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Abstract: This paper is concerned with vehicle motion estimation. The problem is formulated
as a sensor fusion problem, where the vehicle motion is estimated based on the information
from a far infrared camera, inertial sensors and the vehicle speed. This information is already
present in premium cars. This work is concerned with the off-line situation and the approach
taken is to formulate the problem as a nonlinear least squares problem. In order to illustrate
the performance of the proposed method experiments on rural roads in Sweden during night
time driving have been performed. The results clearly indicates the efficacy of the approach.
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1. INTRODUCTION

This work is concerned with the problem of estimating
the vehicle motion using measurements from a far infrared
(FIR) camera, along with proprioceptive sensors measur-
ing acceleration, speed and yaw rate. FIR cameras are
currently used for pedestrian detection in several different
vehicle models already in series production. This implies
that the rich sensor information available from the FIR
camera is already available in the vehicle for free. Fig. 1
illustrates the difference between a visual image and a FIR
image (from Autoliv’s Night Vision system, which explains
the pedestrian warning symbol) taken during night time
driving. From this figure it is clear that there is a lot of
information about the surroundings available (also during
night time driving). The goal of this work is to show how
this information can be used in order to compute smoothed
estimates of the vehicle motion.

Fig. 1. This figure shows a visual image and a correspond-
ing FIR image.

Initial studies along this line have already been performed
in Schén and Roll (2009). That work indicates that the
information from the FIR camera is indeed valuable for
motion estimation in a filtering setting, i.e. when the
on-line motion estimation problem is considered. More
specifically, an extended Kalman filter (EKF) was used in
order to compute the estimate. The present work targets
the off-line problem, i.e. the problem of estimating the
motion of the vehicle after the measurements have been
collected. As always, it is expected that the smoothed
estimate is better than the filtered estimate, since more
information is available.

The way in which the camera data is utilised is highly
related to the, by now, fairly well studied Simultaneous Lo-
calization and Mapping (SLAM) problem, see e.g. (Thrun
et al., 2005; Davison et al., 2007; Durrant-Whyte and
Bailey, 2006; Bailey and Durrant-Whyte, 2006). However,
the current work only aims at estimating the motion of
the vehicle and not the map, which implies that this work
has even stronger ties to the visual odometry problem
(Cheng et al., 2006; Nistér et al., 2006). Furthermore, a
sensor fusion problem is considered here, where measure-
ments from several different sensors, not just the camera,
are used. The problem is formulated as a nonlinear least
squares problem, inspired by the work of Dellaert and
Kaess (2006).

An important component of the proposed solution is the
motion model for the vehicle. Some effort has therefore
been spent in deriving and evaluating an appropriate
vehicle motion model. The perhaps slightly non-standard
component introduced in this model is the vehicle pitch
dynamics. More specifically, a constant offset and the
influence from acceleration, are suggested by Dickmanns
(2007).



2. MODELLING

The system is modeled by a state space model. At time ¢
the vehicle state is denoted z} and the input u;, resulting
in the vehicle motion model

(1a)

where w; is Gaussian process noise. The position at time
t of the jth landmark is parametrized by its state xéjt and
the landmark model is

17? = f(zrl‘/)—lvut> + We,
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since it is assumed that all landmarks are stationary. At
time ¢, the vehicle measurements y; are given by

yi = h"(x;) +ef, (1c)

where ey is Gaussian measurement noise, and the land-
mark measurement yé-’t of the jth landmark is given by

(1d)

U plw !
Yie = h(x,254) + €54

l

where €7, is Gaussian measurement noise.
.

2.1 Coordinate Frames

There are three relevant coordinate frames for the com-
bined vehicle and camera system:

e World (w): This is considered an inertial frame and
is fixed to the surroundings of the vehicle.

e Vehicle body (b): This frame is fixed to the vehicle,
with its origin located in the middle of the rear axis.
Coordinate frame b coincides with w at the start of a
scenario.

e Camera (c): This frame is fixed relative to b and is
positioned in the optical center of the camera.

The rotation matrix R(«,,v) transforms coordinates
from coordinate frame B to coordinate frame A, where
the orientation of B relative to A is a (yaw), S (pitch)
and v (roll).

2.2 Vehicle Process Models

This sections starts by describing the vehicle process
process model used in Schon and Roll (2009), from now
on referred to as the basic model, followed by a few
model extension proposals aiming at increasing the pose
estimation accuracy.

With the states described in Table 1, the vehicle state
vector at time ¢ is given by

T
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The input signal u; is given by
Ut = Vg t, (3)
where the vehicle acceleration 7, ; is measured. By treating

U+ as an input signal instead of as a measurement it does
not have to be incorporated in the vehicle state.

With T as the sampling time, L as the wheel base of the
vehicle and C' as a pitch damping parameter, the process
model becomes

Table 1. Vehicle states.

[ State [ Description ]

p Vehicle position in world coordinates.

Vg Velocity of the vehicle in its longitudinal direction.

P Yaw angle (z-axis rotation), relative to the world coor-
dinate frame.

6 Front wheel angle, relative to the vehicle’s longitudinal
direction.

e’ Road pitch angle, relative to the world coordinate frame
xy-plane.

© Pitch angle of the vehicle, relative to the road.
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The vehicle process noise w; is independent and Gaussian,
according to
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Q” = diag(q™ ¢* ¢° ¢* ¢%), (5d)
where all the g-variables are process noise variance param-
eters.

The rest of this section describes the extensions to the
vehicle process model tested during this work. Note that
these model extensions can be used together in any combi-
nation. Some new notation has to be introduced: In order
to describe the vehicle process model for one of the vehicle
states, superscripts are used. For example: for the yaw
angle (1) process model the notation f¥ is used.

Constant Offset in Car Pitch Angle  Since the stationary
pitch angle of the camera, relative to the road, might be
non-zero, due to the current load in the vehicle or mis-
aligned camera mounting, the state vector is augmented
with a state for the camera pitch offset (°. This offset state
is interpreted as the stationary car pitch angle, around
which the car pitch angle oscillates, according to

[P () ug) = Clor — @f) + Y,
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where C' is the pitch damping parameter from (4).

The camera pitch offset models a constant offset angle, so
the process noise variance for ¢! is zero. The process noise
variance for ¢ is independent of whether (° is included in
the vehicle state and process model or not.

Acceleration Offset in Car Pitch Angle  The vehicle
acceleration significantly influences the pitch angle of the
car. The model of this effect is that the stationary car
pitch angle, when the acceleration u is constant, becomes



Ku, where K is a parameter that depends on the vehicle
geometry. This leads to

ez, uev1) = Olpr — Kugyr) + Kugyr. (7)

The process noise variance for ¢ should not be changed
when adding the car pitch acceleration offset to the process
model.

Roll Angle  For several reasons, such as that curves of
country roads are banked, and that the car may roll
when driving on uneven roads, letting the roll angle be
constant at zero, might be an inadequate approximation.
The process model for the combined roll angle v of the car
and road is given by

(@) ) = e (8)
Since the roll and pitch angles of automobiles have similar
behaviour in terms of amplitude and natural frequency,
the process noise variance for the roll angle is set to
be approximately the same as the basic model car pitch
process noise variance.

2.8 Landmark Parametrization

In order to extract measurements from the FIR images a
Harris corner detector (Harris and Stephens, 1988) is used
to find features, and normalized cross-correlation (NCC),
see e.g. Ma et al. (2004), is used to associate previously
extracted features with new images. The landmarks are
parameterized using the so-called inverse depth parame-
terization intruduced by Montiel et al. (2006). More specif-
ically, the landmark states are described in Table 2 and the
landmark state vector is given by
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The landmark state xl»,t is a parametrization of the posi-
tion I}, of landmark j at time ¢. The relationship between
position and state, with landmark position given in world
coordinates, is given by

cos ¢}, cos 077
w o o Lw AW o w
Iy =k, + — | cos ¢}, sin 07,

(10)
Pjt sin ¢,

o
Myt

Table 2. Landmark states.

l State [ Description ]

k® The position in world coordinates of the camera at the
time when the landmark was first seen.

o The azimuth angle of the landmark as seen from k%,
relative to world coordinate frame directions.

o3 The elevation angle of the landmark as seen from k", rel-
ative to world coordinate frame directions, with positive
angles towards the positive z-axis.

p The inverse depth (which is the inverse of the distance)
from k&% to the landmark.

At time t there are M, visible landmarks. Visible means
that the landmark has been measured; a landmark may
very well be non-visible although it is present in the FIR
image, but it cannot be visible if it is not in the image.
The landmark index of the visible landmark number ¢ €
{1,2,..., M;} at time t is denoted j;(7).

2.4 Measurement Model

The measurement model (1c) relating to the propriocep-
tive sensors of the vehicle is given by

h¥(xy) = <Uz’;:> = (vz,fg;n 5t) : (11)

where L is the wheel base of the vehicle. Furthermore, the
measurement model (1d) for landmark j at time ¢ is given
by
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where ¢ is the position of the camera in the vehicle body
coordinate frame, and P, (p°) is the so-called normalized
pinhole projection of a point p¢, which is given in camera
coordinates. Furthermore, P, generates normalized cam-
era coordinates, and «f, B¢ and ¢ are the yaw, pitch
and roll angles of the camera, relative to the vehicle body
coordinate frame.

Both of the two measurement noises e} and e§7t in (1c) and
(1d) are independent and Gaussian, according to

ef ~N(0,8°), S° = diag(s" s¥),  (13a)
e~ N(0,8"), S' = diag(s 5°),  (13b)
where all the s-variables are measurement noise variance

parameters.

The translation between pixel coojgdinates (y 2)T and nor-
malized camera coordinates (y z)" , in which the landmark
measurements yéf are given, is

=g
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z =zt |’
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where (gic Eic) denotes the image center, and f, and f,

are the focal lengths (given in pixels) in the y-direction
and the z-direction, respectively.

(14)

3. NONLINEAR LEAST SQUARES FORMULATION
AND SOLUTION

In this section the nonlinear least squares problem that
is solved in order to find the smoothed estimates of the
vehicle motion is formulated. In other words, the vehicle



states and the landmark states are estimated simultane-
ously, based on the information in all the measurements.
Notation that will be needed is first introduced.

The complete state vector x is given by

r= (@ @)7)". (150

where ¥ denotes the vehicle states (2) for all time steps
t = 1,2,...,N and 2! denotes the stationary landmark
states. To be specific,

e = (@)" @) ... @) (15b)

o ((xé(l))T (xé'(Q))T (Ié»(M)>T> ) (15¢)

ah = (00 0¥ p)" . (15d)

Furthermore, let T denote the current estimate of x. Note
that instead of including the camera positions in the
landmark states xé, the vehicle state x] () from the time
t.(j) when landmark j was first seen, may be used. This
is possible since the camera is rigidly attached to the car.
In other words there is a known transformation g,

. p N + R’wbcb
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which returns the complete landmark state (i.e. camera po-
sition, azimuth angle, elevation angle and inverse depth).

Due to the fact that the number of landmark measure-
ments yé-yt are not the same for every time step, k is used to
enumerate the complete series of landmark measurements.
The notation jj for the index of the landmark associated
with measurement k is introduced, and similarly ¢, for the
time when measurement k was acquired. Using the nota-
tion just introduced, yéktk is the landmark measurement
number k.

The nonlinear least squares problem is solved by using a
locally linear approximation, obtained using a linearization
around * = Z. Linear approximations of the process
model and the measurement model are straightforwardly
obtained according to
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are the Jacobians of the process model and measurement
model. Define the residuals according to

at = i‘lj - f(j?—lvut)a (19&)
o =yi — h"(z})),
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which allows the following least squares problem to be
formulated,
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where Q; = Q(Z}_;) (see (5)), and the vector norm ||-|| p-1
is the Mahalanobis distance, i.e.,
el s = TP~ le = (PT/2e)T (P T 2e) =
=[P~ T%e]3.
Note that zj is at time ¢ = 1 required, but not known.
By letting F; = 0, a; = 0 and @Q; = P1U|0’ which is the
initial vehicle state covariance for the extended Kalman

filter, z§ is no longer required, and the resulting term
||5x7{||2Q,1 makes sure that the smoothed state estimate

(21)

1
Z° stays reasonably close to Z.

By collecting all the weighted Jacobians (Q;T/2Ft, Q;T/Z,
(SY)~T/2HY, ...) in a matrix A, and stacking all the
weighted residuals (Q;T/Qat, (Sv)~T/2ck and (SY)~T/%¢Y)
in a vector b, the least squares problem (20) can be
rewritten in the form of a standard linear least squares
problem, according to

dx* = arg min|| Adz — b||3. (22)

ox

The resulting smoothed state Z° is now obtained according
to

8 =7+ ot (23)



In order to get good accuracy for the state estimate,
the procedure described above is iterated, using z° as a
starting point for the next iteration, until dz* becomes
smaller than some predefined threshold. The initial guess
is provided by the extended Kalman filter, as derived in
Schén and Roll (2009) and further elaborated in Nilsson
(2010).

4. EXPERIMENTAL RESULTS

In order to illustrate the performance of the smoothed es-
timates 12 measurement sequences recorded during night-
time driving on rural roads in Sweden have been used.
There is no ground truth available. However, the results
still indicates that the FIR camera! is very useful in
order to solve the vehicle motion estimation problem under
study. This will be shown in two ways. First, the smoothed
estimates of the vehicle position are reproject onto an
image, i.e., the plot shows the estimated position of the
vehicle expressed in the world coordinate frame p;’. This
is a direct, but non-quantified validation and also to some
extent subjective. However, it is a clear indication that
the smoothed estimates provide a good estimate of the
vehicle motion. An example of this trajectory visualization
is shown in Fig. 2, and as expected the estimates from the
smoothing approach (solid) appears to be better than the
estimates based on the filtering (EKF) approach (dash-
dotted). The second performance measure is the root

Fig. 2. The vehicle motion estimates (solid: from smooth-
ing, dash-dotted: from filtering) are here reprojected
into an image.

mean squared landmark measurement noise (i.e. the mean
landmark measurement residuals, given in pixels). This
is an indirect, but quantified measure of the estimation
accuracy and the result is presented in Fig. 3, which com-
pares the mean landmark measurement residuals for the
smoothed and the filtered estimates, for all combinations
of sequences and model extensions. The lines in the figure
illustrates the ratios of the measurement residuals for the
smoothed estimate compared to the filtered estimate. The

I The FIR camera used in this work registers radiation in the far
infrared region at 30 Hz, with a resolution of 320 x 240 pixels, and
a spectral range of 8-14 pm.

results presented in the figure indicates that the smoothed
estimate is better than the filtered estimate, as expected.

Mean landmark measurement residuals [pixels]
T — T T
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Fig. 3. This figure compares the mean landmark mea-
surement residuals for the smoothed and the filtered
estimates.

The change in performance due to the model extensions,
in terms of mean landmark measurement residuals, is
presented in Fig. 4, where the lines illustrates equal
performance when using and not using the particular
model extension.

It is important to note that not all sequences contain
behaviour that the model extensions are meant to handle.
If, for example, the true car pitch offset is zero, the offset
model extension cannot be expected to improve the pose
estimates for that particular sequence. The same goes
for the acceleration offset in the car pitch angle for any
sequence in which the vehicle moves at constant speed.

Fig. 4a shows the landmark measurement residuals, indi-
cating that the model extension can give some improve-
ments in pose estimation accuracy. The magnitude of the
improvement is of course heavily dependent on how big
the car pitch angle offset really is, which is why this model
extension cannot provide improvements in accuracy for all
sequences. It can be seen in Fig. 4b that the model exten-
sion for offset in pitch angle due to acceleration is able to
reduce the value of the landmark measurement residual
measure, indicating improved estimation accuracy. The
roll model extension differs from the others in that it
introduces a new dimension in the model of the vehicle
motion. The results in Fig. 4c reflect this by showing
that it is the model extension which provides the largest
performance improvement, at least in terms of landmark
measurement residuals.

5. CONCLUSIONS AND FUTURE WORK

This work has showed how information from a FIR camera
can be used to compute a smoothed estimate of the vehicle
motion, by solving an appropriate nonlinear least squares
problem. The results were evaluated using measurements
from test drives on rural roads during night time.
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Fig. 4. These figures compares the mean landmark measurement residuals for using or not using the different model

extensions.

Furthermore, it was also showed that including the roll
motion in the vehicle motion model clearly improved the
estimation accuracy. Furthermore, modelling the offset in
the car pitch angle, both constant offset and offset due
to acceleration, can result in slightly improved estimation
accuracy.

During this work it has become more and more clear
that the problem with erroneous association of features
is an important issue to be dealt with, since the feature
measurements are the foundation on which the resulting
estimate relies. The natural way to improve the landmark
association quality is to make use of a better outlier
rejection scheme. Another way to improve the measure-
ments derived from the camera images is to extract image
measurements of yaw, pitch and roll change rates that
are not based on landmarks, but instead uses e.g. phase
correlation.

Regarding computational demand, the current implemen-
tation of the smoothing algorithm is, when applied to a 15
seconds long data sequence and using a standard desktop
computer, approximately a factor 50 slower than required
for real-time applications. It is possible that this obstacle
can be overcome by doing the following:

e Implement the iISAM algorithm (Kaess et al., 2008)
which performs the smoothing and mapping incre-
mentally, and uses e.g. matrix factorization to reduce
computational demand.

e Derive and use analytic expressions for the Jacobians
of the process and measurement models.
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