most likely
when cos(β) ≈ ±1, and the line mode is most likely when cos(β) ≈ 0.

A. Mode transitions

The modes follow a discrete Markov chain, where the
transition probability matrix is decomposed as follows

Tk+1|k (xk) = TMeas
k+1|k(xk)⊗ TMotion

k+1|k . (17)

The transitions between CT and CV motion are modeled as
independent of the kinematic state, something that holds in
most cases. The probability of staying in the same motion
mode is here given by Psame, which gives the following
transition probability matrix for the motion modes,

TMotion
k+1|k =

[
Psame 1− Psame

1− Psame Psame

]
. (18)

In this paper, the transitions between P and L measurement
modes are modeled as dependent on the kinematic state. The
transition probability matrix for the measurement modes is

TMeas
k+1|k(xk) =

[
Ppoint(xk) 1− Ppoint(xk)
Ppoint(xk) 1− Ppoint(xk)

]
, (19)

where the probability of transition to, or staying in, the point
measurement mode is given by a kinematic state dependent
probability Ppoint(xk).

The intuition behind this model is illustrated in Fig. 2. If
cos(β) ≈ ±1 then the bicycle’s heading is lined up with the
sensor, and in this case the probability that the bicycle will
generate point measurements in the next time-step is larger.
If cos(β) ≈ 0 the bicycle is perpendicular to the vector from
the sensor to the center point, in which case the probability
that the bicycle will generate point measurements in the next
time-step is smaller. Thus, the probability of transition to, or
staying in, the point mode can be seen as a function of cos(β).
With simple trigonometry it is easy to show β = φ−α, which
clearly is a function of the kinematic state x. Specifically we
use the following model for Ppoint(xk),

Ppoint(xk) =
1 + (1− 2Pmin) cos (2 (φk − αk))

2
(20)

where αk is the angle from the sensor to the Cartesian
position (xk, yk), and Pmin ∈ (0 , 0.5) is used to ensure that
Ppoint(xk) ∈ [Pmin , 1− Pmin].

B. Kinematic state motion models

The time evolution of the kinematic state is modeled as

p (xk+1 |ok+1,xk ) (21)
= N (xk+1 ; fk (xk, ok+1) , Qk+1(ok+1)) .



For the four modes listed above we have
fk (xk, ok+1 = 1, 3) = fCT (xk) and fk (xk, ok+1 = 2, 4) =
fCV (xk). A constant turn-rate motion model for the state
vector (16) is [30, Eq. (75)]

fCT (xk) =


xk + T vk sinc

(
Tωk

2

)
cos
(
φk + Tωk

2

)
yk + T vk sinc

(
Tωk

2

)
sin
(
φk + Tωk

2

)
vk

φk + Tωk
ωk

 (22)

At a turn-rate of zero the coordinated turn model can be
reduced to the following constant velocity motion model,

fCV (xk) =


xk + T vk cos (φk)
yk + T vk sin (φk)

vk
φk
0

 . (23)

Here the turn-rate ωk is set to zero, a procedure that avoids
having kinematic state vectors with unequal dimensions for the
different motion modes. State vectors with unequal dimensions
may cause problems, e.g. the mixing step of the IMM algorithm
suffers from a bias when the modes have state vectors with
unequal dimension, a problems which is solved in [32]. Since
there is no mixing in the MM-ET-PHD filter it does not suffer
from this bias. It remains within future work to investigate if
the motion model (23) can be improved.

The process noise covariance matrix is [30, Equation (76)]

Qk(ok) = blkdiag

(
02 , T

2σ2
v ,

[
T 3σ2

ω/3 T 2σ2
ω/2

T 2σ2
ω/2 T 2σ2

ω

])
.

(24)

C. Measurement models

This section describes two measurement likelihood models∏
zk∈W

ϕzk
(ξ) = p(W |ξ) (25)

that are applicable to bicycle tracking using laser range sensors.

1) Point measurement model: The point measurement
model corresponds to when the bicycle is lined up with the
measurement bearing, i.e. either the front or the rear wheel is
pointing approximately directly at the sensor. This corresponds
to cos(β) ≈ ±1 in Fig. 2. In this case measurements are
typically caused by the feet of the rider. Because the pedals
are located close to the lengthwise middle point of a bicycle,
in the point measurement model the likelihood is modeled as
follows,

p (W |x, o = 1, 2) =

|W |∏
j=1

N
(
z(j) ; Hx, σ2

P I2

)
(26a)

H =

[
1 0 0 0 0
0 1 0 0 0

]
(26b)

The product of Gaussians can be rewritten as

p (W |x, o = 1, 2) =N
(
zW ; HWx, σ2

P I2|W |
)
, (27)

HW =[HT, · · · , HT︸ ︷︷ ︸
|W | times

]T.

TABLE II. LINE MEASUREMENT MODEL ASSOCIATION

1: Input: Cell W , set of MGPs and kinematic estimate x̂
2: Transform measurements in cell using function outlined below.
3: Transform each MGP ẑ(i) to bicycle coordinate system.
4: Calculate measurement to MGP distances as |z(j)

x − ẑ(i)
x |.

5: Associate each measurement to the closest MGP.
6: Output: Associations {j , ρ(j)}.

Measurement transformation function
1: Input: Cell W =

{
z(j)

}
, estimate x̂

2: Transform to bicycle coordinate system: z(j) ← R(φ̂)
(
z(j) − [x̂ ŷ]T

)
, ∀j,

where R(φ) is a 2D rotation matrix.
3: Shift x-coordinates: z(j)

x ← z(j)
x −minj z(j)

x , ∀j
4: Rescale x-coordinates: z(j)

x ← `z(j)
x /maxj z(j)

x , ∀j
5: Shift x-coordinates: z(j)

x ← z(j)
x − `/2, ∀j

6: Output: Transformed cell

Thus, for the point measurement model the predicted measure-
ment, Jacobian and covariance, cf. Section III-B, are ẑ

(j)
W (o) =

HWm
(j)
k|k−1(o), H(j)

k (o) = HW and Rk(o) = σ2
P I2|W |,

respectively.

2) Line measurement model: The line measurement model
corresponds to when the bicycle’s orientation is such that
either the left or right side of the bicycle can bee seen.
This corresponds to cos(β) ≈ 0 in Fig. 2. In this case the
measurements in the cell are spread along the entire length of
the bicycle: from the rear wheel to the front wheel. In previous
work [3]–[5] where the extended target has been model as stick
shaped, the measurements have been assumed to be spread
uniformly along the length of the stick. For example each
measurement can be seen as a uniformly distributed random
sample along the stick, with added Gaussian noise,

p (W |x) =
∏
z∈W

p (z|y) p (y|x) (28a)

=
∏
z∈W
N (z;y, R)U (y;x) . (28b)

Here the set of measurements is instead modeled as being
caused by a set of measurement generating points (MGP)
ẑ(i)(x) located along the stick shape. Given a predicted target
kinematics estimate x̂k|k−1, computing the predicted location
of these MGPs is easy using line intersection. A set of measure-
ment to MGP associations {j , ρ(j)} are obtained using the
method outlined in Table II. Note that multiple measurements
can be associated to the same MGP, and in a sense each MGP
can be interpreted as an extended target without a shape model.
The likelihood is

p (W |x, o = 3, 4) =

|W |∏
j=1

N
(
z

(j)
k ; ẑ(ρ(j))(x), σ2

LI2

)
(29a)

=N
(
zW ; ẑW (x), σ2

LI2|W |
)
, (29b)

where ẑW (x) is a vertical vectorial concatenation of the
MGPs in the order specified by the association. For the line
measurement model the predicted measurement and covariance
are ẑW

(
m

(j)
k|k−1(o)

)
and Rk(o) = σ2

LI2|W |, respectively. The

Jacobian H
(j)
k (o) can be computed analytically, however the

tedious details are omitted.



V. RESULTS

The implemented MM-ET-PHD filter has been evaluated
using several different data sets that have been collected at the
Linköping University campus over the course of two years. In
this section we present results from three of the data sets: two
with a single target in Section V-A, and one with two targets in
Section V-B. The results obtained for these three data sets are
representative of the overall performance of the MM-ET-PHD
filter, and also highlight interesting aspects of the estimation.
The measurements were acquired using a SICK LMS laser range
sensor that measures range every 0.5◦ over a 180◦ surveillance
area. The sensor was elevated approximately 40 cm above
the ground, which corresponds to approximately the same
height as distance sensors usually are mounted in standard
passenger cars. The measurements were converted to (x, y)
measurements using a polar to Cartesian transformation, and
to remove measurements caused by the stationary background
only ranges shorter than rmaxm were used. Because the data
sets were collected at different occasions different values for
rmax between 10m and 15m had to be used.

In the MM-ET-PHD implementation the constant length of
the bicycles was set to ` = 1.75. The motion model parameters
were set to PS = 0.99, Psame = 0.90, Pmin = 0.01, σv = 0.2,
σω = 0.2, and the measurement model parameters were set
to PD = 0.99, γ = 20, λkck(zk) = 2π−1r−2

max, σP = 0.1,
σL = 0.075. For pruning a threshold τ = 10−3 was used, for
merging a threshold U = 1 was used.

Similarly to [24], [25] the birth PHD contains Gaussian
components spread uniformly along the edge of the surveil-
lance area. Because of the non-linearity of the motion and
measurement models the birth PHD must not contain to few
Gaussian components. In the implementation, for each mode,
there were 20 components along the semi-circular edge, and
14 components along the x-axis. The positions of the birth
components were chosen such that the front end of the stick
estimate is just inside the surveillance area.

There is no ground truth available for the data sets and thus
standard performance measures like the OSPA or the RMSE
cannot be used, instead the results are evaluated using visual
inspection of the tracking results. The proposed method to use
multiple measurement models is compared to using only the
single models, i.e. either only the point model or only the line
model.

A. Single Target

In the two single target data sets the target transitions from
CV motion to a CT maneuver at a position in the state space
that means that it also transitions from the L mode to the P
mode. Assume that the sensor is mounted in the grille of a
standard passenger car driving straight on a road. Then the
first experiment in Fig. 3 corresponds to a bike coming from
the right, turning abruptly and then moving towards the car.
The second experiment in Fig. 4 corresponds to a bike coming
from the right, turning away from the car and then biking in
the same direction as the car. The data is shown in Fig. 3a
and 4a, and tracking results using the proposed MM-ET-PHD
filter are shown in Fig. 3b and 4b. Overall the measurement
modes of the extracted targets correspond to expectations; the
point measurement mode is typically used when the bicycle is
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Fig. 3. Bicycle tracking results, the estimates are color coded according to the
different modes: red for CTP, green for CVP, cyan for CTL and purple for CVL.
(a) Measurements. (b) Tracking results using multiple measurement models.
(c), (d) and (e): Comparison of tracking results during maneuver for multiple
measurements models, the line measurement model, and point measurement
model, respectively.
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Fig. 4. Bicycle tracking results, the estimates are color coded according to the
different modes: red for CTP, green for CVP, cyan for CTL and purple for CVL.
(a) Measurements. (b) Tracking results using multiple measurement models.
(c), (d) and (e): Comparison of tracking results during maneuver for multiple
measurements models, the line measurement model, and point measurement
model, respectively.

lined up with the bearing between the sensor and the bicycle’s
center point.

Comparisons of the MM results and results using the
single measurement models are given in Fig. 3c to 3e, and
Fig. 4c to 4e. It is evident that when using only the line
measurement model, the heading is not estimated correctly
during the maneuver. Note that since the MM chooses the point
mode during the turn, there is no obvious difference between
the MM and the point model during the maneuver.



B. Multiple Targets

In the multiple target data set two bicycles move around
inside the surveillance area, and there are eight different oc-
casions at which a target either enters or exits the surveillance
area. The data is shown in Fig. 5a, and tracking results using
the proposed MM-ET-PHD filter are shown in Fig. 5b. As
in the single target experiments there is a reasonable overall
correspondence between the extracted targets’ modes and what
can be expected from a target given the kinematic state. The
L measurement mode is much more common than the P
mode, because in this data the bicycles rarely move straight
towards/away from the sensor.

In Fig. 5c a subset of the data is shown, and a comparison
for this data between the result of the MM and the results using
the single measurement models is given in Fig. 5d to 5f. When
the target enters the surveillance area, the heading estimate has
a larger error when only the P measurement model is used.
There are two additional time steps for which the P model
heading estimates are incorrect, around (x, y) = (1, 2.5) in
Fig. 5f. For remaining time steps the P model gives results
comparable to the MM results. The problems for the P model
are related to the fact that the heading is not observable from
a single set of measurements, but has to be estimated using a
time sequence of measurement sets. If the sensor is mounted
on a moving platform, e.g. a car driving through urban traffic,
correct initial estimates are of increasing importance for the
understanding of a multiple extended target scene.

C. Summary

The presented results show that using only the line mea-
surement model does not give sufficiently good results in all
situations. Using only the point measurement model works
in most cases, however when the measurements are “line-
shaped”, the line measurement model (typically) gives a better
heading estimate, especially when the target enters the surveil-
lance area. These observations are pursuant to the statements
about the three modeling levels introduced in Section I. The
amount of information present in the measurements is crucial
for the observability of the target state, especially the extension
parameters. The point measurement model is applicable in all
appearance modes and will most often produce a reasonable
estimate of the target’s position and heading. However, if the
measurements are line-shaped, and hence the stick parameters
are observable, this extra information can improve the esti-
mates of other states too. On the contrary, if the stick extension
is not observable and only the line measurement model is used
the estimates of other state variables, such as the heading, will
also suffer.

VI. CONCLUSIONS AND FUTURE WORK

The use of multiple measurement models to track extended
targets whose appearances alter abruptly is studied in this
publication. The appearance of extended target measurements
can change with the sensor to target geometry. When using
different measurement models, the one which fits best to the
measurement data should be used because the observability of
the state variables is maximized in that way. If the target’s
extension parameters are observable in the data, the extension
should be estimated. However, if the extension parameters are
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Fig. 5. Bicycle tracking results, the estimates are color coded according to the
different modes: red for CTP, green for CVP, cyan for CTL and purple for CVL.
(a) Measurements. (b) Tracking results using multiple measurement models.
(d), (e) and (f): Comparison of tracking results during maneuver for multiple
measurements models, the line measurement model, and point measurement
model, respectively.

not observable a simplified measurement model should be used
to update only the observable states.

In this work the multiple measurement model has been
exemplified using laser data generated from bicycles maneu-
vering in front of the sensor. Under an assumed constant length
two measurement models are studied, one stick model and one



point model. In future work estimation of the length of the
bicycles will be added. In this case the appearance modes are
of even higher importance, since the length is only observable
from line measurements, and not from point measurements.
A comparison to other measurement models for stick shaped
extended targets would be interesting.
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