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Abstract 

l   System Identification is a well established 
area in Automatic Control 

l To find a system that (may) have 
generated observed input-output signals 

l An inverse problem! 
l The role of regularization. – Recently re-

discovered in the field. 



Outline 

l Preamble: A quick primer on estimation 
and system identification 

l The standard approach to build a model 
l A new algorithm 
l   ….. 



A Primer on Estimation 

 

 

So need to meet the data with a prejudice! 

All data contain information and misinformation  
(“Signal and noise”) 

information in data Squeeze out the relevant  
But NOT MORE ! 



Primer: Estimation Prejudices 

l Nature is Simple! 
l Occam's razor 

Principle of parsimony 

l God is subtle, but He is not malicious (Einstein) 

l So, conceptually, when you build a model: 



Primer: Bias and Variance  

       MSE        =       BIAS (B)   + VARIANCE (V) 
      Error         =   Systematic   +    Random 

This bias/variance tradeoff is at the heart of estimation! 

The best MSE trade-off typically has non-zero bias! 



Take Home Messages from the 
Preamble 

Seek parsimonious models 

The bias/variance trade-off 
is at the heart of estimation 

Mature area with traces to 
old history 
…                          .                                
                      but still open 
for new encounters 



An Eyeopening Encounter  
I was given input-output data that mimics the  C-peptide 

dynamics in humans 
: 

Find a good estimate of the 
impulse response (transfer 
function) of the system 



The Traditional Approach 

(My) traditional approach (Maximum 
Likelihood, ML): 

Build state-space models of certain order n 
(n:th order Difference equations) 
by pem(data,n)!
Use cross validation to find n:!
ze=z(1:125); zv=z(126:end); 
m5=pem(ze,5); m10=pem(ze,10); 
m15=pem(ze,15);!



Model Order Choice 

Order 10 is best, 
reestimate: 
m10=pem(z,10);!

Compare model output with models’ simulated outputs 
compare(zv,m5,m10,m15)!
 



Compare with True Impulse Response 
Happen to find the true impulse response. How good 
was my estimate? 
compare(trueimp,m10,'ini','z')!

81,1% 



Another proposed method: XXX 
Here is a new approach to system 
identification: mfile xxx 

>> help xxx!
This is a magic algorithm for 
system identification.!
  Try me!!
  Just do Model = xxx(Data)!

 
So, let’s  do that! 



Estimate of the Impulse Response 
mx = xxx(z); compare(trueimp,mx,m10,’ini’,’z’)!

Fit  mx:  88.6% 
 
Fit m10: 81,1% 



Surprise! 

The theory of estimating linear 
systems  is not dead yet! 



What is the Key Idea? 
Regularization: 

l Use flexible model structures with (too) 
many parameters 

l Which ones are not quite necessary? 
l Put the parameters on leashes  

and check which ones are most 
eager in the pursuit for a good fit! 
l Pull parameters towards zero (   ) 
l Pull parameters to zero (   ) 



Outline for Remainder of Talk 

•  Regularization for bias/variance tradeoff 

•  Regularization for manifold learning 

•  Regularization for sparsity and parsimony 

Regularization: Curb the freedom in 
flexible models. 



Outline 

•  Regularization for bias/variance tradeoff 

•  Regularization for manifold learning 

•  Regularization for sparsity and parsimony 



Regularization 

E.g. Linear Regression: 

Recall: 

(Too) many parameters? Put them on leashes! 



A Frequentist Perspective 

Frequentist (classical) perspective 
True parameter      noise variance 

The choice              minimizes the MSE to        
… 



Bayesian Interpretation 
  is a random variable that before observing (a priori)  
is               i.e. the negative log of its pdf is 
and its pdf after (a posteriori) is                                        
This is the Regularized LS criterion! 

So, the reg. LS estimate   
gives the maximum of this pdf (MAP),  
(the Bayesian posterior estimate) 

Clue to the choice of P! 

pdf: probability density function 



Estimation of Impulse Response 

A good prior for                      describes the 
behaviour of the typical impulse response g(k): 

l Exponentially decaying,  size C, rate  
l Smooth as a function of k, correlation  
l   
 
Estimate  (the hyperparameters)     from data 



Estimation of Hyperparameters 

l ”Empirical Bayes” (EB) 
l   xxx:  estimate     by EB and use          in         
regularized LS! (= RFIR) 
l Original research and  results by Pillonetto, 

De Nicolao and Chiuso 

In a Bayesian framework, Y is a random 
variable with a distribution that depends on 
the hyperparameters.  Estimate those by 
ML! 



A Link to Machine Learning 
”Gaussian Processes (GP)” 

The IR estimation algorithm is a case of  GP 
function estimation, 
frequently used in Machine 
Learning. 
(Pillonetto et al used this 
framework  to device the XXX algorithm) 



GP: Estimate a Function f(x)                                      

These are the same as the 
previous Bayesian calculations! 

Assume a Gaussian prior for f 

Compute the posterior estimate given the observations 



Machine Learning of Dynamic 
Systems 

Carl Rasmussen (Machine Learning Group, Cambridge)  
has performed quite spectacular experiments by  
 swinging up an inverted 
pendulum using MPC and a   
model estimated by GP . 
The function estimated is the 
state transition function 



GP: Duality with RKHS  

This is a much studied problem in statistics and 
machine learning (Wahba, Schölkopf,…) 

Compare with the finite dimensional FIR case:  
 

Let the prior pdf of the function f have a covariance 
function K associated with a Reproducing Kernel 
Hilbert Space   . Then the Bayesian posterior 
estimate of f is given as 



1.  Symbiosis with Bayesian calculations in Gaussian 
frameworks.  

2.  Well tuned regularization norm (e.g. by EB) can give 
significant improvement in model quality (MSE) 

Regularization norm Prior model knowledge 

Summary:  
 Quadratic Norm Regularization 

•  Regularization for bias/variance tradeoff 



Outline 

•  Regularization for bias/variance tradeoff 

•  Regularization for manifold learning 

•  Regularization for sparsity and parsimony 



Tailored Regularization 

Intriguing special case: We  want to estimate f 
when the ”regressors”       are confined to an 
unknown manifold: We need to estimate that 
manifold at the same time as f : ”manifold 
learning”. 

More pragmatic: Known/desired properties 
of f(x) can be expressed in terms of R. 



Manifold Learning and 
(NL)Dimension Reduction 

    If we know that the regressors  x in a mapping y=f(x) are 
confined to a lower dimensional manifold, we may write 

     y= f(g(x)), where g(x) are local coordinates (dim g(x) < dim x) 
on the manifold. This would give a simpler model. 

How to find the manifold g(x)? [Linear case: SVD, PCA ,…] 
NL case: ISOmap, KPCA, Diffeomap, .., 
LLE (Local Linear Embedding): Find a weight matrix K that 
describes the local metric of the regressors:                          
 
That matrix can be used to construct the lower dimensional 
local coordinates. 
 



Function Estimation on 
Unknown Manifolds 

 
 
    Build  a model                                   
    A weight matrix K describing the regressor manifold 

is constructed by LLE and that is used to penalize 
non-smoothness over the associated manifold: 

Quadratic in f!  
Let’s apply it to brain activity analysis (fMRI)! 

WDMR: Weight determination by manifold regression 



The Observed Data 
The person in the magnet 
camera is moving his eye 
focus in a circle left - right - up 
– down and his eye focus is 
measured as                        .  
128 voxels in the visual cortex 
are monitored by fMRI, giving a 
regression vector                   . 
Data are sampled every two 
seconds for five minutes.  



The person in the magnet 
camera is moving his eye 
focus in a circle left - right - up 
– down and his eye focus is 
measured as                        .  
128 voxels in the visual cortex 
are monitored by fMRI, giving a 
regression vector                 . 
Data are sampled every two 
seconds for five minutes.  

The Observed Data 

The regressor       is 128-dimensional. At the same time the “brain 
activity is 1-dimensional”, so the interesting variation in the regres- 
sor space should be confined to a one-dimensional manifold 



WDMR: Estimated model 
Let us apply WDMR to these data! 
Build a model using 110 data. Validate it on the remaining 40. 
Below we show the predicted y-values (                        ) 
 (red) for validation measurements together with the  
corresponding true angles (blue). 

Recall: 110 estimation data in         ! 



Summary: Tailored 
Regularization 

• Regularization for manifold learning 

1.  Added regularization penalties to criteria of fit can be 
used in an ad hoc manner 

2.  Constraints on the regressor space can be handled 
quite well in this way 

3.  Broader implications for System Identification unclear 



Outline 

•  Regularization for bias/variance tradeoff 

•  Regularization for manifold learning 

•  Regularization for sparsity and parsimony 



Regularization for Parsimony 
Parsimony: Find good model fits, without being 
wasteful with parameters. Conceptually (model error) 
 
 
 
Compare with Akaike’s AIC! 
OK to solve with ”linearly ordered” model families (like 
FIR models). Combinatorial explosions for richer 
model structures, like polynomial nonlinearities, or 
neural networks with 100’s of possible parameters. 
: 



  as Relaxation of  

Replace the    -”norm” by the     -norm! 
 
 
 
 
Will this still favor sparse solutions with 
small         ? 
(”Sparse”       ”parsimonious”) 



Check Linear Regression 

Intersection with plane 
through the origin: 
 
 
 
Blue Curve:  Quadratic fit 
Green Curve: Regularization 
Red curve: Criterion 
Blue diamond: Minimum 



Check Linear Regression 

All zeros  for large  
and one by one of 
the components 
become non-zero 
as   decreases.  
        piecewise 
linear function of 



So, the Relaxed Criterion 

 still favors sparse solutions! 
Considarable recent theory around this:  
Sparsity and compressed sensing (Candès, 
Donoho … ~2006) 
Regressor selection in linear regression by 
LASSO (Tibshirani, 1996): 
 
 
Convex problem. Covers many yet 
unexploited system identification problems 
 



Lasso-like Applications 

l Order selection in dynamic models 
l Select polynomials terms in NL models 
l Find structure in networked systems 
l Piecewise affine hybrid models 
l Trajectory generation by sparse grid-points 
l State smoothing with rare disturbances 
l …. 



A Standard State Smoothing Problem 

e is white measurement noise and v  is  process 
disturbance. 
v is often modelled as white Gaussian noise but 
in many applications it is mostly zero and strikes 
only occasionally: 

l Control: Load disturbances 
l Tracking: Sudden maneuvers 
l FDI: Additive system faults 
l Parameter estimation: Model segmentation 



The Estimation Problem 

l Find the jump times                   and the smoothed 
state estimates  
l [Approaches: 

Ø Willsky-Jones GLR: treat                  as unknown 
parameters 
Ø Treat  v as WGN and use Kalman Smoothing 
Ø IMM: Branch the KF at each time (jump/no jump). Merge/
prune trajectories 
Ø Treat it as a non-linear smoothing  (non-Gaussian noise) 
by particle techniques] 



Treat it as a Sparsity Problem 

See  x  as a function of  v and optimize the fit 
with many  v(t)=0   by solving  

So this is       (sum-of-norm) regularization 

(StateSON). Note that 



Load Disturbances:  
 DC motor with step load disturbances with probability 

0.015.  Consider 100 time steps. Varying SNR: Q= jump 
size, R = noise variance 
For each SNR, the RMSE average over time and over 500 
MC runs is shown, Many different approaches 

StateSON outperforms the established methods! 



Segmentation of Systems 
System 
k changes from 2 to 1 at time 20 

Data Estimate 

Red:  
Estimate 
Black: 
true 



Summary:     and Sum-Of-Norms 
Regularization 

•  Regularization for sparsity and parsimony 

1.       and SoN  good proxies for parameter count 
2.  Valuable tool for structure selection in models 
3.  Handles rare disturbances/changes 
4.  Active area of new development: Ideas for nonlinear, 

hybrid, and LPV model estimation 



The World Around System  Identification 

Statistical Learning theory 

Machine Learning 

Sparsity 

Compressed sensing 
Particle filters 

Manifold learning 

Networked systems 

Statistics 



- regularization is a prime 
tool for sparsity 

- regularization [well tuned] 
offers new techniques for 
robust  smaller MSE 

Keep vital contacts with other 
cultures in the world around 
System Identification                                                     

Take Home Messages   
Conclusions 

Seek Parsimonious 
Models 

The bias/variance trade-
off is at the heart of 
estimation 

Mature area with traces to 
old history … but still 
open for new encounters                                                     
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l Text1 

l Text2 

l Text3 



hej 
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From IR to Model Estimation 
The result of the impulse response estimate is a (high 
order) Finite Impulse Response model (FIR). This can be 
converted to state space models of any order by model 
reduction: 
 
mf = Rfir(data) 
m = balred(mf,10) 
”Rb-method” 
Alt. to ML-method 
 
 
Box-plots over fits  
for 2500 different 
(high order) 
systems ML  10th order model Rfir+Balred 



From IR to Model Estimation 

Box-plots over fits  
for 2500 different 
(high order) 
systems 

ML  10th order model Rfir+Balred 

In certain cases  Rfir+Balred could be a 
viable approach to model estimation 


