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The Problem

Aircraft Dynamics:

Brain Activity (fMRI):

uuuuuuuu

Pulp Buffer Vessel:

Viscoelasticity:
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The Confusion

Support Vector Machines * Manifold learning * prediction error method * Partial Least Squares *
Regularization * Local Linear Models * Neural Networks * Bayes method * Maximum Likelihood *
Akaike’s Criterion * The Frisch Scheme * MDL * Errors In Variables * MOESP * Realization
Theory * Closed Loop ldentification * Cramér - Rao * Identification for Control * N4SID *
Experiment Design * Fisher Information * Local Linear Models * Kullback-Liebler Distance *
Maximum Entropy * Subspace Methods * Kriging * Gaussian Processes * Ho-Kalman * Self
Organizing maps * Quinlan’s algorithm * Local Polynomial Models * Direct Weight Optimization *
PCA * Canonical Correlations * RKHS * Cross Validation * co-integration * GARCH * Box-Jenkins
* Qutput Error * Total Least Squares * ARMAX * Time Series * ARX * Nearest neighbors * Vector
Quantization * VC-dimension * Rademacher averages * Manifold Learning * Local Linear
Embedding * Linear Parameter Varying Models * Kernel smoothing * Mercer’s Conditions * The
Kernel trick * ETFE * Blackman—Tukey * GMDH * Wavelet Transform * Regression Trees *
Yule-Walker equations * Inductive Logic Programming * Machine Learning * Perceptron *
Backpropagation * Threshold Logic * LS-SVM * Generaliztion * CCA * M-estimator * Boosting *
Additive Trees * MART * MARS * EM algorithm * MCMC * Particle Filters * PRIM * BIC *
Innovations form * AdaBoost * ICA * LDA * Bootstrap * Separating Hyperplanes * Shrinkage *
Factor Analysis * ANOVA * Mutivariate Analysis * Missing Data * Density Estimation * PEM *

From Data to Models Penner Lecture, UCSD AUTOMATIC CONTROL
. . REGLERTEKNIK

Lennart Ljun ;

b L April 14, 2008 LINKOPINGS UNIVERSITET




The Communities

Constructing (mathematical) models from data is a prime problem in many
scientific fields and many application areas.
Many communities and cultures around the area have grown, with their own

nomenclatures and their own “social lives”.
This has created a very rich, and somewhat confusing, plethora of methods

and approaches for the problem.

A picture: There is a core of cen- v
tral material, encircled by the different ¢
communities.
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E The Core

Central terms
= Model m — Model Class M — Complexity (Flexibility) C

® |nformation 7 — Data Z
m Estimation — Validation (Learning — Generalization)

m Model fit (m, Z)

From Data to Models Penner Lecture, UCSD AUTOMATIC CONTROL
. . REGLERTEKNIK
Lennart Ljun .
Jung April 14, 2008 LINKOPINGS UNIVERSITET




E Estimation
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E Estimation

Squeeze out the relevant information in data

10 T 10
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E Estimation

Squeeze out the relevant information in data. (BUT NOT MORE!)
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All data contain Information and Misinformation (“Signal and noise”).

So need to meet the data with a prejudice!
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E Estimation Prejudices

Nature is Simple! (Occam’s razor, Lex Parsimoniae...)
God is subtle, but He is not malicious (Einstein)

So, conceptually:

m = arg min (Fit + Complexity Penalty)

meM
Examples:
m Search for a model in sets with a maximal Complexity
= (Akaike):

m = arg min log[>_€?(t,0)] +2dim@ < Model error  #:Model parameters

= (Regularization): m = argmin > _ (¢, 0) + 6|0

From Data to Models Penner Lecture, UCSD AUTOMATIC CONTROL
. . REGLERTEKNIK
Lennart Ljun .
Jung April 14, 2008 LINKOPINGS UNIVERSITET




E Estimation and Validation

Fit to estimation data Z»  (IN: Number of data points)
F(m,ZY)  ("The empirical risk")
Now try your model on a fresh data set (Validation data Z,):
EF(w, Z,) ~ F(@, ZY) + f(C(M),N)

f is a function of the complexity, so the more flexible the model set the more
the expected fit to validation data is deteriorated.
(Exact formulations: Akaike’'s FPE (AIC), Vapnik’s learning/generalization
result, Rademacher averages ...)

So don’t be impressed by a good fit to data in a flexible model set!
(Elephant #1)
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E Bias and Variance

S — True system m — Estimate m* = Em
E:. Expected Value

Then

B|IS —m|* = [|S — m*[*+ B[t — m"|
MSE = B: BIAS + V: Variance
Error: = Systematic + Random

m e M: As C(M) increases, B decreases &V increases

This bias/variance trade-off is at the heart of estimation.

Note that the C that minimizes the MSE typically has a B+ 0!
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Information Contents in Data and the CR Inequality

The value of information in data depends on prior knowledge.
Observe Y. Let its probability density function (pdf) be fy (x, 0)
The (Fisher) Information Matrix is

0
I=E6.()", b = 55log fy(x.6)
The Cramér-Rao inequality tells us that
covl > 771

for any (unbiased) estimator 6 of the parameter.

7 Is thus a prime guantity for Experiment Design.
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The Communities Around the Core |

m Statistics, The Mother Area

e ...
e Bootstrap

e Regularization to control complexity (LASSO, LARS,...)
® Econometrics

e \olatility Clustering (varying variance)

e Common roots for variations (co-integration)

m  Statistical Learning Theory
e Convex Formulations, SVM
e VC-dimensions
= Machine Learning
e Self-organizing maps, logical trees

e Grown out of artificial intelligence, more and more statistically
oriented
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The Communities Around the Core ||

= Manifold Learning

e Observed data belongs to a high-dimensional space

e The action takes place on a lower dimensional manifold: Find that!
® Chemometrics — Statistical Process Control

e High-dimensional Data Spaces (Many process variables)

e Find linear low dimensional subspaces that capture the essential
state
e PCA, PLS (Partial Least Squares), ...

= Data Mining
m  Artificial Neural Networks
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= Another satellite encircling the core.

m Deals with mathematical models of dynamic systems.

® Term used in the automatic control community (coined by Lotfi Zadeh
1956)

m Typical themes:

e Useful model structures
e Adapt and adopt the core’s fundamentals

e EXxperiment design (make 7 large)
- with intended model use in mind (“identification for control”)
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Dynamic Systems

A Dynamic system has an out-
put response y that depends on
(all) previous values of an input
signal u. It is also typically af-
fected by a disturbance signal v. ﬂ Disturbance v
So the output at time ¢ can be

written as

Input u

System =——"> Outputy
y(t) = g(u’,v)

where superscript denotes the
signal’s values from the remote
past up to the indicated time.
The input signal u» is known
(measured), while the distur-
bance v is unmeasured.
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More Formalized Questions

Think discrete time data sequences:

7t = (1), u(2), ..., u(t), y(1), y(2), .., y (1))
We need to get hold of a “simulation function”

and/or a prediction function

g(tlt —1) =f(2"1)
Note that f = ¢
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The Predictor

The predictor function (|t — 1) = f(Z'~') is what we try to estimate from

data. It is (partly) unknown, so parameterize it within a certain model class
M:

G(t10) = f(Z21,0)
Generic way to estimate 6.
X N
Oy = argmin’y_ [ly(t) - (110)]
t=1

Two main model classes:
= Linear: f linearin Z;

= Nonlinear: f nonlinearin Z
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Linear Dynamic Models

This is how the output is predicted. Equivalent to assume that y is
generated from

y(t) = G(q,0)u(t) + H(q,0)e(t) where e is white noise
G=H'G H=I-H"
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Parameterization of Linear Dynamic Models

So linear dynamic models can be written in transfer function form

y(t) = G(q,0)u(t) + H(q,0)e(t) G and H functions of the delay operator g

Typical parameterizations: rational functions in ¢ (Black-Box)

Glq.0) = big7t+ ... +bg "
’ l+a1gt+...+a,qg ™

State Space (Grey-Box, originating from a system of first order ODES)

z(t+1) = A(0)z(t) + B(0)u(t) G(q,0) = C(0)(qI — A0))"B(6)
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Example: Linear Models of Aircraft Dynamics

Five inputs and two
outputs.
Build models of the

kind
x(t+ 1) = Az(t) + Bu(t) + Ke(t)
y(t) = Cz(t) + e(t)

“order” = dim .
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Elevator, - elevator, leading edge, canard, % canard

1 dt
0.1 - - 0.1
0.05} 1 0.05}
0 0
-0.05 -0.05
I 1 2 3 4 1 2 3
0.4 0.4
0.2 0.2
0 0
-0.2 -0.2
4 1 2 3 4 3
0.6
0.4}
0.2}
ol
% 1 2 3
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Angle of attack and Pitch rate
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Linear Models: Fit to estimation data

State space models of orders 2 and 6:
n2 = pem(data, 2),n6 = pen(data, 6)

a. (sim)

0.2F = h2; measured

—m2; fit: 97.4%
4 | = m6; fit: 98.62%

0.15¢

0.1

0.05f

— h2; measured
m2; fit: 97.4%
1 | = m¢; fit: 98.9%
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0.2

0.15

0.05
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pen(data, 2), nb

pen( dat a, 6)

0.1

-
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m— h1: measured
m— m2; fit: 59.79%
s mG; fit: 51.33%

—— (] measured
m— m2; fit: 81.87%
M6, fit: 76.89%
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A Quick Classification of Non-Linear Models: B/W

“A non-elephant zoology” (Ulam)
1. Black: Basis-function expansion models

y(t0)
z(t)

f(Z271,0) = fla(1).0)

(Z'=1) rstate" of fixed dimension

= Z gk ()
k=1

gr(z,0) = k(Br(x — V1)), 0= {aw, Bryr}, & : unitfunction

® The whole ANN, neuro-fuzzy, LS-SVM etc business

2. Off-white: result from careful physical modelling from first principles, with
certain unknown physical constants being the parameters.
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More Nonlinear Models (Various Shades of Grey)

3. Composite Local models (local linear models)

y(t,0,n) Zwk T (£)9")

4. Semi-physical models (non-linear transformations of measured data,
based on simple insights)

® Probably the most common nonlinear models in industrial practice
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T
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r-number of inflow,
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Model Based on Raw Data

Measured Output and Simulated Model Output
T T T T T T T

—— Measured Output
—— mraw Fit: 21.11%

0 02 04 06 08 1 12 14 16 18 2
10*

Dashed line: k-number after the vessel, actual measurements.
Solid line: Simulated x-number using the input only and a process model

estimated using the first 200 data points. G(s) = 3sie-e~ '8
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Now It's time to

Think: ....

If no mixing in tank (“plug flow”) a particle that enters the top will exit T’
seconds later, where

Tank Volume m>
p— ° p— S
Flow m3/s
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interpl([cunmsum(pf),t],[pf(1):sumpf)]’);

newz Interpl([t,z], new);
. | | k-number of Inflow | |
2o} ]
1of ]
k-number of Outflow
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Measured Output and Simulated Model Output
6 T T

—— Measured Output
—— mves Fit: 60.39%

yl

0.8116 6—369.588
14110.28s

0 5000 10000 15000 G ( S) p—
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Conclusions

m \ery rich literature on building models from data (“The communities”)
m Relatively few leading principles (“The core”)

m System ldentification deals with building models of dynamic systems
e Parameterization of linear and nonlinear dynamic models
e ... with and without physical insight
e ... and associated algorithms
¢ Influence of experiment design for model quality
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