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Prologue

The PI, the Customer and
the Data Set

= C: I have this data set. | have collected it from a cell
metabolism experiment. The input is Glucose
concentration and the output is the concentration of G6P.
Can you help me building a model of this system?
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The Data Set
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A Simple Linear Model

Red: Model
Black: Measured

Error norm 3.46

Try the simplest model

1.8

y(t) =au(t-1) + b u(t-2) &

Fit by Least Squares.
mil=arx(z,[0 2 1]) T

0.8-

compare(z,ml) 0.6/
0.4}

0.2
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A Picture of the Model

Depict the model as
y(t) as a function of
u(t-1) and u(t-2)
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A Nonlinear Model

Try a nonlinear model

y(t) = f(u(t-1),u(t-2))
m2 = arxnl(z,[0 2 1],’sigm’)

Error norm 1.13
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More Flexibility

A more flexible, nonlinear model

y(t) = f(u(t-1),u(t-2))

m3 = arxnl(z,[0 2 1],’sigm’,’numb’,100)
compare(z,m3)

compare(zv,m3)

Error norm 1.07e-010

Error norm 5.11e+004
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The Fit Between Model and Data
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More Regressors

Try other arguments:
y(t) = f(y(t-1),y(t-2),u(t-1),u(t-2))

m4 = arxnl(z,[2 2 1],’'sigm’)
compare([z;zv],m4)

Error norm 0.653
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Biological Insight
Pathway diagram | s

i = 6 x1/02 — x2/03 \
14+ x1/0p + x2/03 Gl
U —x1 ATP ~_]

t 04 + u/05 + x1/05 + w1u/62 / o \
., x1/0—x2/03 / el \
2 =07 +x1/02 + 22/03 GoP \

Y x2/07 — O3

1+ /67 + 0g /
=2 \ L

For sampled data, approximately

y(t) = f(y(t-1),y(t-2),u(t-1),u(t-2),0)
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Tallor-made Model Structure

Error norm 0

1.4
cell = nilgrey(egns,nom_pars)

m5 = pem(z,cell);

compare([z;zv],m5)

0.4

0.2
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End of Prologue

Lennart Ljung Berkeley AUTOMATIC CONTROL
Identification of Non-linear Dynamical Systems October 6, 2005 COMMUNICATION SYSTEMS
LINKOPINGS UNIVERSITET




Outline

= Problem formulation

= How to parameterize black box predictors
= Using physical insight

= |[nitialization of parameter search

= LTI approximation of non-linear systems
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The Basic Picture

Input w, Outputy, Z!={u(1),y(1),...u(t),y(t)}

= State-Space = Qutput predictor

r = g(z,u,w) 1
y = h(z,u,e) y(tit —1) = fo(Z" ")

w and e noises

g(tlt — 1) = E(y(t)|2"7 1)
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The Predictor Function

General structure §(t|t — 1) = fo(Z1~1)

Common/useful special case:

g(tlt — 1) = fo(Z071) = fo(o(t))
o(t) = ¢(Zt=1) of fixed dimension m ("state”, "regressors”)

Think of the simple case

qb(t)z[y(t—l) ooyt —ng) u(t—1) ... u(t—nb>]
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The Predictor Function

General structure §(t|t — 1) = fo(Z1~1)

Common/useful special case:

gt — 1) = fo(Z2'71) = fo(o(®))
o(t) = ¢(Zt~1) of fixed dimension m ("state”, "regressors”)

Think of the simple case

qb(t)z[y(t—l) ooyt —ng) u(t—1) ... u(t—nb>]
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The Data and the Identification Process

The observed data
ZN=[y(1),0,-.-Y(N),dp]

are N points in Rm*!
The predictor model R R = e SN
N Sl M .;,';;5"‘!~~~~L
p— | A el e Lo
y - fO(qs) J***"&: #**ﬂ*** }***
is a surface in this *W*i -
space e W el [

|dentification is to find
the predictor surface
from the data:
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Mathematical Formulation

= Collect observations: zZN, y(t)=f,(d(t))+noise

= Non-parametric: Smooth the y(t)’s locally over selected ¢(t)-
regions
= Parametric:
e Parameterize the predictor function: f(6,¢), fe ¥ when 6 € D
e Fit the parameters to the data:
6 = arg min vV (0, 2V
N

N
Va(0, Z2N) = 3 e(y(t) — £(0,0(1)) = 3 |ly(t) — (8, p(1))]|?
t=1

t=1

*Usemodel (o) = F(Oy, ¢)
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Outline

* Problem formulation

= Parameterizing black box predictors

= Using physical insight

= |nitialization of parameter search

= LTI approximation of non-linear systems
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Predictor Function Parameterization

‘*How to parameterize the predictor
function 1(0,)-

» Grey-box (Physical insight of some sort)

» Black-box (Flexible function expansions)

f(0,¢) = i Ok f1.(P)
k=1

General case: fi.(¢) = fi.(¢(0),0)

Lennart Ljung Berkeley AUTOMATIC CONTROL
Identification of Non-linear Dynamical Systems October 6, 2005 COMMUNICATION SYSTEMS
LINKOPINGS UNIVERSITET




Choice of Functions: Methods

f (0)
= Neural Networks 1/Bk
= Radial Basis Neural Networks —
= Wavelet-networks Y,
= Neuro-Fuzzy models \
= Spline networks
= Support Vector Machines Ve = ¢(k)
= Gaussian Processes x = GaussianBell
= Kiriging
n
Adbuli=ss bas £(6,9) = > cpr(Br(d — 1))
k=1
Several layers.... 0 = {ok; B> Vi)
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An Aspect for Dynamical Systems

= Let ¢() = [y(t—1),u(t— 1"
= (One-step ahead) predicted output:

p(t10) = f(0, [y(t — 1),u(t — 1)]")

= This is normally what is fitted to data.

= A tougher test for the model is to simulate the output from
past inputs only:

Js(t,0) = f(0,[7s(t — 1,0),u(t — 1)]")

= Stability issues!
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The Basic Challenge

= Non-linear surfaces in high dimensions can be very
complicated and need support of many observed data
points.

= How to find parameterizations of such surfaces that both
give a good chance of being close to the true system, and
also use a moderate amount of parameters?

» The data cloud of observations is by necessity sparse in
the surface space.

Lennart Ljung Berkeley AUTOMATIC CONTROL
Identification of Non-linear Dynamical Systems October 6, 2005 COMMUNICATION SYSTEMS
LINKOPINGS UNIVERSITET




How to Deal with Sparsity

= Need ways to interpolate and extrapolate in the
data space

= Leap of Faith: Search for global patterns in
observed data to allow for data-driven
Interpolation

= Use Physical Insight: Allow for few parameters to
parameterize the predictor surface, despite the
high dimension.
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Outline

* Problem formulation

= Parameterizing black box predictors

= Using physical insight

= |nitialization of parameter search

= LTI approximation of non-linear systems
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Using Physical Insight: Light Version

, ) Input: heater voltage u
Semiphysical u |
: Output: Fluid temperature T
Modeling
il Square the voltage:
u >u?
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Example: Semiphysical Modeling

Buffer Vessel for
Pulp

Inflow
K-number Find the
out dynamics of this
utriow process!
* Flow

e k-number
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Measured Data from the Vessel

22

Output x-number

201
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121

K number in output flow
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Input k-number
24

f I «k number in input flow
T

0 1 2 3

Time (hours)
Input flow
80 ‘
70+
2 3 4 5 6

Time (hours)
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Fit a Linear Model to Data

Measured and Model Output
6 T T T T T

Time (hours)
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Using All 3 Inputs to Predict the Output

Measured and Model Output
20 T T T T T

15

10

Time (hours)

Lennart Ljung Berkeley AUTOMATIC CONTROL
Identification of Non-linear Dynamical Systems October 6, 2005 COMMUNICATION SYSTEMS
LINKOPINGS UNIVERSITET




* Plug Flow: The system is a pure time delay of
Volume/Flow

» Perfectly stirred tank: First order system with time
constant = Volume/Flow

= Natural Time variable: Volume/Flow
= Rescale Time:
= Pf = Fl ow Level
= Newti ne =
interpl(cumsum(Pf),time, [Pf(1):sumPf)]):
* Newdata = interpl(Time, Dat a, Newt i ne) ;
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The Data with a New Time-scale

Output x-number

Input x-number

22 24
20 1 22r ]
201 5
18} 1
18 }
16/ 1
16 1
14} :
14
12} U :
12} 1
1 0 B N 1 0 L U |
8 | | | | | 8 | | | | |
0 200 400 600 800 1000 1200 O 200 400 600 800 1000 1200

Production units
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Simple Linear Model for Rescaled Data

Measured and Model Output
6 T T T T T

0 200 400 600 800 1000 1200
Production units
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Using Physical Insight: Serious Version

» Careful modeling leading to systems of
Differential Algebraic Equations (DAE)
parameterized by physical parameters.

= Support by modern modeling tools.

= The "statistically correct” approach is to estimate
the parameters by the Maximum Likelihood
method.
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Local Minima of the Criterion

* This sounds like a general and reasonable
approach

= Are there any catches?

= \Well, to minimize the criterion of fit
(maximizing the likelihood function) could
be a challenge.

= Can be trapped in local minima....
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Maximum Likelihood: The Solution?

= Example: A Michaelis-

_ = The output:
Menten equation:

T
r=20 —xz+u
192_|_$ S
y=x-+e
u = iImpulse
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The ML Criterion (Gaussian Noise)

V(0) as a function of 6

100

Vo)=Y lly(ty) — =(ty, 0)])°
k=1
| B z(t,0)
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Outline

* Problem formulation

= How to parameterize black box predictors
= Using physical insight

= |nitialization of parameter search

= LTI approximation of non-linear systems
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Can We Handle Local Minima ?

= Can the observed data be linked to the parameters in a
different (and simpler) way?

= Manipulate the equations ...
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Ex: The Michaelis-Menten Equation

* |n our case (noisefree)

, — 01y
Y= yF06, — Y + u
gy + 60y = 01y — y° — Oy + uy + Hou
: Y
+y2 —uy = |61 0 .
yy T Yy Y [1 2} u—y—y
For observed y and u this is a linear regression in the

parameters. With noisy observations, the noise structure
will be violated, though, which could lead to biased estimates.
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Identifiability and Linear Regression

Crucial Challenge for physically parameterized
models: Find a good Initial estimate

» Result of conceptual interest: (Ljung, Glad, 1994)

A parameterized set of DAEs is globally
identifiable

If and only if

the set can be rearranged as a linear
regression

Ritt’s algorithm from differential algebra provides a finite
procedure for constructing the linear regression
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Example of Ritt’s Algorithm

" .2
Original r1 = 025
eqguations To = U
y—ai
Differentiate y § =i1 = 0z3
twice y :293:'2d3‘2 — 29:1?2’&
Square the last ij° = 400x5u° = 40ju”

expression

which is a linear

regression
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Challenge for Parameter Initialization

= Only small examples treated so far. Make the initialization
work in bigger problems.

= Potential for important contributions:

e Handle the complexity by modularization

e Handle the noise corruption so that good quality initial estimates
are secured

= Room for innovative ideas using algebra and semidefinite
programming!
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A Control Aspect

= Despite all the work and results on non-linear models, the
most common situation will still be

How to live with an estimated LTI model
approximation of a Non-linear system.
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Outline

* Problem formulation

= Generalization properties

= How to parameterize black box predictors
= Using physical insight

= |[nitialization of parameter search

= LTI approximation of non-linear systems
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Non-linear System Approximation

= Given an LTI Output-error model structure y=G(q,0)u+e,
what will the resulting model be for a non-linear system?

= Assume that the inputs and outputs u and y are such that
the spectra ®, and ®,, are well defined.

» Then the LTI second order equivalent is

— 1 P u(z)- - -1
Go = NL(Z) L(yz_l)-causal by (z) = AL(2)L(z7")

Note: G, depends on u

= The limit model will be
ming [ |G(z,0) — Go(2)|°Pu(2)dz
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An Example

Input Output (Lin/NL)
» Two data sets X | - |
» Inputuandoutputy - [ w
- y=d :;O/\ m :;of\ |
= y=u+0.01u3 s I
Note that the LTI

The corresponding LTI
equivalents (amplitude

Bode plot) 10° Vel

10° 10° 10°
que d/s)

equivalent is dynamic!

Ampikude
=
o]
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An Example

Input Output (Lin/NL)

= Two data sets . [ a
= |nput u and output y s |- w j
ik AN Ay MW
= y=u+0.01u3 . I |

: 20 40 60 20 40 60
(Enqvist, 2003) . S
10° ¢ | | 3

The corresponding LTI~ ™
equivalents (amplitude  #**"

Bode plot) 10 Vel

Soheefz, [ﬂ)&’eﬂl))gavgau&ry d1rrerent T
baestitsforrtheéawwo data sets!
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Outline

* Problem formulation

= How to parameterize black box predictors
= Using physical insight

= |[nitialization of parameter search

= LTI approximation on non-linear systems
= Generalization properties
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Model Quality

Model quality |fo(®) — f(0,¢)|. Average over a
selected sequence of regressors th:

N
W (@) =+ Y 1fo(B) — £6,8)
t=1

Good model: One that makes Wy (0) small.
Best possible model and fit in model set:

6% = argmin Wy (6), Wn(0n)
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Evaluating Quality From Data

Estimation Data Z.: y(t) = fo(o:) + e(t)
Validation Data Z,: y(t) = fo(ér) + v(t)

N
V(0. 7) = = 3 () — F0, 6017, Vv, Z) = ...
t=1

On = arg min Vi (0, Ze). What does Vi (0, Ze)
tell us?

Vi (O, Ze) =3 1fo(én) — O, 60 + - 3 ()
+ = 3" (fo(60) — £, 0)e(®)

Difficult to interpret, since the last term does
not tend to zero.
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Evaluating Fit Using Validation Data

What does Vy(0y, Z,) tell us?
~ 1 ~ o~ 1
VN(ON, Zv) =N N 1fo(@) — fFOn, )% + ~ S w?(t)

+ 25 (fo(@0) — By, 3))o(®)
— Wn(On) + o

Gives a good grip on the interesting quality
measure Wy (0y)
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Asymptotic Theory

In case ¢ = ¢; we have the asymptotic results

Oy —O0n — 0 as N — o

EWn(ON) = Wx(0§) + —Ue

Here d is the number of parameters,
regardless of the parameterization!

Bias — Variance Trade-off

Akaike-type result. Similar in Learning Theory.
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Epilogue: Tasks for the Control Community

= Black-box models
e Working stability theory: Prediction/Simulation

= Semiphysical Models
e Tools to generate and test non-linear transformations of data
» Fully integrated software for modeling and identification

e Object oriented modeling
e Differential Algebraic Equations — including disturbance modeling
e Robust parameter initialization techniques

= Understand LTI approximation of nonlinear dynamic
systems
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Epilogue
= Challenges for the Control Community:

1) Black-box models
v A working stability theory: Prediction/Simulation

2) Semiphysical modeling

1) Fully integrated software for modeling and identification

v Object oriented modeling
v' Differential algebraic equations
v Full support of disturbance models

2) Robust parameter initialization techniques
v Algebraic/Numeric

Lennart Ljung Berkeley
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Mathematical Formulation

= Collect observations: zZN, y(t)=f,(d(t))+noise

= Non-parametric: Smooth the y(t)’s locally over selected ¢(t)-
regions

= Parametric:

e Parameterize the predictor function: f(6,¢), fe ¥ when 6 € D
e Fit the parameters to the data:

O = arg min Vi (0, ZN
N g min N ( )

N N
Va(0, Z2N) = 3 e(y(t) — £(0,0(1)) = 3 |ly(t) — (8, p(1))]|?
t=1

t=1
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www.control.isy.liu.se/~ljung/bode
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A Multitude of Concepts

Neural Networks * Support Vector Machines * Nonparametric
Regression * Lazy Learning * Wavenet networks * Just-in-time
Models * Local Polynomial Methods * Statistical Learning Theory

* Multi-index Model Estimation * Kernel Methods * Fuzzy Modeling
* Radial Basis Networks * Regression Trees * Differential Algebraic
Equations * Model on Demand * Single-index Model Estimation
Neuro-Fuzzy Approach * Least-squares Support Vector Machines
* Reproducing Kernel Hilbert Spaces * SupAnova * Kriging * Gaus-
sian Processes * Reqgularization Networks * Nearest Neighbor
Modeling * Direct Weight Optimization * Bayesian Learning * Com-
mittee Networks * Nystrom Method *
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Using Physical Insight |
Semiphysical
Modeling

Hammerstein-
: u
Wiener
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