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Abstract—It is getting more common that premium cars are
equipped with a forward looking radar and a forward looking
camera. The data is often used to estimate the road geometry,
tracking leading vehicles, etc. However, there is valuable infor-
mation present in the radar concerning stationary objects, that
is typically not used. The present work shows how stationary
objects, such as guard rails, can be modeled and tracked as
extended objects using radar measurements. The problem is
cast within a standard sensor fusion framework utilizing the
Kalman filter. The approach has been evaluated on real data
from highways and rural roads in Sweden.

I. INTRODUCTION

For a collision avoidance system it is imperative to have a
reliable map of the environment surrounding the ego vehicle.
This map, consisting of both stationary and moving objects,
has to be built in real time using measurements from the
sensors present in the ego vehicle. This is currently a very
active research topic within the automotive industry and many
other areas as well. Great progress has been made, but much
remains to be done. Current state-of-the-art when it comes to
the problem of building maps for autonomous vehicles can be
found in the recent special issues [1]–[3] on the 2007 DARPA
Urban Challenge. In these contributions measurements from
expensive and highly accurate sensors are used, while we
in the present paper utilize measurements from off-the-shelf
automotive radars.

Obviously, these stationary radar measurements are not
enough to fully explain the road borders. However, as we will
see, there is surprisingly much information present in these
measurements.

In this contribution we consider the problem of estimating
the position and shape of stationary objects in front of the
vehicle, making use of echoes from a standard automotive
radar. Hence, there is no need to introduce any new sensors, it
is just a matter of making better use of the sensor information
that is already present in a modern premium car. We represent
the stationary objects as
• points, with sources such as delineators or lampposts or
• lines, where measurements stem from e.g. guard rails or

concrete walls.
The lines are modeled as extended objects, since an object
is denoted extended whenever the object extent is larger than
the sensor resolution. Put in other words, if a object should be
classified as extended does not only depend on its physical
size, but also on the physical size relative to the sensor
resolution. Extended object tracking is extensively described

in e.g. [4], [5] and it has received quite recent attention in [6],
[7] where Monte Carlo methods are applied and in [8] which
is based on random matrices.

The problem of road border estimation has been investigated
in the literature mostly in the last decade. The approaches
presented mainly differ in their models for the road borders
and the different types of sensors used in the estimation.
The third order approximation of the two sided (left and
right) “clothoid model” has been used in connection with
Kalman filters in [9] and [10] for laser scanner measurements
and radar measurements respectively. In [11], Lundquist and
Schön proposed two road border models, one of which is very
similar to [10] and used a constrained quadratic program to
solve for the parameters. A linear model represented by its
midpoint and orientation (one for each side of the road) is
utilized in [12] with ladar sensing for tracking road-curbs.
Later, [13] enhanced the results of [12] with the addition
of image sensors. A similar extended Kalman filtering based
solution is given in [14], where a circular road border modeling
framework is used. Recently, the particle filters (also referred
to as condensation in image and video processing) have been
applied to the road border estimation problem in [15] with an
hyperbolic road model.

The present solution extends an already existing sensor
fusion framework [16], which among other things provides
a good road geometry estimate. This framework improves the
raw vision estimate of the road geometry by fusing it with
radar measurements of the leading vehicles and information
from various proprioceptive sensors. The idea is that the
motion of the leading vehicles reveals information about the
road geometry [17]–[19]. Hence, if the leading vehicles can
be accurately tracked, their motion can be used to improve
the road geometry estimates. Furthermore, we used a solid
dynamic model of the ego vehicle allowing us to further
refine the estimates by incorporating several additional sensor
measurements from the CAN bus. The resulting, rather simple,
yet useful map of the environment surrounding the ego vehicle
consists in

• Road geometry, typically parameterized using road cur-
vature and curvature rate.

• Position and velocity of the leading vehicles.
• Ego vehicle position, orientation and velocity.
• Position and shape of stationary objects.

The stationary objects are tracked by casting the problem
within a standard sensor fusion framework. Since we use a



linear model and assume Gaussian noise we use the standard
Kalman filter [20].

The approach has been evaluated on real data from high-
ways and rural roads in Sweden. The test vehicle is a Volvo
S80 equipped with a forward looking 77 GHz mechanically
scanned FMCW radar and a forward looking vision sensor
(camera).

II. GEOMETRY AND NOTATION

In [16] we provide a sensor fusion framework for sequen-
tially estimating the parameters l, δr, c0 in the following model
of the road’s white lane markings,

yE = l + δrx
E +

c0
2

(xE)2, (1)

where xE and yE are expressed in the ego vehicle’s coordinate
frame E. The angle between the longitudinal axis of the
vehicle and the road lane is δr, see Figure 1. It is assumed that
this angle is small and hence the approximation sin δr ≈ δr is
used. The curvature parameter is denoted by c0 and the offset
between the ego vehicle and the white lane is denoted by l.

In this paper we will use the planar coordinate transforma-
tion matrix

RWE =
(

cosψEW − sinψEW

sinψEW cosψEW

)
(2)

to transform a vector, represented in the ego vehicle’s coordi-
nate frame E, into a vector, represented in the world reference
coordinate frame W , where ψEW is the angle of rotation from
W to E. We will refer to this angle as the yaw angle of
the vehicle, and in order to simplify the notation we will
use ψ , ψEW . The point OW is the origin of W and OE

is the origin of E situated in the vehicles center of gravity.
The geometric displacement vector rW

OEOW
is the straight line

from OW to OE represented with respect to frame W . The
angles and distances are shown in Figure 1. Hence, a point
PE represented in the ego vehicle coordinate frame E is
transformed to be represented in the world coordinate frame
W using

PW = RWEPE + rW
OEOW

. (3)

An observation m will be referred to as a stationary object
in the point Sm. The radar in the ego vehicle measures
the azimuth angle ψSE and the range r = ||rE

SmOE
||2.

These are transformed into Cartesian coordinates SE
m =[

xE
SmOE

yE
SmOE

]T
.

III. EXTENDED OBJECT MODEL

In this section we introduce models for the tracked station-
ary object, i.e., points and lines. To take care of the lines a
model with the object’s shape, size, position and orientation
is introduced.

A. Motion Model of the Stationary Objects

Stationary objects are modeled as points P or lines L. A
point Pi is represented using a position in the planar world
coordinate frame W , according to

xPi
,
[
xW
PiOW

yW
PiOW

]T
. (4)

1
c0

Si

rE
SiE

rW
OEOW

ψSiOE

δr

ψ

l

y

x

W

OW

y

x

E

OE

Figure 1. The ego vehicle’s coordinate frame E has its origin OE situated in
the vehicle’s center of gravity. A stationary object Si is observed at a distance
||rL
SiOE

||2 and an angle ψSiOE
with respect to the radar. The angle between

the vehicle’s longitudinal axis and the road lane is δr , the distance to the left
lane marking is l and the road curvature is c0.

A line Lj is represented as a second order polynomial in its
coordinate frame Lj

yLj = a0 + a1x
Lj + a2

(
xLj
)2
. (5)

The coordinate frame Lj is initiated together with the line and
is equal to the ego vehicles coordinate frame at the moment
the line is created. Unlike the ego vehicle’s frame it is fixed
to the world frame, i.e., rW

OLj
OW

and ψLjW are constant and
it does not follow the vehicles movement.

The state of the line Lj is

xLj =
[
a0,j a1,j a2,j sj ej

]T
, (6)

where sj and ej are the start and end points of the line given
as scalar xLj values.

The motion model of the stationary objects in the form

xt+1 = Fxt + wt, wt ∼ N (0, Q), (7)

is simple, since the objects are not moving. For the points, the
system matrix, referred to as FP , is the identity matrix. The
term wt in (7) represents the process noise. We include some
dynamics into the motion model of the line. We assume that
the lines are shrinking with a factor λ < 1 according to

sj,t+1 = sj,t + λ(ej,t − sj,t), (8a)

ej
j,t+1 = ej,t − λ(ej,t − sj,t), (8b)

leading to

FL =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1− λ λ
0 0 0 λ 1− λ

 . (9)

This shrinking behavior for the lines allows us to automatically
adjust the starting and end points of the lines according to the
incoming measurements.



B. Measurement Model
The measurement equation describing the measurements

relation to a point Pi is defined as

yPi,t = xPi,t + vP,t, vP,t ∼ N (0, RP), (10)

where the output yPi,t = SW
m is the observation m in the

world coordinate frame associated to the ith point. The term
vP,t in (10) represents the measurement noise associated
with the radar. The measurement equation describing the
measurements relation to a line Lj is

yLj ,t =

[
0 0 0 h14 h15

1 x
Lj

SmOLj

(
x

Lj

SmOLj

)2

0 0

]
xLj ,t+

[
0
1

]
vL,t,

(11)
where yLj ,t = SLj

m is the observation m in the Lj coordinate
frame and associated to line Lj . The term vL,t ∼ N (0, RL)
represents the measurement noise. The first row of the mea-
surement matrix, which determines the update of the start and
the end points, depends on the position of the observation
in relation to the predictions of the start and the end points
according to

[
h14 h15

]
=


[
1 0

]
if xLj

SmOLj
≤ sj,t|t−1[

0 1
]

if xLj

SmOLj
≥ ej,t|t−1[

0 0
]

otherwise.

(12)

This type of measurement where some measured quantities
(xLj

SmOLj
in our case) appear as model parameters is not

conventional in dynamic estimation literature and can be con-
sidered as an extension of the so-called “errors in variables”
framework. In our application, this enables us to use the
Kalman filter because the resulting model is linear.

IV. DATA ASSOCIATION AND GATING

At every sampling time, the system receives a batch of nS
observations Sm, m = 1, . . . , nS from the radar. These new
measurements can be associated to existing tracked points Pi,
i = 1, . . . , nP or to tracked lines Lj , j = 1, . . . , nL, or
a new track is initiated. The number of association events
(hypotheses) is extremely large. The classical technique to
reduce the number of these hypotheses is called gating [21].
We apply gating and make a nearest-neighbor type data asso-
ciation based on likelihood ratio tests. Other more complicated
data association methods like multiple hypothesis tracking [22]
or joint probabilistic data association [21] can also be used
in our framework. However, these are quite complicated and
computationally costly approaches and the nearest neighbor
type algorithm we used has been found to give sufficient
performance for our case. The gating and the data association
are performed according to the following calculations. The
likelihood `Sm,Pi

that the observation Sm corresponds to the
ith point Pi is given by

`SmPi =

{
N (Sm; ŷPi,t|t−1, SPi

), if Sm ∈ GPi

0, otherwise
(13)

where ŷPi,t|t−1 is the predicted measurement of the point Pi

according to the model (10) and SPi,t|t−1 is its covariance

(innovation covariance) in the Kalman filter. The gate GPi
is

defined as the region

GPi
,
{
y
∣∣∣(y − ŷPi,t|t−1)TS−1

Pi,t|t−1(y − ŷPi,t|t−1) ≤ δP
}

(14)

where δP is the gating threshold.
The likelihood that the observation m corresponds to the

jth line state is derived by considering the orthogonal distance
between the line and the observation. To simplify the calcu-
lations we assume that the curvature of the line is small and
that the orthogonal distance can be approximated with the y-
distance between the observation and the line expressed using
the lines coordinate frame Lj , i.e.,

εSmLj
= y

Lj

SmOLj
− ŷLj

SmOLj
, (15)

where

ŷ
Lj

SmOLj
,

[
1 x

Lj

SmOLj

(
x

Lj

SmOLj

)2

0 0
]
x̂Lj ,t|t−1.

(16)

The likelihood `SmLj
that the observation corresponds to the

jth line is then given by

`SmLj
=


N
(
εSmLj

; 0,E
(

∆2
yj

))
, if

xLj

SmOLj

y
Lj

SmOLj

 ∈ GLj

0, otherwise
(17)

where yj = y
Lj

SmOLj
and the gate GLj is defined as

GLj
,

{[
x
y

] ∣∣∣ (y − ŷLj

SmOLj

)2

E
(

∆2
yj

)−1

≤ δL,

sj − δs < x < ej + δe

}
. (18)

In (17) and (18), E(∆2
yj

) represents the uncertainty of the line
in the y direction at the x-value xLj

SmOLj
. This covariance has

to be calculated in terms of the state estimate x̂Lj ,t|t−1 and
its covariance PLj ,t|t−1. This derivation can be made by first
rewriting the line equation (6) with mean parameters and a
deviation ∆

y + ∆y = (a0 + ∆a0) + (a1 + ∆a1)x+ (a2 + ∆a2)x2, (19)

where the superscripts and subscripts are discarded for the
sake of brevity. This gives

∆y = ∆a0 + ∆a1x+ ∆a2x
2. (20)

Considering the squared expectation of this deviation, we
obtain

E(∆2
y) = E(∆a0 + ∆a1x+ ∆a2x

2)2

= E
( (

1 x x2
) (

∆a0 ∆a1 ∆a2

)T
×
(

∆a0 ∆a1 ∆a2

) (
1 x x2

)T )
=
(

1 x x2
)

E
( (

∆a0 ∆a1 ∆a2

)T
×
(

∆a0 ∆a1 ∆a2

) ) (
1 x x2

)T
. (21)



Now, the expectation above is given by the upper-left 3 × 3
partition of the covariance matrix PLj ,t|t−1 which we denote
by P 3×3

Lj ,t|t−1. Hence,

E
(

∆2
yj

)
=
(

1 x
Lj

SmOLj
(xLj

SmOLj
)2
)
P 3×3
Lj ,t|t−1

×
(

1 x
Lj

SmOLj
(xLj

SmOLj
)2
)T

. (22)

Having calculated the likelihood values, we form two matrices
of likelihood values, one matrix ΓP ∈ RnS×nP with the
combinations of observations and points, according to (13),
and one matrix ΓL ∈ RnS×nL with the combinations of
observations and lines, according to (17).

First we find the the maximum value of ΓP , and call the
corresponding point state im and measurement mm. Thereafter
we find the maximum value of the mth row, corresponding to
measurement mm of matrix ΓL and call the corresponding
line state jm. The likelihood ratio denoted by Λ(Sm) is now
given by

Λ(Sm) ,
`SmPim

`SmLjm

. (23)

The corresponding likelihood ratio test is

Λ(Sm)
H0

≷
H1

η (24)

where H0 and H1 corresponds to hypotheses that the mea-
surement Sm is associated to the point Pim and to the line
Ljm

, respectively. The threshold is selected as η < 1, since
(13) is two dimensional and (17) is one dimensional. More
theory about likelihood test is given in e.g. [23].

No two measurements may originate from the same point
source and no two sources may give rise to the same
measurements. However, one line source may give rise to
multiple measurements. This means that if measurement Sm

is associated to point Pi, then the values in the mth row of the
two matrices as well as the ith column of the point likelihood
matrix must be set to zero to exclude the measurement and the
point from further association. However, if Sm is associated
to line Lj , then only the values in the mth rows of the two
matrices are set to zero because the line Lj can still be
associated to other measurements. The procedure is repeated
until all measurements with non-zero likelihood have been
associated to either a point or a line. A new point is initiated
if the observations could not be associated to an existing state.
This is true when a measurement is not in the gate of a non-
associated point or a line.

V. HANDLING TRACKS

A line is initiated from tracked points under the assumption
that a number of points form a line parallel to the road. In
this section we will discuss track handling matters such as
initiating and removing tracks.

A. Initiating Lines
All points Pi are transformed into the ego vehicles coordi-

nate frame since the road’s geometry is given in this frame.
The road geometry is described by the polynomial given in (1).
We consider hypothetical lines passing through each point Pk

parallel to the road. For each such line, the corresponding
lateral distance lPk

is given by

lPk
= ŷE
PkOE

− δrx̂E
PkOE

− c0
2
(
x̂E
PkOE

)2
. (25)

The likelihood `PiPk
that a point Pi is on the line of point

Pk is then given by

`PiPk
=

N
(
εPiPk

; 0, PE
Pk,(2,2)

)
, if

[
x̂LE

PiOE

ŷLE

PiOE

]
∈ GPk

0, otherwise,
(26)

where the lateral distance between the point Pi and the
proposed new line of point Pk is given by

εik = ŷE
PiOE

− ŷE
PkOE

, (27)

where

ŷE
PkOE

= lPk
+ δrx̂

E
PiOE

+
c0
2
(
x̂E
PiOE

)2
, (28)

and the state covariance in the ego vehicles coordinate frame
is given by

PE
Pk

=
(
REW

)T
PPk

REW . (29)

The notation PE
Pk,(2,2) refers to the lower-right element, i.e.,

the variance in the diagonal corresponding to yE . The gate
GPk

is defined as

GPk
,

{[
x
y

] ∣∣∣∣∣
(
y − ŷE

PkOE

)2
PE
Pk,(2,2)

≤ δL,

− δs < x− x̂E
PkOE

< δe

}
. (30)

From all combinations of likelihoods we form a symmetric
matrix ΓI . The columns of ΓI are summed and the maximum
value corresponding to column km is chosen. If this column
contains more than a certain number κ of non-zero rows,
corresponding to points

Pl = {P | ΓI(:, km) 6= 0} (31)

within the gate of Pkm
, a line is formed from the points Pl.

The new line’s states a0, a1 and a2 are estimated by solving
a least square problem using the points Pl. The states s and
e are the minimum and maximum x-coordinate value of the
points, respectively. All elements in column km and rows im
are set to zero and the procedure is repeated until no column
contains more than κ non-zero elements.

B. Remove Lines or Points

For each state we introduce a counter. The counter is
increased if the state is updated with new measurements and
decreased if it was not updated during one iteration. A state
is removed if the counter is zero.
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Figure 2. A traffic situation is shown in Figure (a). Figure (b) shows the
radar reflections, and Figure (c) the resulting tracked points and lines. The
circle is the ego vehicle, the square is the tracked vehicle in front and the
dashed gray lines illustrates the tracked road curvature.

VI. EXPERIMENTS AND RESULTS

Let us start by showing the information given by an ordinary
automotive ACC radar, for the traffic situation shown in
Figure 2a. The ego vehicle, indicated by a circle, is situated at
the (0, 0)-position in Figure 2b, and the black dots are the radar
reflections, or stationary observations, at one time sample. The
gray dots are former radar reflections, obtained at earlier time
samples. Figure 2c shows the estimated points and lines for
the same scenario. The mean values of the states are indicated
by solid black lines or points. Furthermore, the state variance,
by means of the 1σ confidence interval, is illustrated by gray
lines or ellipses, respectively. In [16] the authors presented a
new approach to estimate the road curvature (1), which we
show here as gray dashed lines. We also show the tracked
vehicle in front of the ego vehicle illustrated by a square.

In Figure 3a we see a traffic scenario with a highway exit.
The corresponding bird’s eye view is shown in Figure 3b.
The origin of the line’s coordinate systems are illustrated with
dots and a number which is repeated at each line. Line 1
indicates the guardrail to the right of the exit, line 2 is the
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Figure 3. Highway exit with guardrails, the camera view is shown in
Figure (a) and the bird’s eye view with the estimated states in Figure (b).

guardrail starting at the exit sign. The gap between line 3 and
line 5 is probably due to the dimple, where the radar signals
are transmitted above the guard rail, hence not giving us any
stationary observations in the desired region.

Our last example shows a situation from a rural road, see
Figure 4a. The lines 5 and 6 are the guardrails of a bridge.
Line 4 depicts a fence behind the bridge. From the camera
view it is hard to recognize and also the radar has problems
to track it, indeed the gray lines indicates a large uncertainty
for this case.

VII. CONCLUSION

In this contribution we have derived a method for track-
ing stationary objects as extended objects using radar mea-
surements. Typically radar echoes stem from delineators or
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Figure 4. A traffic scenario from a rural road, with guardrails on both sides
of a bridge is shown. Note that the fence behind the bridge in Figure (a) is
illustrated by line 4 in Figure (b), observe the large uncertainty.

guardrails, which are tracked as points or lines, respectively,
in a standard Kalman filter framework. A major part of the
present approach is the data association and gating problem.
The approach has been evaluated on real and relevant data
from both highways and rural roads in Sweden. The results
are not perfect, but surprisingly good at times, and of course
much more informative than just using raw measurements.
Furthermore, the standard state representation of the objects
should not be underestimated since it is compact and easy to
send on a vehicle CAN-bus.
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