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Abstract—Common data preprocessing routines often intro-
duce considerable flaws in laser-based tracking of extended
objects. As an alternative, extended target tracking methods, such
as the Gamma-Gaussian-Inverse Wishart (GGIW) probability
hypothesis density (PHD) filter, work directly on raw data. In
this paper, the GGIW-PHD filter is applied to real world traffic
scenarios. To cope with the large amount of data, a mixture
clustering approach which reduces the combinatorial complexity
and computation time is proposed. The effective segmentation of
raw measurements with respect to spatial distribution and motion
is demonstrated and evaluated on two different applications:
pedestrian tracking from a vehicle and intersection surveillance.

I. INTRODUCTION

One of the major challenges in laser-based tracking for traf-
fic perception is the deviation from the point target assumption.
That is, the high angular resolution of the sensors usually
yields a large amount of range measurements for individual
objects and tracks can thus not be updated with a single
measurement vector without preprocessing routines.

In such preprocessing steps, relevant objects are commonly
detected using spatial segmentation and clustering [1]–[3]
as well as shape fitting [4] or feature extraction [5] algo-
rithms. However, these algorithms are heavily dependent on
parametrization and suffer from over- or under-segmentation.
Especially in changing environments, or in case of detecting
different types of objects, it is nearly impossible to determine
appropriate parameters. Since object tracking is directly influ-
enced by the received data, errors during preprocessing heavily
affect its reliability and accuracy.

To overcome the mentioned shortcomings, we suggest to
use extended target tracking methods that work directly on raw
data. The obtained tracks can either be used as output directly
or serve as an improved input to classical tracking approaches.
For instance, a separation between moving and stationary
measurements can be used to select relevant readings for the
subsequent tracking system. Also, the extended targets provide
a partitioning of the measurements with additional velocity
and orientation information which facilitates subsequent shape
fitting or feature extraction.

The Gamma-Gaussian-Inverse Wishart (GGIW) probability
hypothesis density (PHD) filter is a recently developed ex-

tended target PHD-filter which estimates an object’s kinematic
state, its extent and the number of measurements that it
generates. The filter is an extension of the Gaussian-Inverse
Wishart (GIW) -PHD filter [6], [7] which assumes a constant
or state-dependent number of measurements. The additional
measurement rate estimation in the GGIW-PHD-filter is done
using the approach presented in [8].

In this work, the GGIW-PHD filter is applied for the first
time to data from complex real-world scenarios with a large
amount of range readings. In particular, the filter is tested on
laser range finder data from two scenarios: a parking lot scene
where the goal is to track moving pedestrians using multiple
laser range finders on a stationary vehicle and an intersection
scenario where several scanners where mounted above the
intersection and provide a bird’s-eye view. Here, the goal is
to track all road users at the intersection.

Due to the large amount of measurements and the accom-
panying complexity, the update routine of the standard GGIW-
PHD-filter requires considerable computation time. We thus
propose a mixture clustering method to adapt the filter to
real-world requirements, to improve filter performance and to
significantly reduce computational costs.

The remainder of the paper is organized as follows: Section
II presents the employed GGIW-PHD filter and Section III
presents the proposed clustering approach to improve filter-
ing performance. Experimental results are then discussed in
Section IV and Section V concludes the paper.

II. THE GGIW-PHD FILTER

This section is intended to give an overview of the GGIW-
PHD-filtering principle and presents modeling assumptions as
well as prediction and update routines. Filter derivations are
omitted due to page number constraints.

A. Models

1) Object State: The GGIW-PHD filter estimates an object’s
kinematic state, its extent and the number of measurements
that it generates. The kinematic state in d-dimensional space
is assumed to be distributed normally with mean xk =
[pk, vk]

T ∈ R2d. It contains the position pk ∈ Rd and
the velocity vk ∈ Rd of the object. Furthermore, an object



generates measurements according to a multivariate normal
distribution centered at the object position with unknown
covariance matrix Xk ∈ Sd++ [9], [10], where Sn++ denotes
the set of symmetric positive definite n × n-matrices. This
design choice implies that the object has an elliptical shape.
The amount of measurements that originate from the object
is assumed to follow a Poisson distribution with an expected
number of measurements γk > 0. The resulting state ξk of an
extended object is thus given by

ξk , (γk,xk, Xk) . (1)

To estimate the components of the extended target state in
a Bayesian framework, the joint probability density of the
extended target state is given by the respective conjugate
priors, in this case by a gamma-Gaussian-inverse Wishart
distribution [8], [9]

p
(
ξk
∣∣Zk ) =p

(
γk
∣∣Zk ) p (xk ∣∣Xk,Z

k
)
p
(
Xk

∣∣Zk ) (2a)

=G
(
γk ; αk|k, βk|k

)
N
(
xk ; mk|k, Pk|k ⊗Xk

)
× IWd

(
Xk ; vk|k, Vk|k

)
. (2b)

which is conditioned on the previous sets of measurements
Zk. Here, the Gamma probability distribution over the scalar
γ > 0 is given by

G (γ ; α, β) = βαΓ(α)−1γα−1e−βγ , (3)

where Γ(·) is the gamma function, α > 0 denotes the
scalar shape parameter, and β > 0 is the scalar inverse
scale parameter. Following [11, Definition 3.4.1], the inverse
Wishart density function over the matrix X ∈ Sd++ is given
by

IWd (X ; v, V ) =
2−

v−d−1
2 |V | v−d−1

2

Γd
(
v−d−1

2

)
|X| v2

etr

(
−1

2
X−1V

)
,

(4)

where v > 2d are the scalar degrees of freedom and V ∈ Sd++

is the parameter matrix. Moreover, etr(·) = exp (Tr(·)) is
the exponential of the matrix trace, ⊗ denotes the Kronecker
product, and Γd (·) denotes the multivariate gamma function.
For notational convenience, (2) is abbreviated by

p
(
ξk
∣∣Zk ) = GGIW

(
ξk ; ζk|k

)
, (5)

in the following. The parameters of the GGIW density are given
by ζk|k =

{
αk|k, βk|k,mk|k, Pk|k, vk|k, Vk|k

}
.

Note that the measurement rate is assumed to be inde-
pendent of the object’s kinematic and extension state in (2).
However, the number of measurements per object definitely
depends on the size and the distance of the object for most
sensors in reality. This dependence is not modeled here, but
the variance of the gamma distribution is sufficient to represent
the variation of the number of measurements over time.

2) Process Models: The object’s kinematic state is modeled
using the process model [9]

xk+1 =
(
Fk+1|k ⊗ Id

)
xk + wk+1, (6)

where Id is a d×d identity matrix. Furthermore, wk+1 denotes
the process noise which is a zero mean Gaussian distribution
with covariance ∆k+1|k = Qk+1|k ⊗Xk+1 where [9]

Qk+1|k = Σ2
(

1− e−2Ts/θ
)

diag ([0 1]) , (7)

Σ is the standard deviation of the velocity, Ts is the sampling
time, and the maneuver correlation time is denoted by θ. The
process matrix Fk+1|k is given by [9]

Fk+1|k =

[
1 Ts
0 1

]
. (8)

While the kinematic state changes over time, the measurement
rate as well as the extension of the object are assumed to be
approximately time-invariant.

3) Measurement Model: The measurement process is mod-
eled using the linear measurement model [9]

zk = (Hk ⊗ Id)xk + ek, (9)

where Hk = [1 0] and the measurement noise ek follows a
zero-mean Gaussian distribution whose covariance is given by
the object’s extension matrix Xk. Clutter measurements are
included as Poisson process with intensity βFA,k and uniform
spatial distribution over the surveillance area volume V (A).

B. Prediction

The posterior PHD Dk|k(·) at time k is given by a mixture
of GGIW distributions

Dk|k (ξk) =

Jk|k∑
j=1

w
(j)
k|kGGIW

(
ξk ; ζ

(j)
k|k

)
(10)

with w(j)
k|k and ζ(j)k|k denoting the weight and the GGIW density

parameters of component j, respectively. Jk|k represents the
number of GGIW components and the expected amount of
extended objects is given by

∑Jk|k
j=1 w

(j)
k|k.

The prior at time step k + 1 is obtained by prediction of
(10) which again results in a GGIW mixture

Dk+1|k (ξk+1) = Db
k+1(ξk+1) +Ds

k+1|k (ξk+1) . (11)

It is composed of the intensity of new-born objects
Db
k+1(ξk+1) and the intensity of persisting objects

Ds
k+1|k (ξk+1). New-born objects are modeled by the

following PHD intensity, using a uniform birth intensity for
the position [12],

Db
k(ξk) =w

(b)
k U (pk)N

(
vk ; m

(b)
k , P

(b)
k ⊗Xk

)
× G

(
γk ; α

(b)
k , β

(b)
k

)
IWd

(
Xk ; v

(b)
k , V

(b)
k

)
.

(12)

The respective birth parameters have to be chosen in depen-
dence on the application.



The PHD intensity of the persisting objects is given by

Ds
k+1|k (ξk+1) =

Jk|k∑
j=1

w
(j)
k+1|kGGIW

(
ξk+1 ; ζ

(j)
k+1|k

)
, (13)

where the prior component weights w
(j)
k+1|k = PSw

(j)
k|k are

reduced by the persistence probability PS . The mean and the
covariance of the kinematic state are predicted using

m
(j)
k+1|k =(Fk+1|k ⊗ Id)m

(j)
k|k, (14a)

P
(j)
k+1|k =Fk+1|kP

(j)
k|kF

T

k+1|k + Qk+1|k. (14b)

As mentioned above, the number of measurements per object
as well as the object extent are expected to be approximately
constant. Hence, the parameters of the Gamma and inverse
Wishart distributions are predicted by

α
(j)
k+1|k =

α
(j)
k|k
ηk

, β
(j)
k+1|k =

β
(j)
k|k
ηk

, (15a)

v
(j)
k+1|k =2d+ 2 + e−Ts/τ

(
v
(j)
k|k − 2d− 2

)
, (15b)

V
(j)
k+1|k =

v
(j)
k+1|k − 2d− 2

v
(j)
k|k − 2d− 2

V
(j)
k|k . (15c)

This corresponds to keeping the expected value constant and
increasing the variance.

C. Measurement Update

At time step k, the prior PHD intensity (11) can be rewritten
as

Dk|k−1 (ξk) =

Jk|k−1∑
j=1

w
(j)
k|k−1GGIW

(
ξk ; ζ

(j)
k|k−1

)
. (16)

Then, the posterior PHD is again a GGIW mixture

Dk|k (ξk) = Dm
k|k (ξk) +Db

k|k (ξk) +Dd
k|k (ξk) (17)

which comprises the intensities for missed detections, new-
born objects, and detected objects.

The updated intensities for new-born objects and for the
detection of persisting objects are obtained using the measure-
ment set Zk = {z(j)k }

Nz,k

j=1 . All sensor readings are separated
into distinct cells W under the constraint that the union
of all cells equals the measurement set Z. Intuitively, each
cell contains measurements that are assumed to originate
from a single object. The resulting cells then constitute a
possible partition P of all readings. For a cell W, the centroid
measurement and scatter matrix are given by

z̄Wk =
1

|W|
∑

z
(i)
k ∈W

z
(i)
k , (18a)

ZW
k =

∑
z
(i)
k ∈W

(
z
(i)
k − z̄Wk

)(
z
(i)
k − z̄Wk

)T

. (18b)

In order to ensure Bayes optimality, all possible partitions
of Zk should be used to update the intensities. However, using

all partitions is computationally intractable due to combinato-
rial complexity [6], [13], [14]. Section III will thus discuss
methods to reduce the computational burden.

Since the measurement update significantly increases the
number of components Jk|k, the intensity has to be truncated
using mixture pruning and merging [8], [15] after the update
step.

1) Missed detections: The detection probability of a per-
sisting object is given by P ek,D = (1 − e−γk)PD where
PD ∈ (0, 1) [16]. As in [12], the detection probability of
new born objects is assumed to be P ek,D = 1. Hence, the
missed detection intensity only contains components originat-
ing from persisting objects. The updated PHD for not detected
previously existing objects at time step k is approximated as

Dm
k|k (ξk) =

Jk|k−1∑
j=1

(1− P ek,D)w
(j)
k|k−1GGIW

(
ξk ; ζ

(j)
k|k−1

)

≈
Jk|k−1∑
j=1

w̃
(j)
k|kGGIW

(
ξk ; ζ̃

(j)
k|k

)
, (19a)

where the parameters of the GGIW density are given by

ζ̃
(j)
k|k =

{
α̃
(j)
k|k, β̃

(j)
k|k,m

(j)
k|k−1, P

(j)
k|k−1, v

(j)
k|k−1, V

(j)
k|k−1

}
. (20)

Computing the parameters α̃
(j)
k|k and β̃

(j)
k|k of the Gamma

distribution, as well as the weights w̃(j)
k|k, requires using the

gamma-mixture reduction proposed in [8].
2) Detection of new born objects: The measurement update

of the birth intensity (12) is given by

Db
k|k (ξk) =

∑
P∠Zk

∑
W∈P

w
(b,W)
k|k GGIW

(
ξk ; ζ

(b,W)
k|k

)
, (21)

where P∠Z represents all possible partitions P of the set Z.
The kinematic state is updated using

m
(b,W)
k|k =

[(
z̄Wk
)T
,
(
m

(b)
k

)T]T
, (22a)

P
(b,W)
k|k =blkdiag

(
|W|−1, P (b)

k

)
, (22b)

the updated parameters for the measurement rate follow

α
(b,W)
k|k = α

(b)
k + |W|, β

(b,W)
k|k = β

(b)
k + 1, (23)

and the Wishart parameters for the object’s extension are given

v
(b),W
k|k = v

(b)
k|k−1 + |W|, (24a)

V
(b),W
k|k = V

(b)
k|k−1 + ZW

k . (24b)

Equations for the update of the weight w(b,W)
k|k will be given

in Section II-C4.
3) Detection of persisting objects: The update of the PHD

of persisting objects (13) using the measurement set Zk is
given by

Dd
k|k (ξk) =

∑
P∠Zk

∑
W∈P

Jk|k−1∑
j=1

w
(j,W)
k|k GGIW

(
ξk ; ζ

(j,W)
k|k

)
.

(25)



The kinematic state of the objects is updated using [9]

m
(j,W)
k|k = m

(j)
k|k−1 +

(
K

(j,W)
k|k−1 ⊗ Id

)
ε
(j,W)
k|k−1, (26a)

P
(j,W)
k|k = P

(j)
k|k−1 −K

(j,W)
k|k−1S

(j,W)
k|k−1

(
K

(j,W)
k|k−1

)T

, (26b)

S
(j,W)
k|k−1 = HkP

(j)
k|k−1H

T

k +
1

|W|
, (26c)

K
(j,W)
k|k−1 = P

(j)
k|k−1H

T

k

(
S
(j,W)
k|k−1

)−1
, (26d)

where S
(j,W)
k|k−1 is the scalar innovation factor and K

(j,W)
k|k−1 is

the gain vector. Identical to the detection of new born objects,
the parameters of the gamma distribution are updated using

α
(j,W)
k|k = α

(j)
k|k−1 + |W|, β

(j,W)
k|k = β

(j)
k|k−1 + 1. (27)

Finally, the measurement updated object extension is given by

v
(j,W)
k|k = v

(j)
k|k−1 + |W|, (28a)

V
(j,W)
k|k = V

(j)
k|k−1 +N

(j,W)
k|k−1 + ZW

k , (28b)

ε
(j,W)
k|k−1 = z̄Wk − (Hk ⊗ Id)m

(j)
k|k−1, (28c)

N
(j,W)
k|k−1 =

(
S
(j,W)
k|k−1

)−1
ε
(j,W)
k|k−1

(
ε
(j,W)
k|k−1

)T

, (28d)

where ε(j,W)
k|k−1 is the innovation vector and N (j,W)

k|k−1 denotes the
innovation covariance.

4) Component weights: The weights of the measurement
updated GGIW components for new born and persisting objects
are

w
(b,W)
k|k =

ωP

dWβ
|W|
FA,k

L(b,W)
k w

(b)
k

1

V (A)
(29a)

w
(j,W)
k|k =

ωPPD

dWβ
|W|
FA,k

L(j,γ)
k L(j,x,X)

k w
(j)
k|k−1, (29b)

with

ωP =

∏
W∈P dW∑

P′∠Zk

∏
P′∈P′ dW′

(29c)

dW =δ|W|,1 +
L(b,W)
k w

(b)
k

β
|W|
FA,kV (A)

+

Jk|k−1∑
j=1

PDL(j,W)
k w

(j)
k|k−1

β
|W|
FA,k

(29d)

L(b,W)
k =

|W|−d/2

π|W|(d−1)/2

Γd

(
v
(b,W)

k|k
2

) ∣∣∣V (b)
k

∣∣∣ v(b)
k
−d−1

2

Γd

(
v
(b)
k

2

) ∣∣∣V (b,W)
k|k

∣∣∣ v
(b,W)
k|k −d−1

2

×
Γ
(
α
(b,|W|)
k|k

)(
β
(b)
k

)α(b)
k

Γ
(
α
(b)
k

)(
β
(b,W)
k|k

)α(b,|W|)
k|k

(29e)

L(j,W)
k =

(
π|W||W|

)− d
2(

S
(j,W)
k|k−1

) d
2

∣∣∣V (j)
k|k−1

∣∣∣ v
(j)
k|k−1

2

∣∣∣V (j,W)
k|k

∣∣∣ v
(j,W)
k|k

2

Γd

(
v
(j,W)

k|k
2

)
Γd

(
v
(j)

k|k−1

2

)

×
Γ
(
α
(j,|W|)
k|k

)(
β
(j)
k|k−1

)α(j)

k|k−1

Γ
(
α
(j)
k|k−1

)(
β
(j,W)
k|k

)α(j,|W|)
k|k

(29f)

III. PARTITIONING AND CLUSTERING THE GGIW PHD

As mentioned in Section II, the update of the PHD with
all possible partitions is computationally intractable. Different
methods to find only the likely partitions have been proposed
in [6], [14]. Partitions are obtained by using distance-based
methods which separate measurements according to varying
distance thresholds, grouping points based on the position of
predicted targets, and expectation maximization methods.

Especially distance based clustering methods suffer from the
drawback that a single threshold is often not the best choice
for all objects in the scene. Figure 1 and Figure 2 illustrate
the influence of the partitioning threshold for data recorded at
the intersection. While a threshold of d = 0.25 m obtains the
correct partitioning for the pedestrian and the bicycle, the same
threshold returns a huge amount of cells for the car. In contrast,
d = 0.5 m delivers only a single cell for the pedestrian and
the bicycle but partitions the car measurements correctly into
a single cell.

To overcome such issues, a sub-partitioning routine which
detects possible under-segmentation and reruns the distance-
based segmentation for the corresponding cell was suggested
in [6]. Additional partitions are then obtained by replacing
the affected cells with the smaller propositions. As noted in
[6], however, this method does not consider the occurrence of
multiple cases of under segmentation since this would again
lead to combinatorial complexity.
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Fig. 1: Partitioning results for distance d = 0.25 m. The
obtained results are illustrated using color coding.
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Fig. 2: Partitioning results for distance d = 0.5 m. The
obtained results are illustrated using color coding.

In this paper we take an alternative approach towards
achieving improved tracking results at a reasonable compu-
tational complexity. Given a partition P of a new set of



measurements Zk and a predicted PHD intensity Dk|k−1(·),
many of the cell and GGIW component pairs will be distant,
and the effect of updating that part of the PHD intensity with
that cell will be negligible. We propose to use this to alleviate
some of the computational complexity of the GGIW PHD filter.

The approach has the following steps:
1) Cluster the predicted persisting object GGIW compo-

nents, cf. (13), into Nc mutually exclusive mixtures,

Ds
k|k−1 (ξk)=

Jk|k−1∑
j=1

w
(j)
k|k−1GGIW

(
ξk ; ζ

(j)
k|k−1

)

=

Nc∑
i=1

∑
j∈J(i)

w
(j)
k|k−1GGIW

(
ξk ; ζ

(j)
k|k−1

)
,

=

Nc∑
i=1

Ds,J(i)
k|k−1 (ξk) , (30)

where J(i) enumerates the component indices in the ith
cluster, J(n) ∩ J(m) = ∅ if n 6= m, and

Nc⋃
i=1

J(i) = J = {1, . . . , Jk|k−1} (31)

2) From the full set of measurements Zk, assign only the
relevant measurements to each cluster, denoted ZJ(i)

k . For
each cluster, compute Dd,J(i)

k|k (ξk), cf. (25), by updating

the intensity Ds,J(i)
k|k−1 (ξk) using the measurements ZJ(i)

k

rather than the full measurement set Zk.
3) The PHD intensity corresponding to detected persisting

objects is approximated as

Dd
k|k (ξk) ≈

Nc∑
i=1

Dd,J(i)
k|k (ξk) , (32)

In the second step above, multiple partitions PJ(i) of each
set ZJ(i)

k are considered. In the measurement update step, one
of the partitions will typically dominate remaining partitions,
i.e. have a significantly higher weight ωP , cf. (29c). Assign-
ing only the relevant measurements to the mixture clusters
allows the measurement partitions PJ(i) to be determined
independently. This way the clusters J(i) can have dominating
partitions PJ(i) that correspond to different distance thresholds
d. This effectively solves the problem that is highlighted in
Figures 1 and 2.

Note that the same effect can be achieved by considering
more partitions P for the full PHD intensity, i.e. without the
clustering presented above. However, the number of measure-
ment cells and mixture components is comparatively smaller
for each cluster compared to the full PHD. Thus, using the
proposed clustering procedure the amount of update combi-
nations is reduced significantly, and the procedure achieves
a considerable computation speed-up without a significant
performance sacrifice.

The GGIW component clustering is performed as follows:

1) A partition Pmax of the measurement set Zk is obtained
using a maximum distance dmax. An appropriate choice
for dmax ensures that the measurements of two cells
Wm and Wn of the partition Pmax are highly unlikely
to belong to the same extended object.

2) The spatial proximity of the cells Wi ∈ P and the GGIW

components GGIW(ξk+1 ; ζ
(j)
k+1|k) are computed using

d(j)(Wi) = min
z∈Wi

((
d(j)(z)

)T

R−1k

(
d(j)(z)

))
(33a)

d(j)(z) = z− H̃km
(j)
k+1|k (33b)

Rk = X̂
(j)
k|k−1 + H̃kP̂

(j)
k|k−1H̃

T

k (33c)

X̂
(j)
k|k−1 = V

(j)
k|k−1

(
v
(j)
k|k−1 − 2d− 2

)−1
(33d)

P̂
(j)
k|k−1 = P

(j)
k|k−1 ⊗ X̂

(j)
k|k−1 (33e)

H̃k = Hk ⊗ Id (33f)

3) Using a standard gating procedure, see e.g. [17], the
distance d(j)(Wi) is used to determine the contributing
measurement cells for each GGIW component j.

4) Let W = {1, . . . , |Pmax|} enumerate the cells in the
partition Pmax. A GGIW cluster J(i) is given by the
GGIW components that share at least one measurement
cell Wi. This way Nc groupings

G(n) = (J(n),W(n)) (34)

are obtained, for which it holds J(n) ∩ J(m) = ∅ and
W(n) ∩W(m) = ∅ if n 6= m, and where

ZJ(i)
k =

⋃
j∈W(i)

Wj . (35)

In case of a sufficiently large gating threshold (in our imple-
mentation d(j)(Wi) > 9), the GGIW partitions Ds,J(n)

k|k−1 have
negligible influence on each other in the measurement update,
because the measurement likelihood for measurements of other
cells W(m), n 6= m, is close to zero. The proof of this property
is straight-forward using the derivation of the measurement
likelihood (29f) [6, Appendix A].

IV. EXPERIMENTS

To apply the GGIW-PHD-filter to the pedestrian tracking
and intersection scenarios, it was implemented in MATLAB.
A distance-based segmentation method [14] which automat-
ically determines possible distance thresholds is applied to
the measurements of each cluster. It provides several feasible
partitions. Moreover, a simple labelling method which assigns
unique identifiers to mixture components and their successors
was added to be able to obtain continuous track trajectories.
For generating a list of tracks from the GGIW mixture distri-
bution, each mixture component with a weight w(j)

k|k > 0.5 is
selected and stored as distinct track.

In the following, the two experimental scenarios, pedestrian
tracking and the urban intersection, as well as the respective
tracking results are presented.



Fig. 3: Pedestrian tracking scenario with two persons walking
on a parking lot

A. Pedestrian Tracking Scenario
The first scenario is used to demonstrate how the filter

behaves in the presence of clutter and how well it is able
to separate relevant moving objects from stationary tracks. In
particular, we want to distinguish between moving pedestrians
and parked vehicles.

1) Experimental Set-Up: Two persons were recorded from
a stationary vehicle while walking on a parking lot as depicted
in Fig. 3. The first pedestrian enters the field of view next to
the experimental vehicle and finally leaves it at a distance of
25m. As soon as the first pedestrian made half of its way, a
second person enters, walks towards the vehicle and finally
does a small loop.

The experimental vehicle is equipped with three Ibeo Lux
laser range finders which provide measurements in four layers
and which are mounted in the center and corners of the
front bumper. Ground readings are automatically detected and
removed by the sensors. In the present scenario, this results
in an average of 1160 range measurements per time step.

2) Results: Figure 4 illustrates the obtained tracking results.
Tracks are represented by their two-sigma ellipses. For clarity,
the trajectories are only plotted for the two pedestrians which
are continuously tracked by the filter. Exemplary ellipses with
corresponding measurements are plotted for every 12th time
step to demonstrate how the filter adapts the object size to
the changing appearance of the pedestrians. This is especially
evident for the blue track as it gets close to the sensors. The
ellipses follow the pendulum motion of the legs. That is, they
are rather compressed in direction of motion as the two legs
are close-by and are considerably elongated as the pedestrian
makes a big step.

The green ellipses represent tracks originating from parked
vehicles and vegetation. Since they are correctly identified
as static objects in most time steps and thus do not exhibit
significant motion, trajectories are omitted and all ellipses are
taken from a single and exemplary time step. Due to the chosen
partitioning settings, i.e. distance thresholds from 0.5 m to 1
m, the tracking system tends to explain close-by measurements
by relatively large ellipses which sometimes leads to merged
objects as for the track at approximately (-6m, 10m). Also,
note how the elliptic profile has difficulties to represent the
distinct L-shape at (3m, 4m) and how the ellipse is focused
at the measurement center, thus treating sparse and distant
readings as outliers. Still, all the information needed to classify
the object as static is provided.
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Fig. 4: Pedestrian tracking results: the green ellipses are
stationary tracks taken from a single time step, the red and
blue trajectories illustrate the pedestrian tracks with exemplary
ellipses and corresponding measurements for every 12th time
step

To evaluate the classification performance for stationary and
moving objects, the number of identified moving objects is
compared to the true value in Fig. 5. Here, the amount of
moving objects is simply obtained by counting the mixture
components with an estimated speed greater than 0.5 m/s.
Apart from a few deviations, the number is estimated correctly
in 93.3% of the time steps. The remaining aberrations can be
explained by three causes. Firstly, the entering pedestrians are
not detected as moving objects instantly. This is aggravated
by the fact that the measurement centroids do not exhibit
considerable motion as the objects enter the field of view
and expand to their actual size. Secondly, the weights of
the mixture component representing the first pedestrian drop
below a value of 0.5 at 12.24s, 12.72s, and 15.76s. Since this
threshold is used for determining relevant mixture components,
they are not counted as moving objects even though the
track still exists. The decreasing weight is caused by missing
measurements due to occlusion or a large distance to the
sensor, respectively. The third effect causes an overestimated
number of objects as illustrated by the pronounced spikes.
Here, some of the static object tracks are subject to phantom
motion which is generated by a change of object appearance.
These changes are a consequence of objects being partially
occluded by the pedestrians. However, the rather large extent
of the static objects makes the tracks rather insensitive to small
changes and hence, phantom motion occurs rarely.

3) Performance: The average computation time for each
time step using the MATLAB implementation is 0.76 seconds
on an i7-3520M processor with 2.9 GHz. Due to the relatively



0 5 10 15 20 25 30
0

1

2

3

4

time [s]

nu
m

be
r

of
m

ov
in

g
ob

je
ct

s

Fig. 5: Number of identified moving objects (dashed red) in
comparison to the true value (black). In 93.3% of the time
steps, the estimate is correct.

small interval of possible distance thresholds, partitioning the
measurement clusters is relatively clear in many cases and a
single partitioning proposition often suffices. When taking into
account the possible combinations, however, the filter consid-
ers 18.4 variants in average. In contrast, the implementation
of the standard GGIW-PHD filter without clustering requires a
computation time of 1.88 seconds per time step while at the
same time only considering an average of 5.1 partitions.

Since there is no deliberate parallelization, the computation
is mostly performed on a single core. By optimizing the
code, exploiting the potential for parallel processes due to
the clustering approach and by porting the system to low
level programming languages, a considerable speed-up is
expectable.

B. Intersection Scenario

From the first scenario it was observable that elliptical track
shapes are a rather precise approximation for pedestrian ap-
pearance, but have difficulties to represent rectangular objects
such as vehicles. In this subsection, the GGIW-PHD-filter is
applied to the intersection scenario. Apart from tracking road
users of different kind, i.e. a vehicle, a pedestrian and a
bicycle, we now demonstrate how the filter is able to improve
subsequent feature extraction routines.

1) Experimental Set-Up: To observe road users, a laser
range finder network consisting of multiple 8-layer SICKLD-
MRS scanners has been installed at a public intersection in
Aschaffenburg, Germany, within the joint project Ko-PER of
the research initiative Ko-FAS [18]. The sensors are mounted
at least 5 m above the ground at lamp posts or traffic lights and
provide a bird’s-eye view of the current intersection scene. In
Fig. 6 a realistic 3D model of the intersection together with the
point cloud gathered by the laser range finders is depicted. For
further details on the intersection set-up refer to [19]. Since
the mounting positions of the sensors are static, it is feasible
to train a background model to remove all measurements
originating from static objects like buildings or street surface.
The remaining point cloud, which only represents the road
users at the intersection, is provided to the GGIW-PHD filter.

Since the elliptical shape is not a suitable representation for
rectangular vehicles, the points within the two-sigma ellipse of
an estimated track are used to determine a bounding box which
is a common representation of vehicles and can be easily
compared to available ground truth data. The bounding box
is centered at the estimated position and oriented according
to the estimated direction of motion. Subsequently, the length

Fig. 6: Realistic 3D model of the Ko-PER intersection. The
aligned range measurements of the 14 laserscanners are de-
picted by orange points.

−10 0 10

0

10

20

x [m]
y

[m
]

Fig. 7: Evolution of background substracted laserscanner mea-
surements in time. Time is color coded from blue to red.
For purpose of illustration the plot is rotated through ca. 125
degrees compared to Fig. 6.

and width of the box are determined based on the measure-
ment points. By using orientation information from raw data
tracking, valuable information is introduced to this feature
extraction routine which facilitates the process considerably.

Tracking performance evaluation of the filter is based on
a sequence in which one pedestrian, one cyclist, and one
car maneuver through the intersection. Figure 7 illustrates the
content of the sequence. The pedestrian appears at the lower
left corner of Fig. 7 and crosses the street illustrated in the
upper part of Fig. 6 while the cyclist crosses this street in the
opposite direction. The car performs a left turn maneuver and
approaches with a velocity of approx. 12 m/s.

2) Results: The tracking results depicted by Fig. 8 show
continuous tracks for all of the three objects on their way
through the intersection. Even during the pass-by of the
pedestrian and the cyclist, the tracks are not lost and no
ID switches occur. To create a meaningful illustration of the
tracking results, estimated bounding boxes are plotted for the
car at every 15th and for the pedestrian and cyclist at every 5th

time step. Since highly accurate reference data is available for
the car trajectory, Fig. 8 additionally shows the true oriented
bounding boxes for the car. While the vehicle is approaching
the intersection, the laser range finder network is not able
to detect the entire vehicle extent due to the sensor field of
view. Therefore, the estimation of the dimension can just be
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Fig. 8: Tracking results with estimated oriented bounding
boxes of the road users. Each track is visualized with a
different color to show continuity. Reference trajectory and
bounding box of the car (blue) are depicted in green.
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Fig. 9: Absolute error between the car’s estimated position and
velocity and their reference.

evaluated in the central region of the intersection where the
estimated and the true bounding box match precisely.

As observable from the matching front edges of the refer-
ence and estimated bounding boxes, the position of the car is
estimated accurately during the whole driving maneuver. This
impression is confirmed by the absolute error of the position
and velocity plotted in Fig. 9. To calculate the absolute
error, the estimated state as well as its reference have to
be transformed to a common reference point in every time
step. For the left turning maneuver, the reference point is
chosen to be the center of the car’s front, since this point can
be detected continuously by the laser range finder network.
Except for the period from 6 s to 9.5 s, the error in the
position is below 0.5 m. In the mentioned period, the car
moves very slow. Thus, it is challenging to accurately estimate
its velocity. This directly affects the determined bounding box,
since the orientation of the box is based on the estimated
motion direction. Furthermore, the error of the velocity does
not exceed 1.2 m/s except at the end of the sequence, where
the car leaves the perception area of the system. Keeping in
mind that the absolute error of the position and the velocity
incorporates the errors in orientation and extent estimation
due to the reference point transformation, the GGIW-PHD-filter
achieves a very accurate road user tracking which does not
require any error prone and heuristic preprocessing.

V. CONCLUSION

In the present work, we applied the GGIW-PHD-filter to
two different data sets with a considerable amount of mea-

surements. By introducing a mixture clustering procedure, we
were able to separate the filtering procedure into independent
problems thereby reducing the combinatorial complexity and
computation time considerably. The experimental results show
that the filter works on real world data, is able to track
extended objects precisely and can also be used to improve a
subsequent feature extraction routine. The proposed clustering
method allows for a real-time capable implementation using
parallelization. Using the filter in a non-stationary sensor set-
up, i.e. from a moving vehicle is part of our future intentions.
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