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Abstract— System Identification is about estimating models
of dynamical systems from measured input-output data. Its
traditional foundation is basic statistical techniques, such as
maximum likelihood estimation and asymptotic analysis of bias
and variance and the like. Maximum likelihood estimation
relies on minimization of criterion functions that typically
are non-convex, and may cause numerical search problems.
Recent interest in identification algorithms has focused on
techniques that are centered around convex formulations. This
is partly the result of developments in machine learning and
statistical learning theory. The development concerns issues of
regularization for sparsity and for better tuned bias/variance
trade-offs. It also involves the use of subspace methods as well as
nuclear norms as proxies to rank constraints. A quite different
route to convexity is to use algebraic techniques manipulate
the model parameterizations. This article will illustrate all this
recent development.

I. INTRODUCTION

System Identification is about building mathematical mod-
els of dynamical systems from observed input-output sig-
nals.There is a very extensive literature on the subject, with
many text books, like [11] and [21]. Most of the techniques
for system identification have their origins in estimation
paradigms from mathematical statistics, and classical meth-
ods like Maximum Likelihood (ML) have been important
elements in the area. In this article the main ingredients of
this state-of-the-art view of System Identification will be re-
viewed. This theory is well established and is deployed e.g. in
the software [13]. The estimates show attractive asymptotic
properties and the methodology has been used extensively
and successfully. Some problems can however be listed: (1)
the selection of model structures (model orders) is not trivial
and may compromise the optimality properties, in particular
for shorter data records, and (2) the typically non-convex
nature of the criteria may cause numerical optimization
artifacts (like ending up in non-global, local minima).

Therefore there is a current trend to enforce estimation
methods based on convex formulations. So recently, alter-
native techniques, mostly from machine learning and the
convex optimization area have emerged. Also these have
roots in classical statistical (Bayesian) theory. The main
elements of these will also be reviewed here.

II. THE STATE-OF-THE-ART SETUP: PARAMETRIC
METHODS

A. Model Structures

A model structure M is a parameterized collection of
models that describe the relations between the input and

output signal of the system. The parameters are denoted by
θ so M(θ) is a particular model. That model gives a rule to
predict (one-step-ahead) the output at time t, i.e. y(t), based
on observations of previous input-output data up to time t−1
(denoted by Zt−1).

ŷ(t|θ) = g(t, θ, Zt−1) (1)

For linear systems, a general model structure is given by
the transfer function G from input to output and the transfer
function H from a white noise source e to output additive
disturbances:

y(t) = G(q, θ)u(t) +H(q, θ)e(t) (2a)

Ee2(t) = λ; Ee(t)e(k)) = 0 if k 6= t (2b)

where E denotes mathematical expectation. This model is
in discrete time and q denotes the shift operator qy(t) =
y(t+1). We assume for simplicity that the sampling interval
is one time unit. For normalization reasons, the function H is
supposed to be monic, i.e. its expansion starts with a unity.
The expansion of G(q, θ) in the inverse (backwards) shift
operator gives the impulse response (IR) of the system:

G(q, θ) =

∞∑
k=1

gk(θ)q−ku(t) =

∞∑
k=1

gk(θ)u(t− k) (3)

The natural predictor for (2a) is

ŷ(t|θ) =
H(q, θ)− 1

H(q, θ)
y(t) +

G(q, θ)

H(q, θ)
u(t) (4)

Since the expansion of H starts with a ”1”, the numerator
in the first term starts with h1q

−1 so there is a delay in y.
The question now is how to parameterize G and H .

1) Black-Box Input-Output Models: Common black box
(i.e. no physical insight or interpretation) parameterizations
are to let G and H be rational in the shift operator:

G(q, θ) =
B(q)

F (q)
; H(q, θ) =

C(q)

D(q)
(5a)

B(q) = b1q
−1 + b2q

−2 + . . . bnbq
−nb (5b)

F (q) = 1 + f1q
−1 + . . .+ fnfq

nf (5c)
θ = [b1, b2, . . . , fnf ] (5d)

C and D are, like F , monic.



A very common case is that F = D = A and C = 1
which gives the ARX-model:

y(t) =
B(q)

A(q)
u(t) +

1

A(q)
e(t) or (6a)

A(q)y(t) = B(q)u(t) + e(t) or (6b)
y(t) + a1y(t− 1) + . . .+ anay(t− na) (6c)

= b1u(t− 1) + . . .+ bnbu(t− nb) (6d)

Other common black/box structures of this kind are FIR
(Finite Impulse Response model, F = C = D = 1),
ARMAX (F = D = A), and BJ (Box-Jenkins, all four
polynomial different.)

2) Black-box State-Space Models: Another general black-
box structure is to use an n:th order state space model

x(t+ 1) = Ax(t) +Bu(t) +Ke(t) (7a)
y(t) = Cx(t) + e(t) (7b)

where the state-vector x is a column vector of dimension
n and A,B,C,K are matrices of appropriate dimensions.
The parameters θ to estimate consists of all entries of this
matrix. Due to possible changes of basis in the state-space,
there are many values of θ that correspond to the same
system properties. It is easy to see that (7) describes the
same models as the ARMAX model with orders n for the
A,B,C- polynomials. Also, if the matrix K is fixed to zero,
(7) describes the same models as the OE model with orders
n for the B,F - polynomials. (See Chapter 4 in [11].)

3) Grey-Box Models: If some physical facts are known
about the system, it is possible to build in that into a
Grey-Box Model. It could, for example be an airplane, for
which the motion equations are known from Newton’s laws,
but certain parameters are unknown, like the aerodynamical
derivatives. Then it is natural to build a continuous time state-
space models from physical equations:

ẋ(t) = A(θ)x(t) +B(θ)u(t)

y(t) = C(θ)x(t) +D(θ)u(t) + v(t)
(8)

Here θ corresponds to unknown physical parameters, while
the other matrix entries signify known physical behavior.
This model can be sampled with the well-known sampling
formulas to give

x(t+ 1) = F(θ)x(t) + G(θ)u(t)

y(t) = C(θ)x(t) +D(θ)u(t) + w(t)
(9)

See [18] for deeper discussion of sampling of systems with
disturbances.

The model (9) has the transfer function from u to y

G(q, θ) = C(θ)[qI −F(θ)]−1G(θ) +D(θ) (10)

so we have achieved a particular parameterization of the
general linear model (2a).

B. Fitting Time-Domain Data

Suppose now we have collected a data record in the time
domain

ZN = {u(1), y(1), . . . , u(N), y(N)} (11)

It is most natural to compare the model predicted values (4)
with the actual outputs and form the criterion of fit

VN (θ) =
1

N

N∑
t=1

|y(t)− ŷ(t|θ)|2 (12)

and form the parameter estimate

θ̂N = arg minVN (θ) (13)

We call this the Prediction Error Method, PEM. It coincides
with the Maximum Likelihood, ML, method if the noise
source e is Gaussian. See, e.g. [11] or [16] for more details.

C. Issues of Convexity

For most model structures, the criterion function VN (θ) in
(12) is non-convex in θ. See for example the plot in Figure 5
in Section VII for an extreme example. That means that the
minimization problem (13) requires extra attention, and we
can never be quite sure that the global minimum is reached.

It could be noted that ARX-model (6) is an important
exception, leading to a quadratic criterion function. Ac-
cording to Section IV these models also have capabilities
to approximate arbitrary linear systems. Therefore several
estimation algorithms have been developed that capitalize on
high-order ARX -models.

A noticeable example is so called sub-space methods
applied to black-box state-space models (7), e.g. [25]. These
methods can be simplistically described as estimating a high-
order ARX-model followed by a model reduction step. The
essential step in model reduction is to approximate a certain
matrix by a lower rank matrix, which is efficiently achieved
by a SVD (singular value decomposition) technique. That
means that Sub-Space methods are non-iterative estimation
methods without issues of local minima. The estimated do
not however in general enjoy the same optimal asymptotic
properties as the PEM-estimates.

The sub-space algorithms can also be described at fitting
IRs to the data, as the same time as keeping the model
order small. The model order constraint can be phrased as a
certain matrix (Hankel matrix of impulse responses) having
a certain rank. Rank constraints may be difficult to handle
in efficient algorithms. Therefore it is interesting to relax the
rank constraint to a constraint on the nuclear norm (sum of
eigenvalues). That is a convexification that has been used
successfully e.g. in [9].

D. Asymptotic Properties of the Model estimated by PEM

The observations, certainly of the output from the system
are affected by noise and disturbances, which of course also
will influence the estimated model (13). The disturbances are
typically described as stochastic processes, which makes the



estimate θ̂N a random variable. This has a certain probability
distribution function (pdf) and a mean and a variance.

Except in simple special cases it is quite difficult to
compute the pdf of the estimate θ̂N . However, its asymptotic
properties as N → ∞ for PEM estimates are easier to
establish. The basic results can be summarized as follows:
(E denotes mathematical expectation)

•

θ̂N → θ∗ = arg min E lim
N→∞

VN (θ) (14)

So the estimate will converge to the best possible model,
which gives the smallest average prediction error.

•

Covθ̂N ∼
λ

N

[
Cov

d

dθ
ŷ(t|θ)

]−1
(15)

So the covariance matrix of the parameter estimate is
given by the inverse covariance matrix of the gradient
of the predictor wrt the parameters. λ is the variance
of the optimal prediction errors (the innovations). If
the model structure contains the true system, it can be
shown that this covariance matrix is the smallest that can
be achieved by any unbiased estimate. That is, it fulfils
the the Cramér-Rao inequality, [7]. See [11], chapters
8 and 9 for a general treatment.

These results are valid for quite general model structures.
Now, specialize to linear models (2a) and assume that the
true system is described by

y(t) = G0(q)u(t) +H0(q)e(t) (16)

which could be general transfer functions, possibly much
more complicated than the model. Then we have for the
estimated frequency function G(eiω, θ̂N ):

•

θ∗ = arg min
θ

∫ π

−π
|G(eiω, θ)−G0(eiω)|2 Φu(ω)

|H(eiω, θ)|2
dω

(17)

That is, the frequency function of the limiting model
will approximate the true frequency function as well
as possible in a frequency norm given by the input
spectrum Φu and the noise model.

•

CovG(eiω, θ̂N ) ∼ n

N

Φv(ω)

Φu(ω)
as n,N →∞ (18)

where n is the model order and Φv is the noise spectrum
λ|H0(eiω)|2. The variance of the estimated frequency
function at a given frequency is thus, for a high order
model proportional to the Noise-to-Signal ratio at that
frequency. That is a natural and intuitive result. We see,
in particular, that the variance increases with the model
order.

III. BIAS, VARIANCE AND CHOICE OF MODEL ORDER

A. Mean Square Error, Bias and Variance

Consider any estimation problem where we estimate a
quantity θ. Suppose θ̂ is the estimate and θ0 is the true value.
Denote by θ∗ = E θ̂ the expected value of the estimate. The
difference

θB = θ̂ − θ∗ (19)

is known as the bias of the estimate and it is called unbiased
if the bias is zero. The mean square error (MSE) is

E [(θ̂N − θ0)(θ̂N − θ0)T ] = θBθ
T
B + Covθ̂ (20a)

Covθ̂ = E [(θ̂N − θ∗)(θ̂N − θ∗T ] (20b)

It is thus the sum of bias squared and variance.

B. Trade-off between bias and variance

A goal is really to minimize the MSE with its two
contributions: the bias and the variance.

Generally speaking the quality of the model depends on
the quality of the measured data and the flexibility of the
chosen model structure (1). A more flexible model structure
typically has smaller bias, since it is easier to come closer
to the true system. At the same time, it will have a higher
variance: With higher flexibility it is easier to be fooled by
disturbances. (Think of the variance expression (18).) So
the trade-off between bias and variance to reach a small
total MSE is a choice of balanced flexibility of the model
structure.

C. Choice of Model Order

As the model gets more flexible, the fit to the estimation
data in (13), VN (θ̂N ) will always improve. To account for
the variance contribution, it is thus necessary to modify this
fit to assess the total quality of the model. A much used
technique for this is Akaike’s criterion,e.g. [1], which for
Gaussian noise e with unknown variance takes the form

θ̂N = arg min

[
log VN (θ) + 2

dimθ
N

]
(21)

were the minimization also takes place over a family of
model structures with different number of parameters (dim
θ).

A variant of AIC is to put a higher penalty on the model
complexity, as in BIC:

θ̂N = arg min

[
log VN (θ) + logN

dimθ
N

]
(22)

This is known as Akaike’s criterion, type B, BIC, or Rissa-
nen’s Minimum Description Length (MDL) criterion, [23].

Another important technique is to evaluate the criterion
function for the model for another set of data, validation
data, and pick the model which gives the best fit to this
independent data set. This is known as cross validation.

As a further element in the choice of model structure
various validation criteria should be mentioned. An estimated
model should be tried to be falsified, i.e. confronted with



facts that may contradict its correctness. A typical fact could
be that its residuals (estimated prediction errors) do not show
sufficient independence. A good principle is to look for the
simplest unfalsified model, see e.g.[22].

IV. APPROXIMATING LINEAR SYSTEMS BY ARX
MODELS

Suppose the true linear system is given by

y(t) = G0(q)u(t) +H0(q)e(t) (23)

Suppose we build an ARX model (6) for larger and larger
orders n = na = nb:

An(q)y(t) = Bn(q)u(t) + e(t) (24)

Then it is well known from [15] that as the orders tend to
infinity at the same time as the number of data N increases
even faster we have for the ARX estimate

B̂n(q)

Ân(q)
→ G0(q) (25a)

1

Ân(q)
→ H0(q), as n→∞ (25b)

This is quite a useful result. ARX-models are easy to
estimate. The estimates are calculated by linear least squares
techniques, which are convex and numerically robust. Esti-
mating a high order ARX model, possibly followed by some
model order reduction could thus be a viable alternative to
the numerically more demanding general PEM criterion (13).

The only drawback with high order ARX-models is that
they may suffer from high variance. That is the problem we
now turn to.

V. REGULARIZATION OF LINEAR REGRESSION MODELS

A. Linear Regressions

A Linear Regression problem has the form

y(t) = ϕT (t)θ + e(t) (26)

Here y (the output) and ϕ (the regression vector) are
observed variables, e is a noise disturbance and θ is the
unknown parameter vector. In general e(t) is assumed to
be independent of ϕ(t).

It is convenient to rewrite (26) in vector form, by stacking
all the elements (rows) in y(t) and ϕT (t) to form the vectors
(matrices) Y and Φ and obtain

Y = Φθ + E (27)

The least squares estimate of the parameter θ is

θ̂N = arg min |Y − Φθ|2 or (28a)

θ̂N = R−1N FN ; RN = ΦTΦ; FN = ΦTY (28b)

where | · | is the Euclidean norm.

B. Regularized Least Squares

It can be shown that the variance of θ̂ could be quite large,
in particular if Φ has many columns and/or is ill-conditioned.
Therefore it makes sense to regularize the estimate by a
matrix P :

θ̂N = arg min |Y − Φθ|2 + θTP−1θ or (29a)

θ̂N = (RN + P−1)−1FN ; (29b)

The presence of the matrix P will improve the numerical
properties of the estimation and decrease the variance of
the estimate, at the same time as some bias is introduced.
Suppose that the data have been generated by (27) for a
certain “true” vector θ0 with noise with variance EEET = I .
Then, the mean square error (MSE) of the estimate is

E [(θ̂N − θ0)(θ̂N − θ0)T ] = (RN + P−1)−1×
(RN + P−1θ0θ

T
0 P
−1)(RN + P−1)−1 (30)

A rational choice of P is one that makes this MSE matrix
small. How shall we think of good such choices? It is useful
to first establish the following Lemma of algebraic nature

Lemma 1: Consider the matrix

M(Q) =(QR+ I)−1(QRQ+ Z)(RQ+ I)−1 (31)

where I is the identity matrix with suitable dimension, Q,R
and Z are positive semidefinite matrices. Then for all Q

M(Q) ≥M(Z) (32)

where the inequality is in matrix sense.
The proof consists of straightforward calculations, see e.g.
[6].

So the question what P gives the best MSE of the
regularized estimate has a clear answer: Use

P = θ0θ
T
0 (33)

So, not surprisingly the best regularization depends on the
unknown system.

We can ask a related question, still from a frequentist
perspective: Over a certain set of true systems Ω = {θ0} with
Eθ0θ0 = Π what is the best average MSE? The average MSE
is obtained by taking expectation wrt θ0 over (30). That has
the effect that θ0θT0 is replaced by Π, so the lemma directly
gives the answer:

The best average fit over the set Ω is obtained by the
regularization matrix P = Π.

With this we are very close to a Bayesian interpretation.

C. Bayesian Interpretation

Let us suppose θ is a random vector. That will make y in
(27) random variables that are correlated with θ. If the prior
(before Y has been observed) covariance matrix of θ is P ,
then it is known that the maximum a posteriori (after Y has
been observed) estimate of θ is given by (29a). [See [6] for
all technical details in this section.]

So a natural choice of P is to let it reflect how much is
known about the vector θ.



D. “Empirical Bayes”

Can we estimate this matrix P in some way? Consider
(27). If θ is a Gaussian random vector with zero mean
and covariance matrix P , and E is a random Gaussian
vector with zero mean and covariance matrix I , and Φ is
a known, deterministic matrix, then from (27) also Y will
be a Gaussian random vector with zero mean and covariance
matrix

Z(P ) = ΦPΦT + I (34)

(Two times) the negative logarithm of the probability density
function (pdf) of the Gaussian random vector Y will thus be

W (Y, P ) = Y TZ(P )−1Y + log detZ(P ) (35)

That will also be the negative log likelihood function for
estimating P from observations Y , so the ML estimate of P
will be

P̂ = arg minW (Y, P ) (36)

We have thus lifted the problem of estimating θ to a problem
where we estimate parameters (in) P that describe the
distribution of θ. Such parameters are commonly known as
hyperparameters.

If the matrix Φ is not deterministic, but depends on E in
such a way that row ϕT (t) is independent of the element e(t)
in E, it is still true that W (P ) in (35) will be the negative
log likelihood function for estimating P from Y , although
then Y is not necessarily Gaussian itself. [See, e.g. Lemma
5.1 in [11].]

E. FIR Models

Let us now return to the IR (3) and assume it is finite
(FIR):

G(q, θ) =

m∑
k=1

bku(t− k) = ϕTu (t)θb (37)

where we have collected the m elements of u(t−k) in ϕ(t)
and the m IR coefficients bk in θb. That means that the
estimation of FIR models is a linear regression problem. All
that was said above about linear regressions, regularization
and estimation of hyper-parameters can thus be applied to
estimation of FIR models. In particular suitable choices of
P should reflect what is reasonable to assume about an IR:
If the system is stable, b should decay exponentially, and if
the IR is smooth, neighboring values should have a positive
correlation. That means that a typical regularization matrix
P b for θb would be matrix whose k, j element is something
like

P bk,j(α) = C min(λk, λj); α = [C, λ] (38)

where C ≥ 0 and 0 ≥ λ < 1. This is one of many possible
parameterizations of P (so called kernels). This choice is
known as the TC-kernel. The hyperparameter α can then be
tuned by (36):

α̂ = arg minW (Y, P b(α)) (39)

Efficient numerical implementation of this minimization
problem is discussed in [4] and [2]. The routine is imple-
mented as Impulseest in the 2012b version of [13].

F. ARX Models

Recall that high order ARX models provide increasingly
better approximations of general linear systems. We can write
the ARX-model (6) as

y(t) =− a1y(t− 1)− . . .− any(t− n) + b1u(t− 1) + . . .

+ bmu(t−m) = ϕTy (t)θa + ϕTu (t)θb = ϕT (t)θ
(40)

where ϕy and θa are made up from y and a in an obvious
way. That means that also the ARX model is a linear
regression, to which the same ideas of regularization can
be applied. Eq (40) shows that the predictor consists of two
IRs, one from y and one from u and similar ideas on the
parameterization of the regularization matrix can be used. It
is natural to partition the P -matrix in (29a) along with θa, θb
and use

P (α1, α2) =

[
P a(α1) 0

0 P b(α2)

]
(41)

with P a,b(α) as in (38).

G. Convexity Issues: Multiple Kernel Expressions

In general, the hyper–parameter tuning problem (36) is
non-convex, so even if the regularized linear regression
problem can be found without problems of local minima,
non-convexity shows up in the tuning of the hyperparamters.
Since α typically has low dimension, the issue of local
minima in solving (39) is less of a problem than that in
solving (12) for PEM. Still, it is of interest to consider reg-
ularization matrices that are formed linearly from multiple,
known kernels Pk:

P (α) =

r∑
k=1

αkPk; αk ≥ 0 (42)

Actually, this gives several advantages as described in [5],
[3], [8]:
• The tuning problem (36) or (39) becomes a Difference

of Convex Functions Programming Problem which can
be solved quite efficiently, [24], [10].

• This kernel offers useful flexibility: The multiple kernel
(42) can describe more complex dynamics, e.g., the
dynamics contains widely spread time constants and the
Pk can be chosen as specific instances of the kernel TC,
and also complemented by rank 1 kernels of the kind
θ0θ

T
0 (cf (33)) for a collection of candidate models θ0.

• The minimization (39) for (42) favors sparse solutions,
i.e. solutions with many αk = 0. That can be very useful
if Pk corresponds to different hypothesized structure
features in the model. That means that the multiple
kernel choice can be applied to a variety of problems
in system identification needing sparse solutions.
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Fig. 1. The investigated data set.

H. Related work

The text in this section essentially follows [6]. Important
contributions of the same kind, based on ideas from machine
learning, have been described in [20] and [19]. See also [8]

VI. NUMERICAL ILLUSTRATION

We will illustrate the issues by estimating models for a
particular data set z. It consists of 210 observations from
a randomly generated model of order 30. The input is a
realization of white Gaussian noise, and white Gaussian
noise has also been added to the output of the system, so that
the output SNR is about 10. The data set has been selected
to illustrate certain points, but the behavior is quite typical
for this type of randomly generated high order systems with
relatively few observations. The data set is shown in Figure 1.

Now, we want to estimate a model that as accurately as
possible reproduces the true system’s IR. We only have the
data set available and have no knowledge of what is an
appropriate order.

A. The state-of-the-art Approach

We will try state-space models (7) with K = 0 (equivalent
to OE models, according to Section II-A.2) of different
orders n. How to choose n?. By cross-validation (see Section
III-B) we estimate models using estimation data (typically
the first half of the data record) and evaluate how well that
model reproduces the other part of the data (the validation
data). In terms of MATLAB (The System Identification
Toolbox, [13]) we do

ze=z(1:105); zv=z(106:210);
mpn=pem(ze,n,’dist’,’no’);
compare(zv,mpn)

for different orders n. This gives plots like Figure 2. We try
out all orders n = 1, . . . , 30, and the order that gives the
best fit for the validation data turns out to be 11 (giving a fit
of 61.43%). We could also apply the order selection criteria

0 20 40 60 80 100 120
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−1

−0.5
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0.5

1

1.5

2

Fig. 2. The measured validation output (thick blue line) together with
the simulated output from the model of order 6 (thin green line). The fit
between the two lines is 61.19%. This “Fit” is the percentage of the output
variation that is reproduced by the model.

Order Fit CVFit AIC BIC Actual Fit
1 7.04 -2.14 6.01 4.50 6.89
2 61.28 57.40 58.64 57.30 77.01
4 65.52 60.37 63.52 59.85 85.80
6 68.28 61.29 65.46 60.13 83.18
9 71.19 60.32 67.26 59.40 80.81

11 71.68 61.43 66.88 56.92 79.57
17 72.87 56.01 65.40 48.04 77.65
19 72.91 58.07 64.39 43.91 79.66
22 74.00 56.37 64.34 39.67 78.91
29 77.25 -57.89 65.25 30.49 72.61

TABLE I
THE FIT TO (A SUBSET OF) MODELS ACCORDING TO DIFFERENT

CRITERIA, FIT: THE FIT TO ESTIMATION DATA. CVFIT; FIT TO

VALIDATION DATA AS IN FIGURE 2; AIC AND BIC: THE CRITERIA

(21,22), RECALCULATED TO A COMPATIBLE PERCENTAGE FIT; ACTUAL

FIT: THE FIT TO THE TRUE SYSTEM ACCORDING TO THE ORACLE.

AIC or BIC (21, 22) to all the 30 tested models. That gives
the figures of Table I. The result shows some uncertainty of
what order to choose: CV prefers order 11, AIC order 9 and
BIC order 6.

Now, in this case of simulated data we know the true
system and we can let an “oracle” compute the fit between
the models’ impulse responses and the true one. This actual
fit is also inserted in Table I. It shows that the best model
of the 30 estimated ones is the model of order 4. This has
the most accurate IR, 85.80% of the true IR is reproduced
by this 4th order model. See Figure 3 (dashed black curve).

This exercise points to a weakness of the state-of-the-art
technique (especially pronounced for short data records): It
is not so easy to determine a good model order, or, in other
words to find the best bias-variance trade-off. The best fit to
the true IR we can achieve by state-space models estimated
by PEM is 85.80 %, and we might not know that this is the
best model (the CV choice of model gives a fit of 79.57 %).
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Fig. 3. The true IR (solid,blue), The IR of the best PEM model (dashed
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B. A Regularized FIR Model

Let us now try a regularized FIR model (37) of order 125
with the regularization determined by (38, 36):

mf = impulseest(z);

We can directly compare the IR (= the FIR coefficients)
of this model with the true IR. This is done in Fig 3 (red
dash-dotted curve) and we see the fit is 87.51 %!. So, the
regularized FIR model is better than any of the state space
models estimated by PEM. This shows that proper bias-
variance trade-off is not just picking a suitable model order.
The tuning of the parameters in the regularization matrix (36)
can be seen as a continuous moderation that is more flexible
than a discrete model order choice.

C. From Regularized FIR to State-space Models

It can be argued against the regularized FIR model mf
that is is a high order model, that may be more cumbersome
to use that the more compact state-space models, so that the
comparison is unfair. But it is easy to simplify mf to low
order (say 6) state-space models by balanced model order
reduction:

mf6 = balred(mf,6);

The IR of mf6 still shows a 86.87 % fit to the true IR. That
can be compared to pem estimate of order 6, mp6 which
has a fit of 83.18 %. So, we have a 6th order model, mf6,
estimated from data, that has a better fit than the 6th order
pem estimate from the same data.

For a particular data set, it is of course no contradiction
that specific estimates of a certain order can be better than the
PEM estimate of that order. But Monte-Carlo tests over many
models and data sets of the same kind show a consistent edge
for regularized FIR + balanced model order reduction:

mf = impulseest(z);
mf10 = balred(mf,10);
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mp10 = pem(z,10,’dist’,’no’);

and comparing the IRs of the true systems with those of
mf10 and mp10 over many systems shows better accuracy
and robustness for the regularized estimates. See Figure 4.

There is no contradiction between these simulations and
the (asymptotic) optimality of PEM estimates described in
Section II-D. With the small data sets (compared to the
high system complexity) we are neither close to the limiting
model, nor can we work with accurate model structures
that make Cramér-Rao bound relevant. For these data sets
the bias-variance trade-off is the most important feature.
The regularization offers more flexibility for that trade-off
than just mode order selection. In addition, part of the
tail in the right boxplot in Figure 4 can be explained by
inadequate numerical minimization. (The models have not
been subjected to model validation.)

VII. CONVEXIFICATION BY DIFFERENTIAL ALGEBRA

Let us now illustrate another problem that concerns lack
of convexity in system identification loss functions (12). The
linear black-box polynomial models can be dealt with by
using ARX or FIR models, and black box linear state-space
models can be dealt with by subspace methods.

A more serious problem is when non-linear grey-box
models show severe non-linearities. We shall look at a variant
of the Michaelis-Menten growth kinetic equations which
describe the growth of enzyms materia.

If we denote by y the concentration of a certain enzyme,
and by u the addition of nutrition substrate, the dynamics is
described by

ẏ = θ1
y

θ2 + y
− y + u (43)

Here θ1 and θ2 are the maximal growth rate and the
Michaelis constant respectively, which are specific for a cer-
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tain enzyme. We assume that we measure the concentration
at time tk with a certain measurement error e(k):

ym(tk) = y(tk) + e(k) (44)

The predictor (1) and the criterion function (12) can readily
be found as

VN (θ) =

N∑
k=1

[ym(tk)− ŷ(tk|θ)]2 (45)

˙̂y(t|θ) = θ1
ŷ(t|θ)

θ2 + ŷ(t|θ)
− ŷ(t|θ) + u(t) (46)

Assume u(t) is an impulse at time 0. Note that the shape
of the loss function is independent on the noise level (size
of the variance of e.) It is thus sufficient to plot (45) for
e ≡ 0.That plot is shown in Figure 5. It is clearly seen that
even for noise-less observations it is quite a challenging task
to find arg minVN (θ). Very good initial guesses are required
to have success with iterative search. This is true no matter
how small the variance of the noise is. One might conclude
that it is difficult to find the parameters of this model, and
that information about them are well hidden in the data.

If we for the moment disregard the noise e, we can do as
follows: Multiply (43) with the numerator and rearrange the
terms:

ẏy + θ2ẏ = θ1y − y2 − θ2y + u+ θ2u

or

ẏy + y2 − uy =
[
θ1 θ2

] [ y
u− ẏ − y

]
(47a)

or z =θTφ (47b)

with obvious definitions of z and φ. Equation (47b) is a linear
regression that relates the unknown parameters and measured
variables φ and z. We can thus find them by a simple least
squares procedure. See Figure 6.

The manipulations leading to (47a) are an example of
Ritt’s algorithm in Differential Algebra. In fact it can be
shown, [14], that any globally identifiable model structure
can be rearranged (using Ritt’s algorithm) to a linear regres-
sion. This is in a sense a general convexification result for
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any identifiable estimation problem. A number of cautions
must be mentioned, though:

• Although Ritt’s algorithm is known to converge in a fi-
nite number of steps, the complexity of the calculations
may be forbidding for larger problems.

• With noisy measurements, care must be exercised in
differentiation, and also the linear regression may be
subject to disturbances that can give biased estimates.

But the fact remains: the result shows that the complex,
non-convex form of the likelihood function with many local
minima is not inherent in the model structure.

VIII. CONCLUSIONS

System Identification is an area of clear importance for
practical systems work. It has now a well developed theory
and is a standard tool in industrial applications. Even though
the area is quite mature with many links to classical theory,
new exciting and fruitful ideas keep being developed. This
article has tried to focus on some current work that has
convexification as a prime goal. Further discussions and
views on the current status and future perspectives on system
identification are given in e.g. [12] and [17].

IX. ACKNOWLEDGEMENTS

This work was supported by the ERC advanced grant
LEARN, under contract 267381.

REFERENCES

[1] H. Akaike. A new look at the statistical model identification. IEEE
Transactions on Automatic Control, AC-19:716–723, 1974.

[2] F.P. Carli, A. Chiuso, and G. Pillonetto. Efficient algorithms for large
scale linear system identification using stable spline estimators. In
Proceedings of the 16th IFAC Symposium on System Identification
(SysId 2012), 2012.

[3] Tianshi Chen, Martin S. Andersen, Lennart Ljung, Alessandro Chiuso,
and Gianluigi Pillonetto. System identification via sparse multiple
kernel-based regularization using sequential convex optimization tech-
niques. IEEE Transactons on Automatic Control, Submitted, Oct. 29
2012.

[4] Tianshi Chen and Lennart Ljung. Implementation of algorithms for
tuning parameters in regularized least squares problems in system
identification. Automatica, 50, 2013. to appear.



[5] Tianshi Chen, Lennart Ljung, Martin Andersen, Alessandro Chiuso,
P. Carli Francesca, and Gianluigi Pillonetto. Sparse multiple kernels
for impulse response estimation with majorization minimization algo-
rithms. In IEEE Conference on Decision and Control, pages 1500–
1505, Hawaii, Dec 2012.

[6] Tianshi Chen, Henrik Ohlsson, and Lennart Ljung. On the estima-
tion of transfer functions, regularizations and Gaussian processes-
Revisited. Automatica, 48(8):1525–1535, 2012.

[7] H. Cramér. Mathematical Methods of Statistics. Princeton University
Press, Princeton, N.J., 1946.

[8] F. Dinuzzo. Kernels for linear time invariant system identifica-
tion. Manuscript, Max Planck Institute for Intelligent Systems,
Spemannstrasse 38,72076 Tübingen, Germany, 2012.
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