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Outline

A review of the classical, conventional System Identification
Setup With Special Emphasis on
• Convexity Aspects
• Bias – Variance
• Regularization
• Differential Algebra
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System Identification in Short

A Typical Problem

Given Observed Input-Output Data: Find a Description of the Sys-
tem that Generated the Data [Simulator or Predictor. Linear System:
Impulse response or Bode plot].

Basic Approach

Find a suitable Model Structure, Estimate its parameters, and com-
pute the response of the resulting model

Techniques

Estimate the parameters by ML techniques/PEM (prediction error
methods). Find the model structure by AIC, BIC or Cross Validation
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More Formally

Models:

Model Structure: M. Parameters: θ. Model: M(θ).
Observed input–output (u, y) data up to time t: Zt

Model described by predictor: M(θ) : ŷ(t|θ) = g(t, θ, Zt−1).

Estimation: ML or PEM techniques

− log likelihood function VN(θ) = ∑N
t=1 |y(t)− ŷ(t|θ)|2

θ̂N = arg minθ VN(θ)

Model Structure (size) determination, AIC, BIC:

M(θ̂N) = arg minM,θ [log VN(θ) + g(N)dimθ]
g(N) = 2 or log N

Lennart Ljung

Convexity Issues in System Identification IEEE ICCA 2013 Hangzhou, June 12

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET



Comment on Model Structure Selection

The model fit as measured by ∑N
t=1 |y(t)− ŷ(t|θ)|2 for a certain set

of data will always improve as the model structure becomes larger
(more parameters). The parameters will start adjusting also to the
actual noise effects in the data [”Overfit”]
There are two ways of counteracting this effect:

Compute the model on one set of (estimation) data and evaluate
the fit on another (validation) data set. [Cross-Validation]

Add a penalty term to the criterion which balances the overfit:

M(θ̂N) = arg min
M,θ

[log VN(θ) + g(N)dimθ]

AIC :g(N) = 2, BIC : g(N) = log(N)

AIC: Akaike’s Information Criterion. BIC: Bayesian Information
Criterion [= MDL: Minimum Description Length]
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Model Estimate Properties

As the number of data, N, tends to infinity

θ̂N → θ∗ ∼ arg minθ E|ε(t, θ)|2 the best possible predictor in
M
IfM contains a true description of the system
• Cov θ̂N = λ

N [Eψ(t)ψT(t)]−1 [ψ(t) = d
dθ ŷ(t|θ), λ : noise level]...

• ... is the Cramér-Rao lower bound for any (unbiased) estimator.

E: Expectation. These are very nice optimal properties:

The model structure is large enough: The ML/PEM estimated
model is (asymptotically) the best possible unbiased one. Has
smallest possible variance (Cramér- Rao)

The model structure is not large enough: The ML/PEM estimate
converges to the best possible approximation of the system.
The limit model has the smallest possible bias.
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Linear Models

General Description

y(t) = G(q, θ)u(t) + H(q, θ)e(t), q : shift op. e : white noise

G(q, θ)u(t) =
∞

∑
k=1

gku(t− k), H(q, θ)e(t) = 1 +
∞

∑
k=1

hke(t− k)

Predictor

ŷ(t|θ) = G(q, θ)u(t) + [I−H−1(q, θ)][y(t)−G(q, θ)u(t)]

Asymptotics: [Φu, Φv: Spectra of input and additive noise v = He.]

θ̂N → θ∗ = arg min
θ

∫ π

−π
|G(eiω, θ)−G0(eiω)|2 Φu(ω)

|H(eiω, θ)|2 dω

CovG(eiω, θ̂N) ∼
n
N

Φv(ω)

Φu(ω)
as n, N → ∞ n : model order
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Common Parameterizations:

BJ:

G(q, θ) =
B(q)
F(q)

; H(q, θ) =
C(q)
D(q)

B(q) = b1q−1 + b2q−2 + . . . bnbq−nb

F(q) = 1 + f1q−1 + . . . + fnf q−nf

θ = [b1, b2, . . . , fnf ]

ARX:
y(t) =

B(q)
A(q)

u(t) +
1

A(q)
e(t) or

A(q)y(t) = B(q)u(t) + e(t) or

or ARX:

y(t)+ a1y(t− 1)+ . . .+ any(t−n) = b1u(t− 1)+ . . .+ bnu(t−n)
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State-Space Models

State-Space:

x(t + 1) = Ax(t) + Bu(t) + Ke(t)
y(t) = Cx(t) + e(t)

Corresponds to

G(q, θ) = C(qI−A)−1B. H(q, θ) = C(qI−A)−1K + I
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Continuous Time (CT) Models

Physical Model with unknown parameters

ẋ(t) = F (θ)x(t) + G(θ)u(t) + w(t)
y(t) = C(θ)x(t) + D(θ)u(t) + v(t)

Sample it (with correct Input Intersample Behaviour):

x(t + 1) = A(θ)x(t) + B(θ)u(t) + K(θ)e(t)
y(t) = C(θ)x(t) + e(t)

Now apply the discrete time formalism to this model, which is
parameterized in terms of the CT parameters θ
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Status of the “Standard Framework”

Well established statistical theory
Optimal asymptotic properties
Efficient software
Many applications in very diverse areas. Some examples:

• Aircraft Dynamics:
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• Pulp Buffer Vessel:
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Time-out

This is a bright and rosy picture. Any issues and problems?

arg minθ VN(θ) ?
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Convexity issues!

Small data sizes – complex systems (asymptotics do not apply):
Well tuned bias–variance trade–off.
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Bias – Variance Trade Off

Any estimated model is incorrect. The errors have two sources:

Bias: The model structure is not flexible enough to contain a
correct description of the system.

Variance: The disturbances on the measurements affect the
model estimate, and cause variations when the experiment is
repeated, even with the same input.

Mean Square Error (MSE) = |Bias|2 + Variance.
When model flexibility ↑,Bias ↓ and Variance ↑.
To minimize MSE is a good trade-off in flexibility.
In state-of-the-art Identification, this flexibility trade-off is governed
primarily by model order. May need a more powerful tuning
instrument for bias–variance trade-off.
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Convexity Issues

For most model structures the criterion function
VN(θ) = ∑N

t=1 |y(t)− ŷ(t|θ)|2 is non-convex and multi-modal
(several local minima). Evolutionary Minimization Algorithms could
be applied, but no major successes for identification problems have
been reported.

Important observation for linear models
ARX can Approximate Any Linear System

Arbitrary Linear System: y(t) = G0(q)u(t) + H0(q)e(t)

ARX model order n, m : An(q)y(t) = Bm(q)u(t) + e(t)

as N >> n, m→ ∞

[Ân(q)]−1B̂m(q)→ G0(q), [Ân(q)]−1 → H0(q)
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Convexity – Initial Estimates

The ARX-model Is a Linear Regression

Note that the ARX-model is estimated as a linear regression
Y = Φθ + E, (Φ containing lagged y, u and θ containing a, b)
A convex estimation problem.

Virtually all methods to initialize the non-convex minimization of the
ML criterion for linear models are based on an ARX-model of some
kind.

In particular, so called subspace methods for state-space models
can simplistically be seen as a high order ARX model that is reduced
by Hankel-norm model order reduction. (Using SVD, so the algorithm
is non-iterative.)
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How High Orders are Required for the ARX
Approximation?

Try to estimate the transfer function for the data:
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How High Orders are Required for the ARX
Approximation?

Estimate ARX-model of order 10 and 30: Bode plots of models
together with true system:
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Order 10. Order 30. True. The high order model picks up the true
curves better, but seem more ”shaky”. Look at Uncertainty regions!
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How to Curb Variance/Flexibility?

The ARX approximation property is valuable, but high orders come
with high variance.
Can we curb the flexibility that causes high variance other than by
lower order? Regularization
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High Order Models – Regularization

Curb the freedom of the model by adding a regularization term to the
Least Squares Criterion:

Y = Φθ + E

θ̂N
R = arg min

θ
|Y−Φθ|2+θTP−1θ

P is the Regularization Matrix. θ̂R
N = (RN + P−1)−1ΦTY MSE:

E[(θ̂R
N − θ0)(θ̂

R
N − θ0)

T] = (RN + P−1)−1×
(RN + P−1θ0θT

0 P−1)(RN + P−1)−1 RN = ΦΦT, θ0 = true par

Minimized by P = θ0θT
0 : MSE = (RN + P−1)−1 How to select P?
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Regularization – Bayesian Interpretation

Suppose θ is a random variable, that a priori (before the
measurement data have been observed) is assumed to be Gaussian
with zero mean and covariance matrix P: θprior ∈ N(0, P)

Y = Φθ + E, so Y and θ are dependent variables. After Y has been
measured, we know more about θ:

θpost ∈ N(θ̂R
N, Ppost)

where θ̂R
N is the regularized LS estimate from the previous slide.

So, the Maximum a posteriori (MAP) estimate is equal to the
regularized LS estimate with P as the regularization matrix.

So that is a natural way to think of a good regularization matrix: Let it
mimic what is known or assumed about the parameter to be
estimated. – It is the covariance matrix of the parameter vector.
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Tuning the Regularization Matrix

θ is a Gaussian random vector with zero mean and covariance matrix
P: θ ∈ N(0, P). The measured data in Φ is a known matrix, and the
noise E ∈ N(0, I). Then the output Y = Φθ + E is itself a Gaussian
vector:

Y = Φθ + E ∈ N(0, Z(P)), Z(P) = ΦPΦT + I

So we know the pdf of Y given P, and P can be estimated by ML:
ML Estimate of P

P̂ = arg minP YTZ(P)−1Y + log det Z(P)

If P is parameterized by some hyperparameters α, P(α), these can
be estimated by
ML Estimate of Hyperparameters

α̂ = arg minα YTZ(P(α))−1Y + log det Z(P(α))
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ARX Model Priors

When estimating an ARX-model, we can think of the predictor

ŷ(t|θ) = (1−A(q))y(t) + B(q)u(t)

as made up of two impulse responses, A and B. The vector θ should
thus mimic two impulse responses, both typically exponentially
decaying and smooth.We can thus have a reasonable prior for θ:

P(α1, α2) =

[
PA(α1) 0

0 PB(α2)

]
Block Diagonal A&B

where the hyperparameters α describe decay and smoothness of the
impulse responses. Typical choice:
TC kernel

Pk,` = C min(λk, λ`); α = [C, λ], λ < 1
E|bk|2 = Cλk, corr(bk, bk+1) =

√
λ
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An Example

Equipped with these tools, let us now test some data z (selected but
not untypical). The example uses complex dynamics and few (210)
data, so this is a case where asymptotic properties are not prevalent.
plot(z)
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Estimate a Model: State-of-the-Art

We will try the state-of-the art approach: Estimate SS models of
different orders. Determine the order by the AIC criterion.

for k=1:30
m{k}= ssest(z,k);

end
(dum,n) =
min(aic(m{:}));
mss = m{n};
impulse(mss)
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Estimate a Model: Regularized ARX

Now, let us try an ARX model with na=5, nb=60. Estimate a
regularization matrix with the ’TC’ kernel (2 parameters, C, λ each for
the A and B parts):

aopt = arxOptions;
(L,R) = arxRegul(z,[5 60 0],’TC’);
% "inv(P) = L*R"
aopt.Regularization.R = R;
aopt.Regularization.Lambda = L;
mr = arx(z,[5 60 0],aopt);
impulse(mr)
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The Oracle

The examined data were ob-
tained from a randomly gener-
ated model of order 30:

y(t) = G0(q)u(t) + H0(q)e(t)

The input is Gaussian white noise
with variance 1, and e is white
noise with variance 0.1. The im-
pulse responses of G0 and H0
are shown at the right.
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How Well Did Our Models mss and mr Do?

Blue curves: The true impulse responses.
Red curves: The selected SS-model mss
Green curves: The regularized ARX model mr
G: impulse response from u H: The impulse response from e
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G : fit: mss: 79.42% mr: 83.55% H: fit mss: 77.05%, mr: 81.59%
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Surprise ?

ML beaten by an ”outsider algorithm”!:That is a surprise and
embarrassment! There is a certain randomness in these data, but
Monte-Carlo simulations substantiate the observed conclusion.

Even though ML is known to have the quoted optimal properties for
bias and variance, the observation is still not a contradiction.

Recall: Mean Square Error (MSE) = |Bias|2 + Variance.

ML: Bias ≈ 0⇒: MSE = Variance = CR Lower bound for unbiased
estimators

But with some bias, Variance could be clearly smaller then CRB

Recall for Lin Reg: CRB = (ΦΦT)−1 > (ΦΦT + P−1)−1 = MSE for
best regularized estimated. More pronounced for short data

Lennart Ljung

Convexity Issues in System Identification IEEE ICCA 2013 Hangzhou, June 12

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET



Objections?

Recall: mss fit 79.42%, mr fit 83.55 %
We were just unlucky to pick order 3 (AIC). Other model
selection criteria would have given better results.
• If we ask the oracle what is the best possible state-space order

for ML estimated model, the answer is order 12 for G with a fit
82.95 % and order 3 for H with a fit 77.04% So the regularized
ARX -model gives better fit to both G and H than is at all
possible for ML estimated state-space models [for these data].

The R-ARX model is of order 60, and it is unfair to compare it
with SS models of low order.
• Try mred = balred(mr,7) to create a 7th order SS-model.

It still has a G-fit of 83.56% and outperforms the oracle-selected
ML SS models.
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Discussion

In this case Regularized ARX gave a much better and more
flexible bias–variance trade off through the continuously
adjustable hyperparameters in the regularization matrix —
Compared to the state-of-the art bias–variance trade off in
terms of discrete model orders.
Can we forget about ssest and move over to regularized
ARX?
• No, recall that the studied situation had quite few data, and the

good trade-off is reached for rather large bias, not favoring ML.
• But one should be equipped with regularized ARX in one’s

toolbox
Regularized ARX (possible followed by balred) can be seen
as a convexification of the state-of-the art SS model estimation
techniques.
NB: Tuning of hyperparameters normally non-convex
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Algebraic Convexification of Model Structures

And Now for Something Completely Different:
Consider the following example, inspired by the Michaelis-Menten
growth kinetic equations:

ẏ = θ1
y

θ2 + y
− y + u

y: concentration of enzyme. u addition of nutrition substrate.
θ1: Maximal growth rate. θ2: the Michaelis constant.
Measure the concentration with some noise:

ym(tk) = y(tk) + e(k)
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The Likelihood function

The Likelihood criterion function for estimat-
ing θ is defined from ym and u as

VN(θ) =
N

∑
k=1

[ym(tk)− ŷ(tk|θ)]2

˙̂y(t|θ) = θ1
ŷ(t|θ)

θ2 + ŷ(t|θ) − ŷ(t|θ) + u(t)

It is depicted to the right for an impulse input:
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arg min??!!

Is this complicated relationship between y, u and θ an inherent
property of the model?
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Algebraic Manipulations

Let us examine the relationship between y, u and θ in more detail:

ẏ = θ1
y

θ2 + y
− y + u

ẏy + θ2ẏ = θ1y− y2 − θ2y + uy + θ2u
or

ẏy + y2 − uy =
[
θ1 θ2

] [ y
u− ẏ− y

]
or z =θTφ

This is not a reparameterization, but a reorgani-
zation of the original equations. z and φ are still
measured, and they are related to θ as a linear
regression.The criterion has been convexified
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Is This a General Property?

Suppose we have a collection of physical model equations.
(u: input. y: output, z: latent variables (e.g. states) ,θ:parameters.):
A Differential Algebraic Equation (DAE) Model Structure

M : gi(y, u, z, θ) = 0. i = 1, . . . , p.
gi are expression of the variables and their derivatives

Identifiability

Suppose that the structure is identifiable – no two different values of
θ can give the same solution set y, u.

Allowed Model Manipulations

Form new model equations by adding, multiplying and differentiating
the gi. New equation sets can thus be formed that have the same
solution set.
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A General Property – Using Ritt’s Algorithm

Convexifying Model Equations

Then by Ritt’s algorithm, [differential – algebraic manipulations of the
set of equations], the identifiable model structure can be transformed
to M∗ : φ(y, u) = θψ(y, u)

That is, the arbitrary, identifiable structureM can be convexified to
the linear regressionM∗. (Cautions: ....)
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Algebraic Convexification: Cautions

If noise is assigned to the outputs y, the resulting linear
regression need not be the ML criterion – The resulting LS
parameters may be biased.
• If the noise level is not too big, the bias can be small and provide

a sufficiently good initial estimate for the numerical minimization
of the ML criterion.

In problems of practical sizes, the computational complexity of
Ritt’s algorithm may be forbidding.
• It is active research area in Mathematics and Computer Science

to develop more efficient general tools for symbolic equation
manipulations.
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Convexity Issues: Conclusions I

The non-convexity of the criterion in state-of-the-art system
identification is a source of concern
For linear black-box models, the general approximation
capability of ARX-models is a common ground for successful
initialization of the numerical search for the estimate.
• This includes the use of subspace methods like N4SID, MOESP,

etc
• It is a remaining unsolved problem to initialize by convex

techniques structured linear grey-box models
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Convexity Issues: Conclusions II

Regularized ARX-models offer a fined tuned choice for efficient
bias–variance trade-off and form a viable convex alternative to
state-of-the-art ML techniques for linear black-box models.
• This bias–variance tuning is potentially more powerful than by

model order selection, since it involves a set of continuous
hyper-parameters

• Need to study good parameterizations of the regularization
matrix that allows safe, preferably convex tuning

Explicit convexification by differential-algebraic techniques is
always possible for identifiable model structures. This is (at
least) of conceptual interest.
• Need to follow the computational development in symbolic

equation manipulations.
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