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The Problem 
    Flight tests with 

Gripen at high alpha 
   Person in Magnet camera,  

stabilizing a pendulum by 
thinking ”right”-”left” 

fMRI picture of brain 





  
 
 

 

 

 

The Confusion 
     Support Vector Machines *  Manifold learning *prediction error method * 

Partial Least Squares * Regularization * Local Linear Models * Neural 
Networks * Bayes method * Maximum Likelihood * Akaike's Criterion * The 
Frisch Scheme * MDL * Errors In Variables * MOESP * Realization Theory 
*Closed Loop Identification * Cram\'er - Rao * Identification for Control * 
N4SID* Experiment Design * Fisher Information * Local Linear Models * 
Kullback-Liebler Distance * MaximumEntropy * Subspace Methods * Kriging 
* Gaussian Processes * Ho-Kalman * Self Organizing maps * Quinlan's 
algorithm * Local Polynomial Models * Direct WeightOptimization * PCA * 
Canonical Correlations * RKHS * Cross  Validation *co-integration * GARCH 
* Box-Jenkins * Output Error * Total Least Squares * ARMAX * Time Series 
* ARX * Nearest neighbors * Vector Quantization *VC-dimension * 
Rademacher averages * Manifold Learning * Local Linear Embedding* 
Linear Parameter Varying Models * Kernel smoothing * Mercer's Conditions 
*The Kernel trick * ETFE * Blackman--Tukey * GMDH * Wavelet Transform * 
Regression Trees * Yule-Walker equations * Inductive Logic Programming 
*Machine Learning * Perceptron * Backpropagation * Threshold Logic *LS-
SVM * Generaliztion * CCA * M-estimator * Boosting * Additive Trees *  
MART * MARS * EM algorithm * MCMC * Particle Filters *PRIM * BIC * 
Innovations form * AdaBoost * ICA * LDA * Bootstrap * Separating 
Hyperplanes * Shrinkage * Factor Analysis * ANOVA * Multivariate Analysis 
* Missing Data * Density Estimation * PEM * 

 



  
 
 

 

 

 

This Talk 

Two objectives: 
• Place System Identification on the global 

map. Who are our neighbours in this part 
of the universe? 

• Discuss some open areas in System 
Identification. 



  
 
 

 

 

 

The Communities 
 Constructing (mathe- 

matical) models from data 
is a prime problem in 
many scientific fields and 
many application areas. 

 Many communities and 
cultures around the area 
have grown, with their 
own nomenclatures and 
their own ``social lives''. 

 This has created a very 
rich, and somewhat 
confusing, plethora of 
methods and approaches 
for  the problem. 

. 

 

 

      A picture: There is a 
core of central material, 
encircled by the 
different communities 




  
 
 

 

 

 

The Core 

 

Model

{ Model C lass { Complexity (F lexibility)



  
 
 

 

 

 

Estimation 

 
 

 

So need to meet the data with a prejudice! 

All data contain information and misinformation  
(“Signal and noise”) 

information in data Squeeze out the relevant  
But NOT MORE ! 



  
 
 

 

 

 

Estimation Prejudices 

 Nature is Simple! 
 Occam's razor  

 
 God is subtle, but He is not malicious (Einstein) 

 
 So, conceptually: 

 
 



  
 
 

 

 

 

Estimation and Validation  

So don't be impressed by a good fit to estimation 
data in a flexible model set! 



  
 
 

 

 

 

Bias and Variance  

       MSE        =       BIAS (B)   + VARIANCE (V) 
      Error         =   Systematic   +    Random 

This bias/variance tradeoff is at the heart of estimation! 



  
 
 

 

 

 

Information Contents in 
Data and the CR Inequality 



  
 
 

 

 

 

The Communities Around the Core I 
 Statistics : The mother area 

 … EM algorithm for ML estimation 
 Resampling techniques (bootstrap…) 
 Regularization: LARS, Lasso … 

 Statistical learning theory 
 Convex formulations, SVM (support  
    vector machines) 
 VC-dimensions 

 Machine learning 
 Grown out of artificial intelligence: Logical trees, 

Self-organizing maps. 
 More and more influence from statistics:  

Gaussian Processes, HMM (Hidden Markov 
Models), Baysian nets 
 




  
 
 

 

 

 

The Communities Around the Core II 
 Manifold learning 

 Observed data belongs to a high-dimensional space 
 The action takes place on a lower dimensional manifold: 

Find that! 

 Chemometrics 
 High-dimensional data spaces  

(Many process variables) 
 Find linear low dimensional  

subspaces that capture the essential state: PCA, PLS 
(Partial Least Squares), .. 

 Econometrics 
 Volatility Clustering 
 Common roots for variations 
  



  
 
 

 

 

 

The Communities Around the Core III 
 Data mining 

 Sort through large data bases looking for information: 
ANN, NN, Trees, SVD… 

 Google, Business, Finance… 
 Artificial neural networks 

 Origin: Rosenblatt's perceptron 
 Flexible parametrization of hyper- 

surfaces 
 Fitting ODE coefficients to data 

 No statistical framework: Just link ODE/DAE solvers to 
optimizers 

 System Identification 
 Experiment design 
 Dualities between time- and frequency domains 
  

 



  
 
 

 

 

 

System Identification  
– Past and Present 

Two basic avenues, both laid out in the 1960's 
• Statistical route: ML etc: Åström-Bohlin 1965 

•  Prediction error framework: postulate predictor and apply curve-fitting 

• Realization based techniques: Ho-Kalman 1966 
•  Construct/estimate states from data and apply LS (Subspace 

methods).  
 

 
 

Past and Present: 
• Useful model structures 

• Adapt and adopt core’s fundamentals 

• Experiment Design …. 

•...with intended model use in mind (”identification for control”) 



  
 
 

 

 

 

Example: Aircraft Dynamics 




  
 
 

 

 

 

Inputs 

 
        Elevator 

 

 

        Deriv. Elev. 

 

 

     Leading edge 
flap    

     Canard 
 
 
      Deriv. 

canard 
 



  
 
 

 

 

 

Outputs 

 

Angle of 
attack 

 

Pitch rate 

 



  
 
 

 

 

 

Model and Measured Output 

State space models of order 2 and 6: 
m2=pem(data,2); m6= pem(data,6) 

Estimation data Validation data 



  
 
 

 

 

 

System Identification  
- Future: Open Areas 

 Spend more time with our neighbours! 
 Issues in identification of nonlinear 

systems 
 Meet demands from industry 
 Convexification 



  
 
 

 

 

 

System Identification  
- Future: Open Areas 

 Spend more time with our neighbours! 
 Report from a visit later on 

 Issues in identification of nonlinear 
systems 

 Meet demands from industry 
 Convexification 



  
 
 

 

 

 

Nonlinear Systems 
 A user’s guide to nonlinear model 

structures suitable for identification and 
control: 

   
    A ”non-elephant zoology” (Ulam) 
 



  
 
 

 

 

 

A Quick Taxonomy of NL Models 
     1. Black Models: 

The whole ANN, neuro-fuzzy, LS-SVM,etc business 

2. Off-white Models: Result from careful modeling  
    from first principles, with certain unknown  
    physical constants being the parameters 



  
 
 

 

 

 

Various Shades of Grey … 

 3. Composite Local Models (Local Linear                 
Models) 

 4. Semi-physical models (nonlinear trans- 
       formations of measured data based on  
       simple  insights) 



  
 
 

 

 

 

Semiphysical Modeling 

   A simple         
.    example 

Input: heater voltage u 

Output: Fluid temperature T 

Square the 
voltage: u u2   

u 

T 

No more than 2 minutes using only highschool physics 



  
 
 

 

 

 

Example: Buffer Vessel Dynamics 
Kappa number of outflow 
Kappa number of inflow 
Flow 
Volume 



  
 
 

 

 

 

Model Based on Raw Data 

Validation data 
Thin line:  
     Measured Output 
Thick Line:  
    Simulated Model  
    Output 



  
 
 

 

 

 

Now, it’s Time to …. 

 Think: …. 
 
 

 If no mixing in tank (”plug flow”) a particle 
   that enters the top will exit T seconds later. 
   T = (Tank Volume)/(Flow) 



  
 
 

 

 

 

Resample Data! 

 



  
 
 

 

 

 

Semi-physical Model with 
resampled data: 

Validation data: 
Thin line:  
     Measured Output 
Thick Line:  
    Simulated Model  
    Output 

 



  
 
 

 

 

 

System Identification  
- Future: Open Areas 

 Spend more time with our neighbours! 
 Issues in identification of nonlinear 

systems 
 
 Meet demands from industry 

 
 Convexification 
 

 



  
 
 

 

 

 

Industrial Demands 
 Data mining in large 

historical process 
data bases 
(”K,M,G,T,P”) 

 A serious integration of physical modeling and 
identification (not just parameter optimization in 
simulation software) 

PM 12, Stora Enso Borlänge 
75000 control signals, 15000 control loops 

    All process variables, 
sampled at 1 Hz for 
100 years 

     = 0.2 PByte  



  
 
 

 

 

 

Industrial Demands: Simple Models 

 Simple Models/Experiments for certain 
aspects of complex systems 

 Use input that enhances the aspects, … 
 … and also conceals irrelevant features 
 Steady state gain for arbitrary systems 

Use constant input! 
 Nyquist curve at phase crossover 

Use relay feedback experiments 
 But more can be done … 



  
 
 

 

 

 

System Identification  
- Future: Open Areas 

 Spend more time with our neighbours! 
 Report from a visit later on 

 Issues in identification of nonlinear 
systems 

 Meet demands from industry 
 

 Convexification 
 Formulate the estimation task as a convex 

optimization problem 



  
 
 

 

 

 

Convexification I 
   Are Local Minima an 

inherent feature of a 
model structure?  

Example:  
Michaelis – Menten kinetics 

The criterion to be 
     minimised 




  
 
 

 

 

 

  

    This equation  is a linear regression 
that relates the unknown parameters 
and measured variables. We can thus 
find them by a simple least squares 
procedure. We have, in a sense, 
convexified the problem 

Is this a general property? 
    Yes, any identifiable 

structure can be 
rearranged as a linear 
regression (Ritt's algorithm) 

Massage the equations: 



  
 
 

 

 

 

Convexification II 
Manifold Learning 

 

1. X : Original regressors

2. g(x) Nonlinear, nonparametric recoordinatization

3. Z : New regressor, possibly of lower dimension

4. h(z) : Simple convex map

5. Y : Goal variable (output)



  
 
 

 

 

 

Analysis of fMRI signals 




  
 
 

 

 

 

The observed data 

The patient in the magnet 
camera is moving his eye 
focus in a circle left - right - up 
- down. 128 voxels in the visual 
cortex are monitored by fMRI, 
giving a vector                    
sampled every two seconds. 
The output y(t) is the viewing 
angle   

The regressor         is 128-dimensional. At the same time the “brain 
activity is 1-dimensional”, so the interesting variation in the regres- 
sor space should be confined to a one-dimensional manifold 



  
 
 

 

 

 

WDMR: Estimated model 
We have devised a method, WDMR, that is based on LLE 
(Local Linear Embedding) for estimating  a low dimensional 
manifold, and finds a function from this manifold to the 
observed outputs. 
Below we show the predicted y-values (                        ) 
 (red) for validation measurements together with the  
corresponding true angles (blue). 



  
 
 

 

 

 

Conclusions 

 System identification is a mature subject ... 
 50 years old, many publications and the 

longest running symposium series 
 … and much progress has allowed 

important industrial applications … 
 … but it still has an exciting and bright 

future!  
 



  
 
 

 

 

 

Epilogue: The name of the game…. 




  
 
 

 

 

 

Thanks 
Research: Martin Enqvist, Torkel Glad, Håkan 

Hjalmarsson, Henrik Ohlsson, Jacob Roll 
Discussions: Bart de Moor, Johan Schoukens, Rik Pintelon, 

Paul van den Hof 
Comments on presentation: Martin Enqvist, Håkan 

Hjalmarsson, Kalle Johansson, Ulla Salaneck, Thomas 
Schön, Ann-Kristin Ljung 

Special effects: Effektfabriken AB, Sciss AB 
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