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Abstract— Model-based engineering becomes more and more
important in industrial practice. System identification is a vital
technology for producing the necessary models, and has been an
active area of research and applications in the automatic control
community during half a century. At the same time, increasing
demands require the area to constantly develop and sharpen
its tools. This paper deals with how system identification does
that by amalgamating concepts, features and methods from
other fields. It describes encounters with four areas in systems
theory and engineering: Networked Systems, Particle Filtering
Techniques, Sparsity and Compressed Sensing, and Machine
Learning. The impacts on System Identification methodology
by these encounters are described and illustrated.

I. INTRODUCTION

System Identification is the art and science of building
mathematical models of dynamical systems from observed
input- output signals. It is a rather old and mature field
with roots in automatic control, at least from 1956, [98] and
with basic techniques going back several centuries to Gauss,
[28]. Nevertheless the topic remains vital and vibrant, not
the least because demands from model-based engineering
require constant development and improvement of tools.
The sustained scientific interest in System Identification is
evidenced, e.g. by the invitation to the current plenary,
the organization of many conferences/conference sessions,
and the interest in publications and software in the area.
The authors of the current paper also just received a five-
year advanced research grant from the European Research
Council for studies in “Limitations, Estimation, Adaptivity,
Reinforcement, Networks (LEARN) in System Identifica-
tion.”

It is the purpose of the current paper to give a background
and some details of what keeps System Identification alive
and kicking. We will do that by telling about four encounters
where system identification meets and tries to absorb the
essence of new techniques for pushing the identification
methodology forward. It must be stressed that the four areas
are just examples of the development of the identification
field. Other authors could and would have made other
selections in dealing with the essential progress of the field.

II. SYSTEM IDENTIFICATION MEETS NETWORKED

SYSTEMS

A. Introduction

The profound importance that networked systems play
in our lives today is of course evidenced by the Internet.
Perhaps less obvious is an on-going “hidden” network revo-
lution in a number of technology areas, e.g., in automotive

engineering, where networks are replacing expensive tradi-
tional wiring. Cheap computational and wireless transmis-
sion devices combined with a wide range of emerging new
sensors and actuators, in turn enabled by new technologies
such as micro- and nanosystems, have opened up for the use
of networked control systems on a large scale. The control
community has been quick in catching up to address the
associated theoretical challenges and in recent years this has
been a vibrant and exciting research area [4].

Characteristic to networked systems are that they con-
sist of “components” that are spatially distributed. Each
component can be viewed as consisting of a physical part
and an engineered device, in turn consisting of sensors,
actuators and a processing unit. The physical parts may be
interconnected in rather arbitrary ways (depending on the
type of system) while the processing units are interconnected
by communication networks, see Figure 1.
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Fig. 1. A networked system.

This configuration changes the perspective of control
design in two aspects: Firstly, the (dynamic) properties of
the communication network have to be accounted for, and,
secondly, the distributed nature of the system is emphasized.
Large efforts have been (and still are) devoted to develop
dynamic models for communication networks. These models
depend very much on the particular technology that is used,
e.g. wired and wireless networks exhibit widely different
characteristics. In particular, attention has been given to
wireless networks, but there is also extensive work on wired
networks, e.g. the Internet [75]. Some features of wireless



networks include sampling time jitter, random packet losses
and delays, and requirements of low grade quantization. Con-
straints on power consumption, costs, and channel capacity
are consequences of the distributed nature which limits local
information processing and information exchange between
the components.

System identification problems related to networked sys-
tems can broadly be divided into two categories:

1) How to identify models of the communication network
itself.

2) How to identify models of the physical system (pos-
sibly including sensor and actuator dynamics) in a
networked/distributed environment.

In this section we will in very select manner – our coverage is
by no means complete – highlight some system identification
problems that relate to these two problems.

B. Identification of communication networks

We will illustrate one important aspect of identification of
communication networks by discussing congestion control of
internet traffic. In the seminal paper [43] Frank Kelly and co-
workers presented a framework for the analysis and synthesis
of congestion control of internet traffic. The data traffic is
aggregated into fluid flows and by interpreting the indirect
signaling that takes place in the network, e.g. queuing delays,
as prices, the congestion control problem can be solved as a
decentralized convex optimization program.

Since Kelly’s work, the underlying fluid flow model
has undergone extensive refinement, see, e.g., [50], [73],
[51], [85], [40], [75]. In Figure 2 a generic communication
network is depicted. The network is used by N sources,
corresponding to N persistent flows in the network. Source
n sends xn(t) packets per second at time t into the network.
The signal x in the network represents a vector with the
rates of all the sources. The network consists of L links,
with associated finite capacities cl, l = 1, . . . , L (in packets
per second). The interconnection structure can be defined
via a so called routing matrix R ∈ R

L×N for which element
(l, n) is 1 if link l is used by source n, and 0 otherwise. The
signal y in the figure represents a vector with the aggregate
flows yl(t) for all links l = 1, . . . , L. The link flows are
given by

yl(t) =

N∑
n=1

Rlnxn(t− τfln) =: rf (x(t), τ
f
l )

where τ fln is the time it takes for a packet that is sent
by source n to reach link l. Link l reacts to its level of
congestion by responding with a “price” signal p l. The price
signal depends on the design of the network. One possibility
is to let pl be a function of the queuing time experienced at
link l. In Figure 2, L represents these link dynamics. The
prices (collected in the vector p) are sent back to the sources
upon which source n receives the aggregate price

qn(t) =

L∑
l=1

Rlnpl(t− τbln) =: rb(p(t), τ
b
n). (1)

where τ bln is the time it takes for the price at link l to
reach source n. The block H in Figure 2 indicates that the
aggregate prices may be distorted (e.g. quantized) before the
sources get access to them. Depending on the experienced
price, each source adjusts it transmit rate. This source dy-
namics is represented by S in the figure.
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Fig. 2. Schematic representation of the congestion control system.

A fluid flow model only includes persistent sources. Inter-
mittent traffic can be modeled as variations in the link rates
and is represented by the signal r in Figure 2. Furthermore,
the model only includes bottleneck links, i.e. those links l
operating at their maximum capacity c l. The signal v models
variations in the received aggregated prices due to that non-
bottleneck links are exposed to short term traffic.

Several studies have been conducted to validate the model
above, e.g. [90] and [85]. In particular, interest has focused
on identifying the link dynamics. Notice that congestion
control systems are feedback systems, c.f. Figure 2, and
that care therefore has to be exercised when data from such
systems are used for identifying or validating a model. To
illustrate what can happen, suppose that we would like to
identify the link dynamics from measurements of source rates
x and link prices p. Suppose first that only r is excited. Then
it is easy to see that

x = SHrTb p

from which we see that identifying a model

p = Gx (2)

will result in that the inverse of source dynamics S is
identified, rather than the desired link dynamics. This is
exactly the well known problem that the inverse of the
controller is identified under certain excitation conditions
[47]. The proper experiment should be carried out with



excitation in v since then

p = Lrfx
implying that the link dynamics is identified with the model
(2). In practice variations in v can be obtained by manipulat-
ing the protocol at the source which determines the source
dynamics, e.g., the TCP protocol.

As most communication systems operate in closed loop,
the discussion above shows that system identification cer-
tainly can contribute to identification of communication
networks. For more details on how to identify congestion
control dynamics in a proper manner we refer to [39].

C. Decentralized identification in a networked environment

We will now consider some aspects that arise when
a system is to be identified in a networked environment
characterized by limitations in data communication and the
possibility/necessity of local data processing, e.g., due to the
communication constraints. Two essential scenarios can be
considered:

1) Fusion centric
2) Fully decentralized

where in the first scenario nodes transmit information to a
fusion center for final processing, whereas in the second
scenario no such center exists but nodes have to update each
other with as little coordination, synchronization and com-
munication as possible. Next we will discuss the statistical
basis for identification under such schemes.

1) A statistical basis: Let y be a random vector with
probability density function (pdf) pθ(·) where θ ∈ R

n. The
Cramér-Rao Lower Bound (CRLB) provides a lower bound
for any unbiased estimator θ̂ of θ that is based on y. Subject
to certain regularity conditions (see [44]), the covariance
matrix of the parameter estimate is lower bounded by

E
[
(θ̂ − θ)(θ̂ − θ)T

]
≥ I−1

F (pθ) (3)

where IF (pθ) is the Fisher information matrix

IF (pθ) = −E

[
∂2

∂θ∂θT
log pθ(y)

]
(4)

Under certain conditions the CRLB is achieved asymp-
totically (as the number of measurements grows) by the
maximum likelihood (ML) estimate:

θ̂ML = argmax
θ

pθ(y) (5)

Consider now the problem of estimating θ in a networked
system. Let ptotθ denote the joint pdf of all measurements in
the system. Then I−1

F (ptotθ ) is a universal lower bound for
the covariance matrix of any unbiased parameter estimate.
Notice that (5) requires the processing of all measurements,
i.e. all data has to be gathered at a “fusion center” and
be processed there, according to (5). When measurements
are processed locally before being transmitted to the fusion
center one may therefore expect a loss in accuracy. However,
this is not generically true and to understand when local
processing is possible without loss of accuracy we will need

the concept of a sufficient statistic. We say that s = s(y) is
a sufficient statistic for y if the conditional distribution of
y given s, p(y|s) say, is independent of θ [44]. This means
that given s it is possible to generate random samples from
y|s without knowing θ and hence to generate a new random
vector ỹ which has exactly the same distribution as y.

Example 1: Suppose that the elements of y =[
y1, . . . , ym

]T ∈ R
m are independently normal distributed

with unknown mean θ ∈ R and known variance λ. Then the
sample mean of y is a sufficient statistic. The sample mean
is also the ML estimate θ̂ML of θ.

If in addition λ is unknown, the sample mean and the
sample variance of the residuals

λ̂ =
1

m

m∑
j=1

(yj − θ̂ML)2

form a sufficient statistic.
There is no need to re-create “y” from a sufficient statistic by
the random procedure outlined above, the sufficient statistic
can be used directly in the estimation. This can be seen as
follows. Let p̃θ(s) be the pdf of s, then

IF (pθ) = −E

[
∂2

∂θ∂θT
log pθ(y)

]
= {pθ(y) = p(y|s(y))p̃θ(s(y)),

(by assumption p(y|s) does not depend on θ)}
= −E

[
∂2

∂θ∂θT
log p̃θ(s(y))

]
= IF (p̃θ)

implying that the CRLB’s using y and s are identical since
the information matrices are equal.

From a statistical point of view there is no information loss
if the local processing of measurements generates sufficient
statistics. We illustrate this with an example.

Example 2: Suppose that there are two sensors, where
Sensor i) provides the measurements yi =

[
yi1, . . . , yim

]T ∈
R

m according to

yij = θ + eij , j = 1, . . . ,m

where {eij} are independent normally distributed random
variables with zero mean.

The local ML estimate of θ based on the measurements
from Sensor i) only are given by

θ̂ML
i =

1

m

m∑
j=1

yij

These estimates can be computed locally and then transmit-
ted to a fusion center where, e.g., the estimate

θ̂central =
θ̂ML
1 + θ̂ML

2

2
(6)

can be formed. If the variance of the measurment errors
from the sensors are equal, this is the ML estimate given
the measurements from both sensors. However, when the
measurement errors are different, i.e. when E[e2

ij ] = λi,
λ1 �= λ2, (6) is no longer the central ML estimate. Suppose



that Sensor 1 is of high quality such that λ1 is small but that
Sensor 2 is very poor so that λ2 � λ1. Then θ̂central will
in fact be a worse estimate than θ̂ML

1 .
A better estimate at the fusion center can be obtained by

transmitting the local sufficient statistics si instead of the
local ML estimates. Let y =

[
yT1 , y

T
2

]T ∈ R
2n and let si be

a sufficient statistic for yi. Since the sensors are subject to
independent noise it holds

pθ(y) =

2∏
i=1

pθ(yi) =

2∏
i=1

p(yi|si)
2∏

i=1

pθ(si) (7)

which shows that s =
[
sT1 , s

T
2

]T
is a sufficient statistic for

the total measurement vector y. From Example 1 we see that
if we in addition to the local ML estimates should transmit
also the local noise variance estimates

λ̂i =
1

m

m∑
j=1

(yij − θ̂ML
i )2

These variance estimates can then be used by the fusion
center to avoid the problem that a single poor sensor may
destroy the fused estimate of θ.
In conclusion, regardless of fusion centric or fully decen-
tralized schemes, unless sufficient statistics are transmitted
information loss will occur.

A subtle issue arises when the nodes are privy to local
information regarding their own measurement process. We
discuss this through an example.

Example 3: Suppose that we have n nodes and that node i
measures yi =

[
yi1 . . . yim

]T ∈ R
m where each element

is independently normal distributed with unknown mean θ
and variance λi. Let us assume that observations at different
nodes are independent. Then the central ML estimate of θ is
given by

θ̂ML =

∑n
i=1

ȳi

λi∑n
i=1

1
λi

(8)

where ȳi is the sample mean at node i

ȳi =
1

m

m∑
t=1

yij

Suppose now that each node knows its own noise variance
but not the others’. Then, following Example 1, ȳ i is a
sufficient statistic. However, in order to combine the local
sufficient statistics in the right way, i.e. as in (8), also the
noise variances λi have to be communicated.
There exist more or less elaborate ways to deal with the
problem highlighted in Example 3. In a fully decentralized
context [95] communicates the necessary weights explicitly
whereas in [5] the weighting is done locally.

Another subtle issue arises when the transmission of
information from the sensors to the fusion center is subject to
rate constraints. It may then happen that ancillary statistics
may improve upon the estimate. An ancillary statistic is a
statistic whose distribution does not depend on the unknown
parameters. We refer to the surveys [34], [94] and references

therein for details of the problem when the transmission to
the fusion center is rate constrained.

2) The impact of noise: In Example (2) it is the fact
that the nodes have access to independent measurements,
i.e. (7), that ensures that it is sufficient to distribute the
local sufficient statistics between nodes, or to a fusion
center. When this is not the case, the situation is much
more complex and in this section we will illustrate that the
spatial correlation properties of the noise are crucial for how
data should be processed. There exists a simple condition
for when locally linearly processed measurements can be
combined into the centralized linear minimum mean variance
estimate [71].

Consider the distributed system in Figure 3. Node i has
yi−1 as input and yi as output and consists of the first order
transfer function Gi(q) = biq

−1, where the parameters bi,
i = 1, . . . , n need to be estimated. We denote estimates by
b̂i and the true values by boi . Suppose that, for some reason,
the interest is to estimate Jo =

∑n
k=2 b

o
k.

We will consider three different estimation schemes: A
fusion centric approach where {yi−1(t), yi(t)}Nt=1 is used
locally to estimate bi using least-squares estimation, which
then is sent to a fusion center where all estimates are
combined. The second scheme will be a centralized scheme
where all parameters are estimated jointly using {yi(t)}Nt=1,
i = 0, . . . , n. In the last approach neighboring nodes collab-
orate by passing data between each other before subsequent
data processing and transmission to the fusion center.

G1 G2 Gn

y0
e1
y1

e2
y2

en
yn

Fig. 3. A decentralized system.

We will assume that for i = 1, . . . , n, {ei(t)}Nt=1 is a
sequence of independent normal distributed random variables
with zero mean and known variance λ. In regards to the
spatial properties of the noise we will consider two extreme
cases: Firstly we will assume that the noise sequences are
mutually independent. In the second scenario the noise
sequences are perfectly dependent, i.e. e i(t) = e(t), i =
1, . . . , n, t = 1, . . . , N where {e(t)}Nt=1 is a sequence of
independent random variables. That disturbances acting on
various subsystems can be strongly correlated is not an
uncommon situation. Consider for example an experiment
on a power grid during a thunderstorm with lightnings.

In order to simplify the calculations we assume that boi =
0, i = 1, 2, . . . , n, so that

yi(t) = ei(t) (9)

and that the first input y0 is zero mean white noise, also
with variance λ. We consider first the case where the noise
sequences are mutually independent.

Independent noise sequences. When {e i(t)}Nt=1 is inde-
pendent from all other noise sequences as well as normally



distributed, the ML estimate of bi is obtained as the least-
squares estimate corresponding to

yi(t) = biyi(t− 1) + ei(t), t = 1, . . . , N (10)

i.e.

b̂i =

∑N
t=1 yi(t)yi(t− 1)∑N

t=1 y
2
i (t− 1)

(11)

Thus the fusion centric scheme gives exactly the same result
as the centralized scheme in the case of mutually independent
noise sequences. We also conclude that there is nothing to
gain by allowing the nodes to share information during the
data processing.

Dependent noise sequences. When the noise sequences are
identical, we obtain from (9) and (11) that the local least-
squares estimates are given by

b̂i = boi +
1
N

∑N
t=1 e(t)yi(t− 1)

1
N

∑N
t=1 y

2
i (t− 1)

= b0i + ē, i = 2, . . . , n (12)

where ē is an error term

ē =
1
N

∑N
t=1 e(t)e(t− 1)

1
N

∑N
t=1 e

2(t− 1)
(13)

that is common to all estimates. From (12) we obtain that
for large N (so that 1

N

∑N
t=1 e

2(t− 1) ≈ λ),

E[(b̂i − boi )
2] ≈

1
N2 Nλ2

λ2
=

1

N
(14)

but also, since ē is common to all estimates,

E[(b̂i − boi )(b̂j − boj)] ≈
1

N
, i = 2, . . . , n

This implies that the mean-squared error of the estimate Ĵ =∑n
k=2 b̂k is given by

E[(Ĵ − Jo)
2] ≈ (n− 1)2

N
(15)

This means that for a large network (large n), even though
the estimation error in each node is small, the total error can
accrue to an unacceptable level.

In the centralized approach, when we can use measure-
ments of all signals yi, we can obtain perfect estimates of
all parameters. Plugging in e(t) = y1(t) − G1(q)u(t) into
the equations for each node gives

yi(t) = Gi(q)yi−1(t) + e(t)

= Gi(q)yi−1(t) + y1(t)−G1(q)y0(t)

which is a noise free relationship between variables, which
means that the corresponding model parameters can be
obtained exactly. Consequently also the estimate of Jo will
be exact.

If now the nodes are allowed to communicate locally with
each other, one can easily see that if node k sends a few
samples of its input yk−1 to node k+1, then node k+1 can
estimate bk+1 and bk perfectly.

G1 G2
u u2

e1 e2
y1 y2

Fig. 4. A distributed multi-sensor network. The sensor measurements y1
and y2, together with the input u are used by a fusion center to estimate
G1 and G2.

Summarizing, independent noise sequences leads to that
fusion centric identification without collaboration between
nodes is optimal, whereas the same scheme can have very
poor performance when the noise sources are strongly cor-
related. In the latter case, local information exchange can
significantly improve the accuracy. We conclude that the cor-
relation structure of the noise can have a tremendous impact
on how decentralized identification should be performed.

3) The impact of structure: Consider the distributed multi-
sensor network in Figure 4 where sensor i may transmit the
measurement yi to a fusion center. Both transfer functions
G1 and G2 are unknown. Consider now the identification of
the transfer function G1. From the figure it is clear that mea-
surements from Sensor 1 provide information regarding this
transfer function. However, it also seems somewhat obvious
that Sensor 2 can contribute to improving the accuracy of the
estimate of G1 since y2 = G2G1u + e2. However, in [38],
[83] it is shown that under certain configurations of the model
structures used for G1 and G2, Sensor 2 contains almost no
information regarding G1 even if the signal to noise ratio of
this sensor is very high. The result can easily be generalized
to arbitrary number of nodes in a cascade structure.

4) Communication aspects: We will now discuss some
of the issues associated with transmitting information over a
communication channel.

a) Bandwidth limitations: One aspect is that the ca-
pacity of some communication channels is so low that it has
to be accounted for. One such typical constraint is that the
available bit rate may be restricted so that the information
has to be quantized before transmission.

Example 4: Suppose that node i in a network measures
the scalar

yi = θ + ei

where ei are independent normal distributed random vari-
ables with zero mean and variance λ. When each node only
can relay whether yi exceeds a certain threshold T (common
to all nodes) or not, to the fusion center, it can be shown that
the CRLB is at least a factor π

2 above the CRLB for the non-
quantized case [62]. The optimal threshold is T = θ, and
therefore infeasible since θ is unknown. We refer to [67] for
further details.
Results on quantized identification in a very general setting
can be found in [86], [87], [88].



b) Sampling time jitter: Consider the scalar continuous
time system

y(t) = θu(t) + v(t)

where θ ∈ R is an unknown parameter to be identified. and
where v(t) is a disturbance. The input u, which we assume
to be a stationary process with covariance function ru(τ) =
E[u(t+τ)u(t)], is uniformly sampled with sampling period T
resulting in un = u(nT ). However, a non-ideal sensor causes
sampling jitter τn in the corresponding output samples

yn = θu(nT + τn) + vn (16)

where vn = v(nT+τn). Standard least-squares identification
of θ using N samples from (16) gives

θ̂ =
1
N

∑N
n=1 ynun

1
N

∑N
n=1 u

2
n

=
1
N

∑N
n=1 u(nT + τn)u(nT )
1
N

∑N
n=1 u

2(nT )
θ+

1
N

∑N
n=1 v(nT + τn)u(nT )
1
N

∑N
n=1 u

2(nT )

(17)

Assuming that the jitter {τn} is stochastic with a stationary
distribution and is independent of the noise, and that the
noise has zero mean and is uncorrelated with the input, the
second term on the right-hand side of (17) converges to zero
as the number of samples N → ∞. For the first term in (17)
we have

lim
N→∞

1
N

∑N
n=1 u(nT + τn)u(nT )
1
N

∑N
n=1 u

2(nT )
θ =

Eτ [ru(τ)]

ru(0)
θ (18)

with the convergence being with probability 1 under suitable
regularity conditions. In (18), Eτ [ru(τ)] is the expectation of
ru(τ) with respect to the distribution of the jitter τ . Thus we
see that the least-squares estimate of θ will not be consistent
unless Eτ [ru(τ)] = ru(0). This illustrates that sampling
jitter can cause bias problems in system identification. In
[26], the jitter problem is analyzed in the frequency domain
and it is shown how to compensate for the incurred bias.
In the case of time-stamping of packets, a continuous time
instrumental variable method is used in [84] to cope with
irregular sampling.

D. Relation to other areas

There are obvious connections between fully distributed
identification and distributed optimization, see e.g. [79], [9].
A widely studied area is distributed estimation where nodes
share information regarding some random vector that is to
be estimated. Relevant questions are whether the nodes will
converge to the same estimate as the information exchange
increases, and if so, whether the nodes reach a consensus and
the quality of this estimate as compared to the centralized
estimate, see, e.g., [12]. Wireless sensor networks is also a
closely related area [52]. A popular class of methods are
consensus algorithms where nodes are ensured to converge

to the same result despite only local communication between
nodes.

E. Summary

We have highlighted that it is important to take into
account the closed loop nature of the problem when iden-
tifying communication networks. We have also seen that
identification of networked systems is a multifaceted problem
with close ties to fields such as distributed estimation and
optimization. Whereas for a fix set-up, the CRLB provides a
lower bound on the estimation accuracy, the main challenge
when there are communication constraints is to devise the
entire scheme: When, what and where should a node transmit
in order to maximize accuracy? For example, suppose that
it is possible to transmit all raw data to a fusion center but
that the communication channel is subject to noise. Then it
may still be better to pre-process the measurements locally
before transmission. This type of considerations opens up
a completely new ball-park for system identification. An
interesting avenue is to view the problem as a decentralized
optimization problem, e.g. using the methods in [13].

III. SYSTEM IDENTIFICATION MEETS PARTICLE FILTERS

A. Identification of Nonlinear State Space Models

A general, discrete time, nonlinear identification model
can be stated like this:

x(t+ 1) = f(x(t), u(t), v(t), θ) (19a)

y(t) = h(x(t), e(t), θ) (19b)

Here u and y are the inputs and the outputs of the nonlinear
dynamical system, v and e are white noise disturbances
(called process and measurement noises, resp.), θ is an
unknown parameter vector. Often, in statistical literature f
and h are determined in terms of the conditional transition
probabilities from x(t) to x(t + 1), pθ(x(t + 1)|x(t)), and
the conditional observation probabilities qθ(y(t)|x(t)). Also
(19) is a hidden Markov model: the states x form a Markov
process (due to the whiteness of v), and it is hidden, since
only y is observed.

The parameter vector θ can generally be estimated by
the Maximum Likelihood (ML) method. The negative log
likelihood function (conditioned on the initial state x(0),
denoting past data by Y t = {y(1), . . . , y(t)}, can readily
be written as

ŷ(t|θ) = E(y(t)|Y t−1, U t−1) (20a)

ε(t, θ) = y(t)− ŷ(t|θ) (20b)

V (θ, Y N ) = − logPθ(Y
N ) =

N∑
t=1

pν(ε(t, θ)) (20c)

where ŷ is the conditional expectation of the next output and
pν is the probability density function (pdf) of the innovations
ε. V is the log likelihood function.

The ML estimate of the parameters based on N data is
then the parameter that minimizes the negative logarithm of



the likelihood function:

θ̂(N) = argmin
θ

V (θ, Y N ) (20d)

B. Nonlinear Filtering and Particle Filtering (PF)

The catch here is the prediction ŷ(t|θ). In case the model
(19) is linear and the noises are Gaussian, the predictor is
readily obtained from the Kalman filter. Otherwise, there
typically exists no closed form expression for the predic-
tor. The conditional probabilities propagate according to
Bayes rule which can be written as nonlinear partial differ-
ence equations, (e.g. Chapman-Kolmogorov) or the equiva-
lent continuous time partial differential equations (Kushner-
Stratonovich). Much effort has been spent over the years
to find efficient (approximate) solutions to this nonlinear
filtering problem. The 1990’s saw a break-trough in these at-
tempts. Markov Chain Monte Carlo (MCMC) methods, [35],
[23] and more specifically Sequential Importance Sampling
[33], developed into what is now generally known as particle
filters (PF) and became a new efficient tool for nonlinear
filtering. Intuitively it can be seen as approximate solutions of
the underlying partial difference equations on a stochastically
generated and carefully adapted grid in the x-space.

Another intuitive description is to see it as solving the
equation (19a) for a (large) number of candidate solu-
tions (“particles”), where solutions multiply stochastically,
to mimic the noise term v. Each solution candidate is then
matched to the observations y via (19b) to determine how
relevant or important they are. This match is the basis of re-
sampling the particles to keep the number constant (typically
a few hundreds/thousands) and covering relevant areas of the
state space.

A simplistic description of the basic process contains the
following steps:

1) Use M “candidate solutions” (particles) to (19a),
xi(t), i = 1, . . . ,M .

2) work, in principle, with approximations to the poste-
rior probability density q(t, x) = πt(x(t)|Y t) of the
empirical distribution form

q̂(t, x) =

M∑
i=1

δ(x− xi(t)) (21a)

(δ denoting singleton distributions around the particles,
implying that the distribution of the particles should
mimic the posterior density)

3) After having observed y(t), compute, for each par-
ticle, its (approximate) posterior probability w i(t) =
P (xi(t)|Y t), by Bayes rule

wi(t) =
1

N P (y(t)|xi(t)) (21b)

where N denotes normalization over all the M parti-
cles.

4) The posterior density of x(t) given the observations is
then approximated by the empirical distribution

q̂(t, x) =

M∑
i=1

wi(t)δ(x − xi(t)) (21c)

5) Update the particles over time by drawing a sample of
v in (19a).

6) Re-sample the particles at each time step according to
the posterior weights wi so that all the time equally
weighted distributions (21a) are used for the next time
step.

For a more comprehensive tutorial on particle methods we
may refer to [24].

C. Application to Identification

Clearly, particle filters have opened up new avenues for
nonlinear identification. The role of PFs both for off-line
and on-line identification of nonlinear systems is discussed
in [25] and [3], where expressions for the likelihood function
and its gradient wrt θ are given based on PF calculations. A
recent survey of nonlinear system identifiction using particle
filtering is [42].

Another route to identification of nonlinear systems (19)
is taken in [72]. Instead of computing the likelihood func-
tion and its gradient using particle filtering, which has a
few technical problems, they employ the EM (Expectation-
Maximization) method, [20], for estimation.

The EM algorithm is based on the iterations

θ̂k+1 = argmax
θ

Q(θ, θk) (22a)

Q(θ, α) = Eα[log pθ(X
N , Y N )|Y N ] (22b)

where pθ(XN , YN ) is the joint pdf of XN =
{x(1), . . . , x(N)} and Y N = {y(1), . . . , y(N)} according
to (19) and Eα(Z|Y N) denotes conditional expectation of
Z with respect to Y N assuming Y N is generated from (19)
with θ = α.

The point now is that Q(θ, θk) can readily be calculated
from smoothed state estimates E(x(t)|Y N ) assuming Y
has been generated for the parameter value θk. In [72], it
is shown how particle methods approximate the smoothed
states sufficiently well, to yield good identification results.
Recent study of smoothing with particle methods is given in
[14], [22], and Section 5 in [46].

The example considered in [72] (and also in [25]) is

x(t+ 1) = θ1x(t) + θ2
x(t)

1 + x2(t)
+ θ3 cos(1.2t) + θ4vt

(23a)

y(t) = θ5x
2(t) + θ6e(t) (23b)

An interesting aspect of this example is that for θ4 = 0
(which is the case studied in [72]), the likelihood function
can easily be calculated by just simulating (23a). Differentiat-
ing this equation w.r.t. θ2 gives a difference equation that may
be unstable. This means that the gradient of the likelihood
function is very large at certain values, and that the likelihood
function is highly multi-modal. Estimating the value of θ 4

(and finding it to be zero) and using the Q-function in (22a)
instead of the likelihood function is therefore a good way
out of problems with local minima.

The idea to use particle techniques to find smoothed state
estimates, together with the EM methods has been applied
to various nonlinear block-oriented models in [92] and [93].



D. A Variant: Minimum Distortion Filtering (MDF)

In [32] a deterministic choice of particles based on vector
quantization is suggested instead of the randomly generated
one in the PF. In short it can be described as the PF algorithm
(21) with the following steps modified:

Step 5 In the time update of the particles use a d-point
approximation of v and thus expand, temporarily
the M particles to M × d particles.

Step 6 Instead of stochastically re-sampling the particles,
use vector quantization (e.g. Lloyd’s algorithm,
[49]) to quantize back the M × d particles to M –
taking the posterior weights into account.

This approach to nonlinear filtering has been further studied
and tested in a number of papers, e.g. [31]. The potential
of the MDF approach to filtering in system identification
applications is particularly intriguing. See the promising
examples in [16] and [17].

IV. SYSTEM IDENTIFICATION MEETS SPARSITY

A. Preview

Sparse approximation and compressed sensing has been a
vey active research area in the last few years, e.g. [15], [21].
Basically the problem can be described as follows: Given
a matrix A, approximate it with a sparse matrix Â (that
has “many” elements equal to zero). So make the 2-norm
‖A − Â‖2 small while the 
0-”norm” ‖Â‖0 is small (recall
that the 
0-”norm” ‖A‖0 means the number of non-zero
elements of A). Various trade-offs between these competing
minimizations are controlled by the criterion

min ‖A− Â‖2 + λ‖Â‖0 (24)

(‖·‖ denotes the 2-norm: ‖·‖2) depending on the size λ. Now,
the problem (24) can be solved by postulating the number
of nonzero elements of Â (i.e. the number ‖Â‖0) and trying
all the corresponding combinations of A-matrices. With n
elements in A, this gives 2n combinations to test. Clearly
this is a forbidding task except for very small problems. A
solution is to replace the 
0 norm with a surrogate 
1 norm
(the sum of the absolute values of the entries)

min ‖A− Â‖2 + λ‖Â‖1 (25)

This is now a convex criterion, which is easily minimized,
and retains the feature that it favors solutions with many
elements of Â being exactly zero. This is, in short the
basic idea about sparseness, and compressed sensing. The
references [15], [21] contain technical results in what way
the solution to (25) mimics the solution to (24).

B. Regressor Selection: LASSO

A long standing, and much discussed problem in estima-
tion is the problem of regressor selection in linear regression:

Y = Φθ + E (26)

Each column in Φ corresponds to a regressor (and each row
in θ to its corresponding parameter).

The regressor selection problem is to choose a suitable
subselection of regressors that gives a good trade off between
the model fit and the number of estimated parameters (cf. the
Akaike criterion, [1])

min
θ

‖Y − Φθ‖2 + λ‖θ‖0

This involves, as (24), a combinatorially increasing num-
ber of tests, which traditionally is handled by screening
regressors in some ad hoc ordering (most relevant first, least
relevant first, ....)

An alternative is to use the “
1-trick” and minimize the
convex criterion

min
θ

‖Y − Φθ‖2 + λ‖θ‖1 (27)

which is known as LASSO (Least Absolute Shrinkage Se-
lection Operator), [77], and has been very successful in the
past 15 years. An alternate term is 
1-regularization since the
criterion of fit has an additive penalty term on the size of
the parameters, of the same type as the classical (Tikhonov
or 
2)-regularization with +λ‖θ‖22.

Groups of regressors: Group Lasso and Sum-Of-Norms
(SON) Regularization: A variant of (26, 27) is the situation
that the regressors can be grouped into several groups. We
still want to use as few parameters as possible, but once an
element in one group is used, it does not matter if the whole
group is used. Let there be d groups, and use a 
p-norm to
measure the size of each group:

Θk, k = 1, . . . , d (28a)

Θk = {θk,1, . . . θk,nk
} (28b)

‖Θk‖p =

⎛
⎝ nk∑

j=1

θpk,j

⎞
⎠

1/p

(28c)

n =

d∑
k=1

nk is the total number of candidate parameters

(28d)

Some parameter(s) in group k is used if and only if ‖Θk‖p >
0. The number of groups used is thus

‖[‖Θ1‖p, . . . , ‖Θd‖p]‖0 (29)

By relaxing this 
0 norm to 
1 we get the criterion

min
θ

‖Y − Φθ‖2 + λ

d∑
k=1

‖Θk‖p (30)

This is known as Group Lasso, [97], or Sum-Of-Norms
regularization. We may note that if p = 1, this is the same
as LASSO, so to obtain the group feature, it is essential to
use a p > 1 in the group parameter norm.

As a system identification application, we may e.g. think
of Y potentially modeling the response to d different inputs.
With Group Lasso we can thus determine which inputs to
really include in the modeling of Y .



C. Choosing the Regularization Parameter

The choice of the regularization parameter λ in (27) is
usually done by way of cross-validation or generalized cross-
validation; the regularization that performs best on fresh data
is chosen. This requires solving (27) a number of times.
However in [68] it is shown that AIC provides a way to
directly obtain a reasonable value for λ. The idea is based
on the observation that the full least squares estimate (let
us denote it θ̂LS

N ) can model the true system. This suggests
to find the estimate with smallest norm that has the same
model fit as the full least-squares estimate. By model fit we
here mean the fit on a fresh data set. According to [1] the
expected least-squares cost on a new data set for the full
least-squares estimate is given by(

1 +
2n

N

)
E
[
‖Y − Φθ̂LS‖2

]
(31)

where the expectation is over the new data. This suggests
the following method

min
θ

‖θ‖1

s.t. ‖Y − Φθ‖2 ≤
(
1 +

2n

N

)
‖Y − Φθ̂LS‖2

(32)

Ramifications and properties of this method can be found in
[68]; see also [63] and [78] for related work.

D. Segmentation, LPV and Hybrid Models

Consider the problem to build a model of the following
kind:

ŷ(t) = θT (p(t))ϕ(t) + e(t) (33)

where ŷ is the predicted output, and ϕ(t) is a vector of
regression variables, known at time t. θ is a model parameter
vector, that may depend on regime variable p ∈ R

p, whose
value at time t, p(t), is known.

Typically θ(p) is a piecewise constant function of p:

ŷ(t) = θTk ϕ(t) if p(t) ∈ Hk (34a)

Hk, k = 1, . . . , d is a partition of Rp (34b)

The class of models (33) is formally known as linear
parameter-varying, LPV models, but depending on the
regime variable it includes several other cases:

• If ϕ(t) is formed from the recent past inputs and
outputs, the model is of ARX type. If in addition ϕ
contains a constant the model becomes affine.

• If p = t = time, the model is a time-varying model.
If θ is a piecewise constant function of t, we have a
segmented (piece-wise constant) model.

• If p(t) = ϕ(t) we have a piecewise linear or piecewise
affine (PWA) model: in the partition Hk of the ϕ
space the model is linear, but its coefficients change
as the regression vector enters another region. This is a
common case of a hybrid model. See e.g. [7].

There are a few requirements when such a model (34) is
constructed:

1) Model estimation consists of

a) finding d, the number of partitions in (34b).
b) the d different parameter vectors θk.
c) the expressions for the partitions Hk

2) Use sufficiently large d to allow accurate description
in different areas of the regime space.

3) Use sufficiently small d to avoid overfit and obtain a
model that has reasonable complexity.

Suppose we have measured y(t), u(t), t = . . . , N and
want to find a model. To deal with Tasks 1a-1b, considering
aspects 2 and 3 we could let loose one parameter vector at
each sample and minimize

N∑
t=1

‖y(t)− θTt ϕ(t)‖2 + λ
N∑

s,t=1

K(p(t), p(s))‖θs − θt‖0
(35)

with respect to θt; t = 1, . . . , N .
The first term favors a good fit in accordance with require-

ment 2. The second term penalizes the number of different
models in accordance with requirement 3. In (35) the kernel
K is included to allow, for example, the possibility that
different θ are not penalized if they correspond to “very
different” regime variables.

Remark: The 
0 norm in (35) should be interpreted in
the group sense of (29), that is as 0-norm of the vector
that is formed all the elements ‖θt − θs‖p. Actually, strictly
speaking, this norm does not “count” the number of different
θi: if there are d different models, such that model j is the
same for kj values of t (N =

∑d
j=1 kj ), the 
0-norm takes

the value
∑d

i,j=1i�=j kikj .
As before, the criterion (35) is computationally forbidding

even for quite small N . We therefore relax the 
0 norm to 
1
norm as in (30) to obtain the convex Sum-Of-Norms criterion

min
θt

N∑
t=1

‖y(t)− θTt ϕ(t)‖2 + λ

N∑
s,t=1

K(p(t), p(s))‖θs − θt‖p
(36)

When (36) has been solved with a suitable λ that gives
the desired trade-off between requirements 2 and 3, we have
also solved 1a and 1b of requirement 1, and obtain

• d different parameter vectors Θk, k = 1, . . . , d, so each
θt, t = 1, . . . , N is equal to one of Θk, k = 1 . . . , d.

• a clustering of the regime variable points:

p(t) ∈ Pk if θt is associated with model Θk (37)

It now only remains to convert the points clusters Pk in the
regime variable space to a partitioning Hk of this space:

Pk ⊂ Hk (38a)

R
p = ∪kHk (38b)

This can be done with any one of many available clustering
or pattern recognition algorithms, like e.g. the Support Vector
Machine classifier, [81].



Example 5: Consider the multi-dimensional PWARX sys-
tem (introduced in [6], see also [54], [7])

yk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.4yk−1+ uk−1 + 1.5 + ek, if
4yk−1 − uk−1 + 10 < 0

0.5yk−1− uk−1 − 0.5 + ek, if
4yk−1 − uk−1 + 10 ≥ 0 and
5yk−1 + uk−1 − 6 < 0

−0.3yk−1+ 0.5uk−1 − 1.7 + ek, if
5yk−1 + uk−1 − 6 ≥ 0.

(39)
Generate {uk}200k=1 by sampling a uniform distribution
U(−4, 4) and let ek ∼ U(−0.2, 0.2). Figure 5 shows the
dataset {(yk, uk)}200k=1. The 200 data points thus correspond
to 3 different models, such that yk is a linear regression of
[uk−1, yk−1, 1] with 3 different coefficient vectors depending
on the values of uk−1, yk−1. Figure 5 also shows how the
algorithm (36) (for λ = 0.01) associates the regressors with
3 different regions (one for each parameter vector). The
classification is 100% correct and we thus obtain the best
possible estimates of the coefficients, and the best possible
models.

As a comparison it is shown in Figure 6 how Generalized
Principal Component Analysis (GPCA, [82]) performs on the
same data. More details on this example are given in [57].
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Fig. 5. Data used in Example 5 showed with �, ◦ and ♦ symbols. The
data marked with the same symbol got the same θ-estimate in (36). Dashed
lines show the estimated partitions obtained by applying SVM. The true
partitions coincide with the estimated ones.

Segmentation: Let us briefly comment on the segmenta-
tion case, i.e. when the regime-variable is a scalar and equal
to time. If we only want to control the number of segments,
i.e. the number of times the process parameters change, and
do not insist on keeping the total number of different models
small, it is natural in (36) only to penalize transitions, i.e. to
let the kernel

K(p(t), p(s)) = K(t, s) = 0 unless |t− s| = 1 (40)
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Fig. 6. The same as Figure 5 but using GPCA instead of the proposed
method PWASON. 18 samples were misclassified. The shape of the parti-
tions (dashed line) were estimated fairly well (true boundaries shown with
solid thin line).

That means that the double sum in the regularization term
collapses to a single sum:

min
θt

N∑
t=1

‖y(t)− θTt ϕ(t)‖2 + λ

N−1∑
t=1

‖θt − θt+1‖p (41)

Example 6: Comparison between segment and (41)
Let us compare the method (41) with segment in the

System Identification Toolbox [48]. Consider the system

y(t)+a1y(t− 1) + 0.7y(t− 2)

=u(t− 1) + 0.5u(t− 2) + e(t) (42)

with u(t) ∼ N(0, 1) and e(t) ∼ N(0, 9). At t = 400, a1
changes from −1.5 to −1.3 and at t = 1500 a1 returns to
−1.5. Both segment and (41) are provided with the correct
ARX structure and asked to estimate all ARX parameters
(a1, a2, b1, b2). With the same design parameters as used
to generate the data (the true equation error variance, jump
probability, initial ARX parameters and covariance matrix of
the parameter jumps) segment does not find any changes
at all in the ARX parameters. Tuning the design variable R2

in segment so it finds three segments gives the estimate
of a1 shown in Figure 7. It does not seem possible to find
values of all the design variables in segment that give the
correct jump instants.

Using (41) gives directly the correct change times, as seen
in Figure 7.
See [59] for more on segmentation of ARX-models. A
further example on segmentation of signals from nonlinear
systems is given in [27].

E. State Smoothing with Abrupt Changes

The basic linear system with disturbances can be written

x(t+ 1) = Atx(t) +Btu(t) +Gtv(t)

y(t) = Ctx(t) + e(t).
(43)
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Fig. 7. Estimates of a1 in the ARX-model used in Example 6 using (41)
(solid) and segment (dashed).

Here, e is white measurement noise and v is a process distur-
bance. v is often modeled as Gaussian Noise which leads to
the familiar Kalman filter state filtering and smoothing and
the classical LQG control formulation

However in many applications, v is mostly zero, and
strikes only occasionally:

v(t) = δ(t)η(t)

where

δ(t) =

{
0 with probability 1− μ

1 with probability μ

η(t) ∈ N(0, Q)

This is the case in many applications, like:

• Control: v are load disturbances acting as an unmeaured
input. Pulse disturbances can be further shaped by the
A-matrix to describe the actual load changes

• Tracking and path generation: v corresponds to un-
known, sudden maneuvers to evade pursuers, or “knots”
in the path curves

• Fault Detection and Isolation (FDI): v corresponds to
additive system faults

The problem is to find the jump times t and/or the
smoothed state estimates x̂s(t|N). Over the years many
different approaches have been suggested for this (nonlinear
filtering) estimation problem. A sparse estimation approach
is to use sum-of-norms regularization:

min
v(k),k=1,...,N−1

N∑
t=1

∥∥(y(t)− Cx(t)
)∥∥2 + λ

N∑
t=1

‖v(t)‖p

s.t. x(t+ 1) = Ax(t) +Bu(t) +Gv(t); x(1) = 0.

It performs quite well compared to traditional approaches,
see, e.g., [55] and [56].

V. SYSTEM IDENTIFICATION MEETS MACHINE

LEARNING

Machine learning has become a household word in the
community dealing with inference, reasoning and actions
based on data. The term is more broad and also more vague
than the other encounters discussed here. The area has been
growing and now typically incorporates general statistical
tools for classification, pattern recognition, Gaussian Process

Regression, kernel methods, sampling methods, unsupervised
learning, etc. Some relevant books covering the topic include,
[80], [10], [36], [66]. We shall in this section only describe
some methods that have been used for System Identification
Applications that stem from the Machine Learning Commu-
nity.

A. Gaussian Process Regression for System Identification:
General Ideas

A common problem in inference is to estimate functions
from observations. For a Machine Learning perspective, see
e.g. [66]. The problem is to estimate an nf -dimensional
function, say

f(τ), τ ∈ Ω f(t) ∈ R
nf (44)

The domain Ω could be discrete or continuous time, or any,
sufficiently regular, subset of Rd. We observe

y(t), t = 1, . . . , N (45)

that bear some information about the function f . The prob-
lem is to estimate f based on these observations.

One approach is to regard f(·) as a stochastic process,
meaning that we can assign probability distributions to any
vector f(τk), k = 1, . . . , n for any finite collection of points
τk. From the observations y we can then compute the
posterior distributions

p(f(τk)|Y N ) (46)

The calculation of (46) becomes easy if the prior distribution
of f is a Gaussian Process, and the observations are linear
function(al)s of f , measured in Gaussian noise:

y(t) = L(t, f) + e(t), e(t) ∈ N(0, R) (47)

That makes the posterior probabilities (46) also Gaussian,
and the random vector [y(t), f(τk), k = 1, . . . , n] becomes
a jointly Gaussian vector. Therefore the well known, and
simple rules for conditional Gaussian probabilities can be
applied when (46) is computed. This is the Gaussian Pro-
cesses Regression approach. The book [66] contains many
ramifications of this approach and Rasmussen has applied
this technique to system identification, e.g. by estimating the
state transition function for nonlinear systems. The spectac-
ular web-site videos on learning to swing up and stabilize
an inverted pendulum (http://www.cs.washington.
edu/homes/marc/learn_ctrl.html) are based on
this technique.

Hyper-parameters: For a successful application of Gaus-
sian Process Regression it may be essential to have a good
prior distribution for f , p0(f(τk)). It may be useful to equip
this prior with some tuning parameters (hyper-parameters)
α:

Prior Distribution for f : p0(f(τk), α) (48)

There are several techniques for tuning α. A basic approach
is the so called Empirical Bayes Method which means that
the distribution of the observations y is determined from (48)
and (47). This distribution depends on α so this parameter
can be estimated by the Maximum Likelihood method.



B. Identification of Linear systems

Pillonetto, de Nicolao and Chiuso have applied the Gaus-
sian Process Regression perspective to the estimation of lin-
ear dynamical systems in several thought-provoking papers,
e.g. [65], [64].

A linear system is completely characterized by its impulse
response. Let us consider here, for simplicity, a discrete time
system whose impulse response can be truncated after n
values, without serious loss of accuracy. So we take the
unknown function f to be estimated as the finite impulse
response

f(τ) : g(k), k ∈ Ω = {1, . . . , n} (49)

The response to any input u is

y(t) =

n∑
k=1

g(k)u(t− k) + v(t) (50)

which is a particular case of (47). Introduce notations

y(t) = ϕT (t)θ + e(t) (51a)

θ =
[
g(1) g(2) . . . g(n)

]T
(51b)

ϕ(t) =
[
u(t− 1) . . . u(t− n)

]T
(51c)

which can be written

Y = ΦT θ + V (51d)

with

Y =
[
y(1) y(2) . . . y(N)

]T
(51e)

Φ =
[
ϕT (1) ϕT (2) . . . ϕT (N)

]T
(51f)

V =
[
v(1) v(2) . . . v(N)

]T
E V V T = σ2I (51g)

If the prior distribution of θ (eqs (48), (49)) is

θ ∈ N(0, P0(α)) (52)

then, the posterior mean, given Y is well known to be (see
e.g. [19])

θ̂apost = (ΦΦT + σ2P0(α)
−1)−1ΦY (53)

This “Gaussian Process” estimate we also recognize as the
regularized least squares estimate

θapost = argmin
θ

‖Y − Φθ‖2 + θTσ2P0(α)
−1θ (54)

So, the Gaussian Process Regression estimate for linear
systems is not a spectacular or a truly innovative result. The
exciting aspect of (53) is that for carefully chosen hyper-
parameters α it may performs many conventional linear
system identification techniques. See Figure 8, and the papers
[65], [19] for more details and discussions.
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Fig. 8. Box-plots for the 2500 fits for a randomly generated data set with
random systems of high orders. The fit shows how well the model can
reproduce the true system. 100% fit means a perfect model. The left figure
shows a straightforward application of the OE (output error) method and
the right figure shows the regularized FIR model (54).

C. Manifold Learning and Unsupervised Learning

The basic estimation and identification model can often be
written as a regression

y = f(ϕ) (55)

where ϕ is a vector of observed variables, the regressors,
and y is the object of interest, the output. The observations
of interest can be a collection of pairs

y(t) = ϕ(t) + e(t), t = 1, . . . , Ne (56)

were e accounts for possible errors in the observed outputs,
and/or a collection of relevant regression vectors:

Zu = {ϕ(t), t = Ne + 1, . . . , Ne +Nu} (57)

This are often referred to as the unlabeled regressors. The
objective is to learn the mapping f , so that for any relevant
regressor ϕ∗ we can associate a corresponding value y∗.
Clearly the difficulty of this task depends (among other
things) on the complexity and size of the region (space)
where the regressors take their values. We denote this region
by D:

ϕ ∈ D (58)

Manifold learning and semi-supervised learning are two
central concepts in machine learning, [70], [96], [18]. With
a very brief and simplistic definition, manifold learning can
be described as the task to infer D from (57), and semi-
supervised learning concerns using (57) (together with (56))
to obtain a better estimate of f .

In the machine learning literature, non-parametric ap-
proaches are common. This means that the regression func-
tion is allowed to fit very freely to data, at the same time



as some regularization is used to curb the freedom. [This is
actually also the idea behind the simple FIR model (54).] Let
us suppose that we would liketo g estimate f(ϕ(t)) for any
ϕ(t) in Zu, (57), which may be extended for this purpose.
With extreme amount of freedom we associate a separate
estimate for each regressor: Let f̂t correspond to the output
for regressor value ϕ(t). That gives a criterion

V (f̂) =

Ne∑
t=1

(y(t)− f̂t)
2 (59)

to be oprimized over f̂t, This is clearly too flexible a fit.
We must weigh that against a wish that the output depends
smoothly on the regressors in the relevant regions. Using a
kernel, we can express this as

f̂t =

Ne+Nu∑
i=1

Ktif̂i, t = 1 . . .Ne +Nu (60)

where Kti is a kernel giving a measure of distance between
ϕ(t) and ϕ(i), relevant to the assumed region. So the sought
estimates f̂i should be such that they are smooth over the
region. At the same time, for regressors with measured labels,
the estimates should be close to those, meaning that (59)
should be small. The two requirements (60) and (59) can be
combined into a criterion

λ

Ne+Nu∑
i=1

⎛
⎝f̂i −

Ne+Nu∑
j=1

Kij f̂j

⎞
⎠

2

+ (1− λ)

Ne∑
t=1

(y(t)− f̂t)
2

(61)
to be minimized with respect to f̂t, t = 1, . . . , Ne+Nu. The
scalar λ decides how trustworthy our labels are and is seen
as a design parameter.

The criterion (61) can be given a Bayesian interpretation
as a way to estimate f̂ in (59) with a “smoothness prior”
(60), with λ reflecting the confidence in the prior.

Introducing the notation

J �[INe×Ne 0Ne×Nu ],

�y �[y(1) y(2) . . . y(Ne)]
T ,

�̂
f �[f̂1 f̂2 . . . f̂Ne f̂Ne+1 . . . f̂Ne+Nu ]

T ,

K �

⎡
⎢⎢⎢⎣

K11 K12 . . . K1,Ne+Nu

K21 K22 K2,Ne+Nu

...
. . .

...
KNe+Nu1 KNe+Nu,2 . . . KNe+Nu,Ne+Nu

⎤
⎥⎥⎥⎦ ,

(61) can be written as

λ(
�̂
f −K

�̂
f)T (

�̂
f −K

�̂
f)− (1− λ)(�y − J

�̂
f)T (�y − J

�̂
f) (62)

which expands into

�̂
fT

(
λ(I −K −KT +KTK)− (1− λ)JT J

) �̂
f

+ 2(1− λ)
�̂
fT JT�y + (1− λ)�yT �y.

(63)

Setting the derivative with respect to �̂
f to zero and solving

gives the linear kernel smoother

�̂
f =(1− λ)

(
λ(I −K −KT +KTK)

−(1− λ)JT J
)−1

JT �y.
(64)

This regression procedure uses all regressors, both unla-
beled and labeled, and is hence a semi-supervised regression
algorithm. We call the kernel smoother Weight Determination
by Manifold Regularization (WDMR, [61]). In this case the
unlabeled regressors are used to get a better knowledge for
what parts of the regressor space that the function f varies
smoothly in.

The papers [60] and [58] contain several examples of how
WDMR behaves on estimation and identification problems.

D. Reinforcement Learning

Inspiration from the way living organisms improve their
actions based on the outcomes of previous actions has lead
to the development of a branch of machine learning called
reinforcement learning (RL) [53]. As the learning objective
is formulated in terms of the minimization of a cost function,
the theoretical foundations of this area are rooted in optimal
control. As compared to standard optimal control there are
two main differences:

• Whereas the Bellman optimality equations provide a
solution going backwards in time, RL algorithms learn
in real time meaning that the solution has to be found
going forwards in time.

• Parts of the, or the entire, system equations are unknown
in RL; necessary system information has to be acquired
by taking actions and observing the system response.

On selected problems RL has shown impressive performance,
e.g. the RL backgammon algorithm in [76]. The inverted
pendulum stabilization referred to in Section V-A is another
example showing the potential. We refer to the excellent
tutorial [45] and to [74], [8] for further details on RL. A
rich set of algorithms have been developed and go under
various names, e.g. approximate dynamic programming and
neuro-dynamic programming. Here we will discuss some
connections between RL and optimal experiment design for
system identification. We begin with reviewing the basics
of RL; restricting attention to deterministic linear quadratic
(LQ) control. The algorithm we will study is called heuristic
dynamic programming (HDP) [91].

Consider minimizing the quadratic cost

J(x0) :=

∞∑
t=0

(
xT (t)Qx(t) + u2(t)

)
, Q = QT > 0, (65)

for the single-input single-output linear time-invariant system

x(t+ 1) = Ax(t) +Bu(t), x(0) = xo ∈ R
n (66)

For a given feedback u(t) = −Kx(t), we have

J(xo) = xT
o P (A,B,K)xo (67)



where P (A,B,K) is the solution to the discrete Lyapunov
equation

P (A,B,K) =

Q+KTK + (A−BK)TP (A,B,K)(A−BK) (68)

The well known optimal solution to

Jo(x0) := min
u(0),u(1),...

J(x0) (69)

is given by u = −K̄x where

K̄ := (1 +BT P̄B)−1BT P̄A (70)

where P̄ = P (A,B, K̄) is obtained by solving (68) (which
with (70) inserted now becomes a Riccati equation).

The basic HDP algorithm for the LQ problem is given by 1

i) Take P0 = 0 and set j = 0.
ii) Take Kj = (1 +BTPjB)−1BTPjA
iii) Take Pj+1 = Q+KT

j Kj +(A−BKj)
TPj(A−BKj)

iv) Set j → j + 1 and go to Step ii).
Notice that unlike the Ricatti equation for the LQ problem,
these equations evolve forward in time. It has been shown
that these iterations converge to the optimal control policy,
i.e. Pj → P̄ and Kj → K̄ [2].

The iterations above require knowledge of the system
matrices A and B. A key ingredient in RL is to by-pass
this requirement using measurements. The idea is to replace
the Updates ii) and iii) in Iteration j by updates based on
experimental data collected with the current control gain K j .
This is closely related to direct adaptive control where the
system is modeled in terms of its optimal controller – in the
LQ case P̄ and K̄ .

There are various strategies for the exploration that takes
place during the data collection in each iteration. Here we
observe interesting links to applications-oriented optimal
experiment design (AOED) in system identification. AOED
concerns how to design the system identification experiment
such that, given experimental constraints, the best possible
performance is obtained in the application for which the
identified model is used [38]. We will briefly discuss some
notions that have emerged during the study of this problem
which seem to relate to RL.

The introduction of least-costly identification [11] lead
to the realization that not only does optimal identification
experiments enhance the visibility of system properties of
importance in the measurements, but also, in order to reduce
the experimental cost, they avoid exciting properties that
are irrelevant to the application [37], [38]. This means that
when such experimental conditions are used the system
identification problem is simplified as irrelevant properties
then do not have to be modeled. We will illustrate the concept
with an example.

Example 7: Consider the system (66). Suppose now that
both system matrices A and B are unknown but that noise
free observations of x(t) can be obtained and consider the
problem of identifying the minimum LQ cost Jo(xo) from

1See the appendix for details.

such observations. Let us also assume that the optimal gain
K̄ is available to the user. This assumption is of course not
realistic but will be helpful for the issue we are trying to
highlight in this example. In view of that (65) measures the
performance of the system it is natural to measure the cost
of the identification experiment by

Jid :=

∞∑
t=0

(
xT
id(t)Qxid(t) + u2

id(t)
)
, (71)

where {uid(t)}∞t=0 denotes the input sequence used during
the identification experiment and where {xid(t)}∞t=0 denotes
the resulting state sequence.

We now pose the following optimal experiment design
problem: What is the minimum identification cost, as mea-
sured by (71), required to get a perfect estimate of J o(xo)
when starting in state xo? Well, since, Jo(xo) is the min-
imum achievable cost we have Jid ≥ Jo(xo) but then
we immediately realize that if we use the optimal control
(achieving Jo(xo)), then we can get a perfect estimate of
Jo(xo) simply by computing

∑∞
t=0 x

T
id(t)Qxid(t) + u2

id(t)
using the observed (noise-free) state-sequence x id(t) and the
corresponding applied controls u id(t).

The optimal solution has two features: Firstly, the desired
quantity, in this case Jo(xo), is clearly observable from the
data. Secondly, all properties of the system irrelevant to
the objective are hidden by the experiment. Notice that the
system matrices are not identifiable with this experiment as
the system evolves according to

x(t+ 1) = Aclx(t), x0 = xo (72)

where Acl = A − BK̄, thus only Acl can be identified.
However, from the expression for P (A,B,K), (68), we see
that Acl is exactly the system property required to estimate
Jo(xo).

RL/AOED Link 1: Applications specific models: The sec-
ond feature in Example 7 is due to that we are minimizing an
identification cost (71) that is closely related to the applica-
tion. The implication of this feature is that the identification
problem is simplified as we only have to model the features
that are relevant to our objective (that of estimating Jo(xo)
in this example). Here we do not even have to estimate A
and B, we just have to sum up the observations according
to Jid!

Now let us return to the RL algorithm i)–iv) above where
Pj and Kj can be seen as model parameters. Notice that the
Riccati map (A,B) → (P̄ , K̄) defined by (69) and (70) is
not bijective. That means that in RL only system properties
relevant for the (optimal control) application are modelled.
This thus corresponds very closely to the outcome of the
optimal experiment design problem in Example 7.

The use of applications specific models is potentially
interesting for applications oriented modeling of complex
systems. The quality of the model can then be governed by
the performance demands of the application. Also the prob-
lem of overmodelling is mitigated when optimal experiments
are performed. See [38] for further discussion.



RL/AOED Link 2: Exploration strategies: Another inter-
esting link between RL and AOED lies in system exploration.
AOED is a systematic way to precisely reveal the necessary
system information for the application at hand. Hence, it may
be of interest to study whether ideas from AOED, such as
computational algorithms, e.g. [41], but also theoretical con-
siderations such as the assessment of the cost of exploration
[69], can fit into the RL framework. Conversely exploration
strategies developed within the RL framework may very well
have potential in AOED.

RL/AOED Link 3: Adaptation strategies: It has been
noted for certain applications that it is good to perform
identification experiments under the desired operating con-
ditions. Example 7 is one such example; for some control
applications see [30], [38]. Our next example, which extends
Example 7, reinforces this notion.

Example 8: Consider again the system (66) and the prob-
lem of estimating (69) based on measurements of the system.
However, assume now that the measurements are noisy, i.e.
we can observe

y(t) = x(t) + e(t) (73)

where {e(t)} is zero mean Gaussian white noise with co-
variance matrix λ I , for some λ > 0 (I is the n×n identity
matrix). In this case we can obviously not recover Jo(xo)
exactly from the measurements {y(t)}. We will discuss two
different methods to estimate Jo(xo) in this case. We will
assume that the optimal feedback K̄ is known. In the first
approach we will use optimal open loop experiment design
and estimate the system matrices A and B explicitly. In the
design we minimize the expected value of the squared error
(xT

o P (Â, B̂, K̄)xo − Jo(xo))
2 subject to that the average of

the experimental energy as measured by (71) is bounded by
Jo(xo). We refer to the appendix for details.

The second way of estimating Jo(xo) consists of three
steps. First generate data using the optimal state feedback
controller

u(t) = −K̄x(t)

This means that the system evolves according to (72) and
(73). After this experiment, use the observations {y(t)} to
estimate the closed loop system matrix from the equations
(72). Here, the prediction error estimate is given by

Âcl = argmin
Ā

N∑
t=1

(y(t)− Ātxo)
2 (74)

Finally, from Âcl an estimate of P̄ is obtained by solving
(68) with A−BK̄ = Âcl. Then using (67), with P (A,B, K̄)
substituted for the estimate, gives an estimate of Jo(xo).
Notice that since the optimal feedback K̄ is used but without
external excitation the same identification cost as in the
optimal experiment design problem (83) is incurred.

Running 1000 Monte Carlo simulations with noise vari-
ance λ = 0.01 when

A =

[
0 0
1 0.8

]
, B =

[
1
0

]
, xo =

[
1
0

]
, Q =

[
2 0
0 1

]
(75)

gives that the average quality of this estimate is within a few
percent of the average quality obtained when A and B are
estimated using the optimal open loop experiment. We find
this quite intriguing as in the second approach no external
excitation is used in the experiment; it is only the transient,
due to the non-zero initial state xo, that is observed in noise.
We conclude that, as in Example 7, the experiment generated
by the optimal controller has very nice properties from an
identification perspective.

As the optimal operating conditions in general depend on
the true system, it is typically impossible to perform these
types of experiments. To overcome this problem, adaptive
methods have been proposed, e.g. [29]. This is also one of
the tenets of so called iterative identification and control, e.g.
[99]. We now observe that RL is designed to (eventually)
achieve optimal operating conditions. This suggests that RL
algorithms have an interesting potential in AOED.

Rapprochement and outlook: Both RL and identification
for control can be seen as substitutes for the computationally
infeasible dual control. The areas have focused on different
aspects of this difficult problem and an amalgamation of
the ideas from these fields could provide a significant push
forward to the problem of autonomous learning a control
objective for complex systems. Above, we have pointed to a
few possible directions into unchartered territory.

VI. CONCLUSION: THE ROLE OF SYSTEM

IDENTIFICATION

It is clear to everyone in science and engineering
that mathematical models are playing increasingly impor-
tant roles. Today, model-based design and optimization is
the dominant engineering paradigm to systematic design
and maintenance of engineering systems. In control, the
aerospace industry has a long tradition of model based design
and in the process industry Model Predictive Control has
become the dominant method to optimize production on
intermediate levels. Also, driven by the “grand” challenges
society are facing, e.g. energy and environmental consider-
ations, new model based control applications are emerging
en masse: Automotive systems, power grids, and medical
systems are but a few examples of areas where funding
agencies and industry worldwide are devoting massive in-
vestments at the moment. These new applications represent
highly complex systems with high demands on autonomy,
and adaptation. The models used internally in these systems
thus also need to be maintained and updated autonomously
calling for data driven models.

In the process industry it has been observed that that
obtaining the model is the single most time consuming
task in the application of model-based control and that
three quarters of the total costs associated with advanced
control projects can be attributed to modeling. This hints
that modeling risks becoming a serious bottleneck in future
engineering systems.

It is therefore vital that the area of System Identification is
able to meet the challenges from model-based engineering
to provide the necessary tools. Certainly, these challenges



will be strong drivers for research in the field in the years to
come. We have in this contribution pointed to how System
Identification in recent years has encountered four other
research areas and been able to amalgamate essential features
of them to produce sharpened tools for model estimation.
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ARX systems with non-stationary inputs - asymptotic analysis with
application to adaptive input design. Automatica, 45(3):623–633,
March 2009.

[30] M. Gevers and L. Ljung. Optimal experiment designs with respect to
the intended model application. Automatica, 22(5):543–554, 1986.

[31] G. C. Goodwin and M. G. Cea. Continuous and discrete nonlinear
filtering: Parts 1&2. Automatica, 2011. Submitted.

[32] G. C. Goodwin, A. Feuer, and C. Müller. Sequential bayesian
filtering via minmum distortion quantization. In X. Hu, U. Jönsson,
B. Wahlberg, and B.Ghosh, editors, Three Decades of Progress in
Systems and Control. Springer Verlag, Berlin, 2010. Jan.

[33] N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel approach
to nonlinear non-gaussian Bayesian state estimation. IEE Proceedings
F, 140:107–113, 1993.

[34] T. S. Han and S. Amari. Statistical inference under multiterminal data
compression. IEEE Trans. Inf. Theory, 44(6):2300–2324, oct 1998.

[35] J. E. Handschin and D. Q. Mayne. Monte Carlo techniques to estimate
the conditional expectation in multi-stage non-linear filtering. Int. J.
of Control, 9(5):547–559, 1969.

[36] T. Hastie, R Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer Series in
Statistics. Springer New York Inc., New York, NY, USA, 2001.

[37] H. Hjalmarsson. From experiment design to closed loop control.
Automatica, 41(3):393–438, March 2005.

[38] H. Hjalmarsson. System identification of complex and structured
systems. European Journal of Control, 15(4):275–310, 2009. Plenary
address. European Control Conference.

[39] K. Jacobsson and H. Hjalmarsson. Closed loop aspects of fluid flow
model identification in congestion control. In 14th IFAC Symposium
on System Identification, Newcastle, Australia, March 2006.

[40] Krister Jacobsson, Lachlan L. H. Andrew, A. Kevin Tang, Steven H.
Low, and H. Hjalmarsson. An improved link model for window
flow control and its application to FAST TCP. IEEE Transactions
on Automatic Control, 54(3):551–564, 2009.

[41] H. Jansson and H. Hjalmarsson. Input design via LMIs admitting
frequency-wise model specifications in confidence regions. IEEE
Transactions on Automatic Control, 50(10):1534–1549, 2005.

[42] N. Kantas, A. Doucet, S. S. Singh, and J. M. Maciejowski. An
overview of sequential Monte Carlo methods for parameter estimation
in general state-space models. In Proc. 15th IFAC Symposium on
System Identification, Saint-Malo, France, July 2009.

[43] F. Kelly, A. Maulloo, and D. Tan. Rate control in communication
networks: shadow prices, proportional fairness and stability. Journal
of the Operational Research Society, 49:237–252, 1998.

[44] E. L. Lehmann and G. Casella. Theory of Point Estimation. John
Wiley & Sons, New York, second edition, 1998.

[45] F. L. Lewis and D. Vrabie. Reinforcement learning and adaptive
dynamic programming for feedback control. IEEE Circ. and Syst.
Mag., 9(3):32–50, . 2009.



[46] F. Lindsten. Rao-blackwellised particle methods for inference and
identification. Technical Report Licentiate thesis 1480, Dept. of
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APPENDIX

DETAILS OF RL FOR THE LQ PROBLEM

The basic HDP algorithm is given by
i) Take V0(x) = 0 and set j = 0.
ii) Solve for uj(x) as follows:

uj(x) = argmin
u

xTQx+ u2 + Vj(Ax+Bu) (76)

iii) Perform the update

Vj+1(x) = xTQx+ u2
j(x) + Vj(Ax+Buj(x)) (77)

iv) Set j → j + 1 and goto Step ii)
For our linear problem the Steps ii) and iii) become the
corresponding steps in Section V-D.

To obtain a version which does not require knowledge of
the state transition matrix A substitute Vj(x) and uj(x) for
parametrized approximations V̂ (x,wj) and û(x, qj), where
wj ∈ R

n and qj ∈ R
m, for some positive integers n

and m. Typically neural networks are used as function
approximators. In each iteration the parameters are updated
using measurements. The details of one possible algorithm
are as follows. In iteration j, N state measurements {x(jN+
k)}Nk=1 using the most recent control policy are collected.
i’) Set w0 such that V̂ (x,wo) = 0 and let q0 correspond

to an initial control policy. Let the initial state of the
system be x0. Set j = 0.

iia’) Perform a sequence of control actions û(x(jN+k), qj),
k = 0, . . .N−1 resulting in new system states {x(jN+
k + 1)}.

iib’) Set

V̂ +
j (x(jN + k), wj , q) =

x(jN + k)TQx(jN + k) + û2(x(jN + k), q)

+ V̂ (Ax(jN + k) +Bû(x(jN + k), q), wj). (78)

iic’) Update the control parameters using one step in
a gradient descent algorithm aiming at decreasing∑N−1

k=0 V̂ +
j (x(jN + k), wj , q):

qj+1 = qj − γ

N−1∑
k=0

∂V̂ +
j (x(jN + k), wj , q)

∂q

∣∣∣
q=qj

(79)

where γ > 0 is the step-size of the update.
iii’) Solve for

wj+1 = argmin
w

N−1∑
k=0

(
V̂ (x(jN + k), w)−

xT (jN + k)Qx(jN + k)− û2(x(jN + k),Kj)

−V̂ (x(jN + k + 1), wj)
)2

. (80)

iv’) Set j → j + 1 and goto Step iia’).
For our LQ problem we can use V̂ (x,w) = xTPx, where
w is a complete linear parametrization of P = P T , and
q = K so that û(x, q) = −Kx. The P corresponding to wj

is denoted Pj . Then

V̂ +
j (xj , wj , q) =

xT
j Qxj + xT

j K
TKxj + xT

j (A−BK)TPj(A−BK)xj

and

∂V̂ +
j (xj , wj , q)

∂q

∣∣∣
q=qj

= 2(Kxjxj − 2xT
j (A−BK)TPjBxj)

= 2(Kxjxj − 2((x
(0)
j )TPjBxj).

Notice that this partial derivative can be evaluated with-
out explicit knowledge of A. The necessary information
regarding A is contained in the next state x

(0)
j . We

also notice that iii’) gives exactly iii) in Section V-D if[
x(jN), . . . , x(jN +N − 1)

]
has full rank. In conclusion

the algorithm above only uses explicit knowledge of B; per-
tinent information regardingA is contained in measurements.
There are other algorithms where explicit knowledge of B
can be avoided, e.g. Q-learning [89].

OPTIMAL EXPERIMENT DESIGN IN EXAMPLE 8

Let Â and B̂ be prediction error estimates of A and
B; note that since the measurement equation (73) does not
contain any unknown parameters, the basis for the state space
is well defined and all elements of the system matrices are
identifiable. Consider now the following stochastic open loop
optimal experiment design problem: The estimate of Jo(xo)
is given by xT

o P (Â, B̂, K̄)xo. Form the quality measure

V (Â, B̂) = (xT
o P (Â, B̂, K̄)xo − Jo(xo))

2. (81)

Let N be the length of the identification experiment. The op-
timal open loop experiment design problem we are interested
in is then given by

min
uid(0),uid(1),...,uid(N)

V (Â, B̂)

N∑
t=1

xT
id(t)Qxid(t) + u2

id(t) ≤ Jo(xo)
(82)

(uid and xid are defined as in Example 7). The constraint
imposes that the experimental cost can not be larger than
the LQG cost (69). As this problem is not computationally
tractable, e.g. the cost is a random quantity, we will approx-
imate this by the techniques in [41]; in particular we assume
the input to be stationary. This leads to the following formal
problem

min
Φu

E[V (Â, B̂)]

NE
[
xT
id(t)Qxid(t) + u2

id(t)
] ≤ Jo(xo)

(83)

where Φu is the spectrum of the input. The problem (83)
corresponds to an ’on average’ approximation of (82). By
way of second order approximations, this problem can be
converted into a semi-definite program [41].


