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Abstract

Knowledge of the noise distribution is typically crucial for the state estimation of general state-space models. However,
properties of the noise process are often unknown in the majority of practical applications. The distribution of the noise may
also be non-stationary or state dependent and that prevents the use of off-line tuning methods. For linear Gaussian models,
Adaptive Kalman filters (AKF) estimate unknown parameters in the noise distributions jointly with the state. The same
problem for the particle filtering is less studied. We provide a Bayesian solution for the estimation of the noise distributions in
the exponential family, leading to a marginalized adaptive particle filter (MAPF) where the noise parameters are updated using
finite dimensional sufficient statistics for each particle. The time evolution model for the noise parameters is defined implicitly
as a Kullback-Leibler norm constraint on the time variability, leading to an exponential forgetting mechanism operating on
the sufficient statistics. Many existing methods are based on the standard approach of augmenting the state with the unknown
variables and attempting to solve the resulting filtering problem. The MAPF is significantly more computationally efficient
than a comparable particle filter that runs on the full augmented state. Further, the MAPF can handle sensor and actuator
offsets as unknown means in the noise distributions, avoiding the standard approach of augmenting the state with such offsets.
We illustrate the MAPF on first a standard example, and then on a tire radius estimation problem on real data.
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1 Introduction

Systems with unknown and potentially time-varying
noise statistics are common in many applications, and
a lot of effort was invested into estimation of the noise
properties. Estimation of the covariance matrices for
the Kalman filter was addressed in [20], where different
approaches have been systematically classified into the
following categories: Bayesian, maximum likelihood,
correlation and covariance matching. Traditionally the
problem has been addressed for linear systems; see e.g.,
[14],[17]. A correlation based adaptive Kalman filter for
noise identification using the weighted least squares cri-
terion has been proposed in [22], while an asymptotic
(in time) maximum likelihood estimate has been pro-
posed in [19]. On the other hand, the Bayesian approach
has been used, for example, in [16] and [29]. In [16], the
non-stationary noise statistics are estimated using the
so called IMM method, while an adaptive Kalman filter
based on variational Bayesian methods is used in [29].
An adaptive sequential estimation with unknown noise

statistics has been proposed in [21]. Estimation of a
state dependent covariance matrix using the marginal-
ized particle filter approach has been considered by [32],
where the covariance matrix is treated as an additional
state, for which a state transition equation has been
defined. Many of the parameter estimation methods in
particle filtering rely on state augmentation technique
eg., [18],[28]. Such approaches have two main disadvan-
tages. One is the increase in the state dimension which
should be avoided in particle filters as they suffer from
the curse of dimensionality. The second is the error ac-
cumulation in case of static parameters estimation as
addressed in [1].

In this paper, we are concerned with a more general
case of non-stationary noise characteristics belonging to
the exponential family. Specifically, we focus on systems
with slowly varying parameters, where the term “slowly
varying” is defined as a constraint on Kullback-Leibler
divergence rather than an explicit random-walk model.
We show that under such a constraint, explicit parame-
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ter evolution is not necessary and the predictive density
of the parameter can be replaced by the maximum en-
tropy estimate. The estimate is shown to be closely re-
lated to the classical technique of exponential forgetting
[15]. Since the result of exponential forgetting is within
the exponential family, the concept of sufficient statis-
tics can be used to obtain analytical posterior. Analyt-
ical posteriors are necessary for marginalization, which
results in efficient particle filtering algorithms [27].

The approach is closely related to the published results
for the estimation of stationary noise parameters using
marginalized particle filters e.g. by [6],[2] and [28],[3].
The system considered in [2] is a specific model for a
binary output and it is partially linear. The approach
in [6] is focused on Gaussian parameters, while [28] has
extended this approach to general exponential family
models. However, for the stationary parameters, the ap-
proach is known to suffer from error accumulation, as
pointed out in [4]. We show that this problem does not
arise in our case. Specifically, the forgetting used in the
prediction stage introduces the exponential forgetting
property of the system that is well known to mitigate
the path degeneracy problem [5].

Our experiments show that the proposed method is ca-
pable of estimating the unknown parameters of the mea-
surement noise as well as the process noise even for highly
nonlinear models. This article is an extended version of
our previous work presented in [26].

The paper is organized as follows. In Section 2, we es-
tablish results for estimation of noise parameters for ob-
served values of the noise vector from the exponential
family. These results are generalized in Section 3 to the
case of general state-space model with unknown noise
parameters where the marginalized particle filtering al-
gorithm is presented. In Section 4, a special case of the
proposed algorithm, the estimation of unknown param-
eters of Gaussian distributions is described. The perfor-
mance of the algorithm is presented with simulations in
Section 5. Application of the algorithm to the problem
of odometry-based navigation is presented in Section 6.

2 Estimation of Noise Parameters for Directly
Observed Noise

In this section, we introduce estimation of the noise pa-
rameters for the case of directly observable noise. Con-
sider an observation model of the noise

et ∼ p(et|θt) = ρ(et) exp(η(θt) · τ(et) − φ(θt))), (1)

where et is the vector of observations, θt is the vector
of unknown parameters, η(θt) and φ(θt) are vector and
scalar valued functions of the parameters, respectively;
ρ(et) and τ(et) are scalar and vector valued functions of

the realization et; the symbol · denotes scalar product
of two vectors.

Since θt is time-varying, (1) may be complemented by
an evolution model p(θt|θt−1) to form a complete state-
space model. However, since it is typically unknown, we
seek alternative formulation in Section 2.2

2.1 Measurement Update in Exponential Family

Since the likelihood function (1) for the unknown pa-
rameter θt is in the exponential family, we assume that
the prior on θt is in the form conjugate to (1), i.e.

p(θt|e1:t−1) = 1
γ(Vt|t−1, νt|t−1)

×

exp(η(θt)Vt|t−1 − νt|t−1φ(θt)). (2)

where Vt|t−1 is a vector of sufficient statistics and νt|t−1
is a scalar counter of the effective number of samples in
the statistics. The normalization factor γ(Vt|t−1, νt|t−1)
is uniquely determined by the statistics Vt|t−1 and νt|t−1.
Then, the posterior density p(θt|e1:t) is in the form (2)
with statistics

Vt|t = Vt|t−1 + τ(et). (3a)
νt|t = νt|t−1 + 1, (3b)

The result is convenient for recursive evaluation of suf-
ficient statistics starting from a prior defined by V0, ν0.

The predictive distribution of et is then

p(et|e1:t−1) =
ˆ
p(et|θt)p(θt|e1:t−1)dθt

=
γ(Vt|t, νt|t)

γ(Vt|t−1, νt|t−1)
ρ(et). (4)

2.2 Time Update in Exponential Family

Bayesian estimation of non-stationary parameters θt re-
quires formalization of the parameter evolution model
p(θt+1|θt). The predictive density of the parameter θt+1
is obtained by marginalization

p(θt+1|e1:t) =
ˆ
p(θt+1|θt)p(θt|e1:t)dθt. (5)

Since the transition model p(θt+1|θt) is unknown, we
seek an estimate of the marginal p(θt+1|e1:t) among
many possible transition models. To restrict the space
of all possible models, we implicitly limit the change in
the prediction density in time by the Kullback-Leibler
distance constraint

KL(p(θt+1|e1:t)||pconst(θt+1|e1:t)) ≤ κ, (6)
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where KL is the Kullback-Leibler divergence defined as

KL(p1||p2) =
ˆ ∞

−∞
p1(x) log(p1(x)

p2(x)
)dx, (7)

0 ≤ κ < ∞, is a known constant and pconst corresponds
to the predictive density in case the parameters do not
change in time,

pconst(θt+1|e1:t) =
ˆ
δ(θt+1 − θt)p(θt|e1:t)pθt, (8)

where δ() is the Dirac delta function. In other words,
equation (8) gives the predictive density for the case
of time-invariant parameters. The interpretation of (6)
is that, we obtain an implicit definition of a class of
transition models p(θt+1|θt) giving predictive densities
p(θt+1|e1:t) which are close to pconst(θt+1|θt), where the
closeness is measured in the Kullback-Leibler sense. A
deeper discussion is provided in Section 2.3.

Following the principle of maximum entropy, we choose
to approximate (5) by a distribution p̂(θt+1|e1:t) that has
the maximum entropy of all distributions satisfying (6).
Since most of our applications is using continuous dis-
tributions, we will use the “continuous” generalization
of entropy by Jaynes, [8], where the entropy is defined
with respect to an invariant measure of entropy, u(x):

H(p) = −
ˆ ∞

−∞
p(x) log( p(x)

u(x)
)dx. (9)

The straightforward generalization (known as differen-
tial entropy) is revealed for u(x) = 1. If the invariant
measure integrates to unity, i.e. pu(x) = u(x), (9) be-
comes equivalent to the relative entropy (7).

Theorem 1 (Maximum entropy under KL diver-
gence constraint) For a given pconst(θt+1|e1:t), the
probability distribution

p̂(θt+1|e1:t, λt) ∝ pconst(θt+1|e1:t)λtu(θt+1)1−λt , (10)

has maximum entropy of all densities p(θt+1) defined on
the same support as pconst(θt+1|e1:t) which satisfies (6)
for a given value of κ and u(θt+1). The forgetting factor λ
has two possible values: λt = 0 if there exists pu(θt+1) ∝
u(θt+1) and KL(pu(·)||pconst(·)) < κ, otherwise it is a
solution to the equation

KL(p̂(θt+1|e1:t, λt)||pconst(θt+1|e1:t)) = κ. (11)

Proof: outlined in [13] and elaborated in detail in Ap-
pendix A.1 for discrete densities.

The Theorem states that if the true parameter evolution
model is in the class (6) the time update in (10) will

not underestimate the uncertainty by maximizing the
entropy.

Note that, for the special case of stationary parameters,
κ = 0, (11) yields λ = 1. For sudden changes of the
parameter, κ → ∞, λ → 0 and the invariant measure
pu(θt+1) has the role of the prior density.

The solution (10) is particularly advantageous in the
exponential family, since (10) preserves the exponential
form with statistics

νt+1|t = λνt|t + (1 − λ)νu, (12a)
Vt+1|t = λVt|t + (1 − λ)Vu, (12b)

where we assume that the invariant measure is also in
the exponential form (2) with statistics νu, Vu.

Example 2 (Normal distributed parameters)
Consider a scalar time-varying parameter µt with Nor-
mal distributed posterior

p(µt|e1:t) = N (µ̂t|t, σ
2
t|t). (13)

The forgetting operator (10) with invariant measure
u(µt+1) = 1 yields

p(µt+1|e1:t) = N (µ̂t|t,
1
λ
σ2

t|t), (14)

which is again Normal with µ̂t+1|t = µ̂t|t, and σ2
t+1|t =

1
λσ

2
t|t. Since the KL divergence between two Normal dis-

tributions is

KL(p(µt+1|t|·)||p(µt|t|·))

=
(µ̂t+1|t − µ̂t|t)2

2σ2
t|t

+ 1
2

(
σ2

t+1|t

σ2
t|t

− 1 − ln
σ2

t+1|t

σ2
t|t

)
,

equation (11) has form

1
2

(
1
λ

− 1 − ln 1
λ

)
= κ. (15)

Thus, it is independent of the statistics µ and σ2 and
can be solved numerically. For example, the solutions
of (15) for κ = 1 and κ = 0.01 are λ = 0.222 and
λ = 0.824, respectively. Note that (14) is also a result of
marginalization (5) for the parameter evolution model

p(µt+1|µt) = N (µt, (
1
λ

− 1)σ2
t|t). (16)

Hence, the exponential forgetting is equivalent to stan-
dard Bayesian filtering with transition model (16), [25].
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Figure 1. Illustration of the solution of (11) for λ in Example
3, for α = [3, . . . 160], β = 45. The solution is insensitive to
the values of β. Dashed line denotes the solution of equation
(15) for the Normal distribution.

Example 3 (Inverse-Gamma distributed parameters)
Consider a scalar time-varying parameter rt with
inverse-gamma density

p(rt−1|e1:t−1) = iΓ(α, β) = βα

Γ(α)
r−α−1

t−1 exp(− β

rt−1
),

(17)
α ≥ 0, β > 0, rt−1 > 0.

The distribution (17) belongs to (2) under the assign-
ments

Vt−1 = β, η(rt−1) = − 1
rt
,

νt−1 = α+ 1, φ(rt−1) = log(rt),
γ(Vt−1, νt−1) = Γ(α)β−α.

The exponential form is preserved under Vu = 0, νu = 1,
corresponding to

u(rt−1) = r−1
t−1 = exp(−1 log(rt−1)),

which is (the improper) Jeffreys’ prior on scale parame-
ters [11]. The time-updated density is then

p(rt|e1:t−1) = iΓ(λα, λβ). (18)

In this example, it is also possible to solve (11) numeri-
cally; see Figure 1. Note that the solution for higher val-
ues α is approaching the limit that holds for the Normal
distribution (15).

2.3 The maximum entropy interpretation of forgetting

Equation (12) is known as exponential forgetting, and it
was derived using heuristic arguments [10], decision the-
oretic [15] and maximum entropy arguments [13]. The
maximum entropy interpretation allows a new interpre-
tation of the forgetting factor as a measure on the param-
eter evolution model. Note from (6) that a single value
of κt determines a class of parameter evolution mod-
els of various kinds, including state-dependent models.

Maximum entropy principle guarantees that if the true
parameter evolution model is in the class (6) the estima-
tion procedure will not under estimate the uncertainty.

An open research question is how to determine κt or,
alternatively, the forgetting factor λt since the relation
between these two is rather tight as demonstrated in Ex-
amples 2 and 3. Research results on the choice of for-
getting factor for many particular cases are available,
e.g. [23,31]. However, in many practical applications, the
forgetting factor is chosen to be constant and manually
tuned. We follow this approach in this paper and show
that this approach yields good results both in simula-
tions and real data. The results for different choices on
the constant forgetting factor are illustrated in section
5.2. Bayesian treatment of λt is also possible but outside
the scope of this paper.

2.4 Invariant Measure

In this paper, we use the invariant measure mainly as a
technical mean to derive the main results. In practical
applications, we choose u(·) as close to the uniform mea-
sure as possible, as demonstrated in Example 2. How-
ever, it may be used as a regularization term in recur-
sive Bayesian estimation. Its benefits and dangers are
discussed in Appendix A.2.

3 Joint Estimation of State and Noise Parame-
ters

Consider the following nonlinear discrete time state
space model relating a hidden state xt to the observa-
tion yt

xt =ft(xt−1, ut−1) + gt(xt−1, ut−1)vt, (19a)
yt =ht(xt, ut) + dt(xt, ut)wt. (19b)

Here, t denotes the time index. f(.), h(.), d(.) and g(.)
are possibly nonlinear functions of the state vector x and
the input u. In order to avoid the degenerated case of
perfect noise-free observations, we will assume that d(.)
is invertible. On the other hand, g(.) is not assumed in-
vertible, since most motion models in practice, including
those with integrators, lead to noninvertible g(.).We de-
fine the noise vector et , [vT

t , w
T
t ]T as a realization from

a distribution which belongs to the exponential family
(1) with unknown time-varying parameter θt.

We are concerned with the evaluation of the joint den-
sity p(xt, θt|y1:t). Following the concept of marginalized
particle filtering, we decompose the joint posterior den-
sity into conditional densities as follows:

p(x0:t, θt|y0:t) = p(θt|x0:t, y0:t)p(x0:t|y0:t), (20)
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where we choose to approximate p(x0:t|y0:t) by an em-
pirical density

p(x0:t|y0:t) ≈
n∑

i=1
ω

(i)
t δ(x0:t − x

(i)
0:t), (21)

with sample trajectories x(i)
0:t and weights ω(i)

t . Such a
decomposition will result in a particle approximation
of the state density and analytical expressions for the
conditional density of the parameters p(θt|x0:t, y0:t).

Two key ideas will help us in deriving the recursive equa-
tions. First, for a given value of (x0:t, y0:t), the condi-
tional density p(θt|x0:t, y0:t) can be considered as the
posterior density of the parameters and can be computed
by a measurement update of the noise distribution pa-
rameters. Second, since we have the analytical expres-
sion p(θt|x0:t−1, y0:t−1) from the previous time instant,
the unknown parameter θt can be integrated out when
computing the recursive expressions for the marginal
density of the state p(x0:t|y0:t). The latter will be ex-
plained together with the weight update equation later.

Under the approximation (21), the first part of (20)
needs to be evaluated only at points x(i)

0:t. Note that, for
a known value of x(i)

t , (19a)–(19b) can be transformed
into

e
(i)
t = e(x(i)

t , yt) =

[
g†

t (x(i)
t−1, ut−1)[x(i)

t − ft(x(i)
t−1, ut−1)]

d−1
t (x(i)

t , ut)[yt − ht(x(i)
t , ut)]

]
.

(22)
where g†

t (x(i)
t−1, ut−1) stands for the pseudo-inverse of

gt(x(i)
t−1, ut−1). Then, p(θt|x(i)

0:t, y0:t) = p(θt|e(i)
0:t) and the

results from Section 2 can be readily applied.

The joint density (20) is

p(x0:t, θt|y0:t) ≈
n∑

i=1
ω

(i)
t p(θt|V (i)

t|t , ν
(i)
t|t )δ(x0:t − x

(i)
0:t),

(23)

where the statistics ω(i)
t , V

(i)
t|t , ν

(i)
t|t , x

(i)
0:t are evaluated as

follows.

First, x
(i)
t are sampled from a proposal density

q(xt|x(i)
0:t−1, y0:t−1). Second, for the known value x

(i)
t ,

the conditional density p(θ|x(i)
0:t, y0:t) is updated using

the mapping (22) to e(i)
t , and the statistics V (i)

t , ν
(i)
t are

updated using (3). Finally, the update equation for the
weights w(i)

t can be derived using the marginal density

p(x0:t|y0:t) from (20). Since,

p(x0:t|y0:t)
∝ p(yt, xt|x0:t−1, y0:t−1)p(x0:t−1|y0:t−1), (24)

substituting (21) into (24) in place of p(x0:t|y0:t) and
p(x0:t−1|y0:t−1) yields

ω
(i)
t ∝ p(yt, xt|x0:t−1, y0:t−1)

q(xt|x(i)
0:t−1, y0:t−1)

w
(i)
t−1,

where

p(yt, xt|x0:t−1, y0:t−1) (25)

=
ˆ
p(yt, xt|θt, x0:t−1, y0:t−1)p(θt|x0:t−1, y0:t−1)dθt,

is the marginal predictive distribution of xt, yt. This
marginal distribution is computed by integrating out
the unknown parameters which leads to the predictive
distribution of xt, yt, and consequently et via (22). No-
tice that the predictive distribution p(et|e0:t−1) is read-
ily available for the exponential family in the form of (4).
The predictor (25) can be obtained using the lemma on
transformation of variables in probability density func-
tions:

p(yt, xt|x0:t−1, y0:t−1)
= |J(xt, yt)|p(e(xt, yt)|V (i)

t|t−1, ν
(i)
t|t−1). (26)

where J(xt, yt) is the Jacobian of the transformation
(22) and p(et|·) is given by (4).

The final algorithm is summarized in Algorithm 1.

Remark 4 (Stationary parameters) Note that esti-
mation of stationary parameters can be obtained as a spe-
cial case of the above approach for κ = 0 in (6). Then,
the only solution of (11) is λ = 1 reducing update of suf-
ficient statistics (3) to the form of [28]. As pointed out
e.g. by [4] the stationary case suffers from the path de-
generacy problem. Here, we note that for a sequence of
λt < 1,∀t, the posterior density p(θt|x1:t, y1:t) and thus
p(yt, xt|x0:t−1, y0:t−1) satisfies the exponential forgetting
property [5]. Therefore, the path degeneracy problem is
less severe in this case.

4 Special case of Gaussian Noise

In this section, we specialize Algorithm 1 to the practi-
cally important case of normal distributed noises.

4.1 Likelihood and Conjugate Prior

For multivariate normal distribution of et with unknown
mean µt and covariance Σt, a Normal-inverse-Wishart
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Algorithm 1 Marginalized adaptive particle filter for
non-linear model with time-varying noise parameters.
Initialization:
For each particle i = 1, .., N do
• Sample x(i)

0 ∼ p0(x0),
• Set initial weights ω(i)

0 = 1
N ,

• Set initial noise statistics [ν0, V0] for each particle,
Iterations:
For t = 1, 2, . . . do
• For each particle i = 1, .., N do

· perform the time update of the statistics
V

(i)
t|t−1,ν(i)

t|t−1 using (12),
· sample x(i)

t ∼ q(x(i)
t |x(i)

0:t−1, y0:t),
· set e(i)

t = e(x(i)
t , yt),

· compute the predictive likelihood
p(yt, x

(i)
t |x(i)

0:t−1, y0:t−1) using (26),
· update the weights:

ω̃
(i)
t = ω

(i)
t−1

p(yt, x
(i)
t |x(i)

0:t−1, y0:t−1)
q(x(i)

t |x(i)
0:t−1, y0:t)

· perform the measurement update of the statistics
V

(i)
t|t ,ν(i)

t|t , using (3).

• Normalize the weights, ω(i)
t = ω̃

(i)
t∑N

i=1
ω̃

(i)
t

.

• Compute Neff = 1∑N

i=1
(ω

(i)
t )2

.

· If Neff ≤ η, resample the particles. Copy the corre-
sponding statistics and set ω(i)

t = 1/N .

distribution defines a conjugate prior. Let us denote it
as [µt,Σt] ∼ NiW(νt, Vt). The Normal-inverse-Wishart
distribution defines a hierarchical Bayesian model given
below:

et|µt,Σt ∼N (µt,Σt), (27a)
µt|Σt ∼N (µ̂t|t, γt|tΣt), (27b)

Σt ∼ iW(νt|t,Λt|t) (27c)

∝ |Σt|−
1
2 (νt|t+d+1) exp(−1

2
tr(Λt|tΣ−1

t )),

where iW(.) denotes the Inverse Wishart distribution,
and d is the dimension of the vector et. The quantities
µ̂t|t, γt|t,Λt|t, νt|t can be recursively computed as follows:

γt|t =
γt|t−1

1 + γt|t−1
, (28a)

µ̂t|t = µ̂t|t−1 + γt|t(et − µ̂t|t−1), (28b)
νt|t = νt|t−1 + 1, (28c)

Λt|t = Λt|t−1 + 1
1 + γt|t−1

(µ̂t|t−1 − et)(µ̂t|t−1 − et)′,

(28d)

where the statistics of the predictive distribution are

γt|t−1 = 1
λ
γt−1|t−1, (29a)

µ̂t|t−1 = µ̂t−1|t−1, (29b)
νt|t−1 = λνt−1|t−1, (29c)
Λt|t−1 = λΛt−1|t−1, (29d)

These equations are derived in [24] and their relation to
exponential family is discussed in [12]. The predictive
distribution of et (4) becomes a multivariate Student-t
density with νt|t−1 − d+ 1 degrees of freedom

p(et|νt−1, Vt−1) = St
(
µ̂t|t−1,Λt|t−1, νt|t−1 − d+ 1

)
(30)

∝

∣∣∣∣∣1 + (êt − µt|t−1)
Λ−1

t|t−1

1 + γt|t−1
(et − µ̂t|t−1)

∣∣∣∣∣
− 1

2 (νt|t−1+1)

.

The first two moments of (30) are

E(et) = µt|t−1, Var(et) =
1 + γt|t−1

νt|t−1 − d− 1
Λt|t−1.

The predictive distribution for yt and xt can be found us-
ing the transformation (26). For one common case with
transformations dt(xt, ut) = 1 and gt(xt−1, ut−1) = 1
the Jacobian of the transformation is one, |J(xt, yt)| = 1.

A special case of the MAPF algorithm for the model
(19a)–(19b) with independent noises vt and wt, and
without transformations dt() and gt() is described in
Algorithm 2. Due to the noise independence, their
posterior distributions are conditionally independent,
with statistics Sv,t|t = {µ̂v,t|t, γv,t|t,Λv,t|t, νv,t|t} and
Sw,t|t = {µ̂w,t|t, γw,t|t,Λw,t|t, νw,t|t}. The predictive
distribution (25) then simplifies to a product of multi-
variate Student-t predictors

p(xt|Sv,t|t−1) = (31)

St
(
f(x(i)

t−1) + µ̂v,t|t−1,Λv,t|t−1, νv,t|t−1 − dv + 1
)
,

p(yt|Sw,t|t−1) = (32)

St
(
h(x(i)

t ) + µ̂w,t|t−1,Λw,t|t−1, νw,t|t−1 − dw + 1
)
,

where we have used (26) with unit Jacobian. The pro-
posal distribution q(xt|x1:t−1, y1:t) is chosen as the pre-
dictor (31) which simplifies evaluation of the weights
ω

(i)
t ; see Algorithm 2.
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Algorithm 2 Marginalized adaptive particle filter for
non-linear model with Gaussian noise with time-varying
parameters.
Initialization:
For each particle i = 1, .., N do
• Sample x(i)

0 from (31),
• Set initial weights ω(i)

0 = 1
N ,

• Set initial noise statistics Sv,0, Sw,0 for each particle,
Iterations:
For t = 1, 2, . . . do
• For each particle i = 1, .., N do

· perform the time update of the statistics
S

(i)
v,t|t−1,S(i)

w,t|t−1, using (29),
· sample x(i)

t from (31),
· update the weights ω̃(i)

t

ω̃
(i)
t = p(yt|Sw,t|t−1)ω(i)

t−1,

· perform the measurement update of the statistics
Sv,t|t and Sw,t|t, using (28).

• Normalize the weights, ω(i)
t = ω̃

(i)
t∑N

i=1
ω̃

(i)
t

.

• Compute Neff = 1∑N

i=1
(ω

(i)
t )2

.

· If Neff ≤ η, resample the particles. Copy the corre-
sponding statistics and set ω(i)

t = 1/N .

5 Experimental Results

5.1 Illustrative example

In this section we illustrate the performance of the pro-
posed marginalized particle filter algorithm and compare
it with the state augmentation approach. We use the fol-
lowing benchmark scalar nonlinear time series model for
the illustrations:

xt = xt−1

2
+ 25xt−1

1 + x2
t−1

+ 8 cos(1.2t) + vt, (33)

yt = x2
t

20
+ wt, vt ⊥ wt, t = 1, 2, . . . (34)

where vt ∼ N (µv,t,Σv,t) and wt ∼ N (µw,t,Σw,t). Both
the mean and the variance of the measurement and pro-
cess noise sequences are unknown and time varying. The
true parameters of the noises are initially set to an ar-
bitrary choice of values: µv,0 = 1, Σv,0 = 2, µw,0 =
3, Σw,0 = 4 and the final values are set to µv,4000 =
2, Σv,4000 = 4, µw,4000 = 1, Σw,4000 = 7; see Figure
2. In the following, we first give a brief description of
the state augmentation method and later describe the
MAPF method.

• Augmented State PF: In this approach, a new state
vector x̄t is defined by augmenting the model state
with the unknown parameters. Artificial dynamics are

used to account for the change of the parameters in
time. The augmented state vector is defined as follows

x̄t ,
[
xt µv,t µw,t Σv,t Σw,t.

]T

(35)

In our simulations, the unknown means are propa-
gated by a Gaussian random walk.

p(µv,t|µv,t−1) = N (µv,t−1, σ
2
vs) (36a)

p(µw,t|µw,t−1) = N (µw,t−1, σ
2
ws) (36b)

where the standard deviation of the random walk
is set to 5 percent of the average value of the true
parameters. The following Markovian model with
Inverse-Gamma distribution is used to propagate the
unknown covariances.

p(Σv,t|Σv,t−1) = iΓ(αv,t, βv,t) (37a)
p(Σw,t|Σw,t−1) = iΓ(αw,t, βw,t). (37b)

The parametersα and β are chosen such that the mean
value is preserved and the standard deviation is equal
to 5 percent of the previous value of the parameter.

E{Σv,t|Σv,t−1} = Σv,t−1 (38a)
E{Σw,t|Σw,t−1} = Σw,t−1 (38b)

Std{Σv,t|Σv,t−1} = 0.05Σv,t−1 (38c)
Std{Σw,t|Σw,t−1} = 0.05Σw,t−1. (38d)

• MAPF: For the marginalized adaptive particle filter,
a NiW distribution is used as the prior. The initial pa-
rameters ([γ0, µ̂0, ν0,Λ0]) are set to φw

0 = [0.2, 1, 5, 27]
and φv

0 = [0.2, 3, 5, 9] for the measurement and pro-
cess noises respectively so that the initial conditions
match with the augmented state PF. The exponen-
tial forgetting factor λ is chosen as 0.98 by considering
the average RMS error over 100 MC runs for different
values of λ.

In order to make a fair comparison, we set the initial val-
ues of the unknown parameters the same for both meth-
ods. Both algorithms start from the initial values of pa-
rameters being equal to µv = 3, Σv = 3, µv = 1, Σw = 9;
see Figures 2 and 3. Moreover, in order to avoid mistun-
ing of the Augmented PF algorithm, we have made mul-
tiple tests on the step size of the random walk and have
chosen the value which produced the minimum average
RMS error on the state estimates over 100 MC runs.
Among the values 1 to 10 percent, 5 percent provided
the best tuning. The performance is not over sensitive
to the step size unless it is chosen as the extreme values.
Hence, a finer grid was not needed.

In 100 MC runs,the effects of increasing the number of
particles is also examined. In Figures 2 and 3, the es-
timation performances of the two methods are shown
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for the case where both algorithms use 500 particles.
The standard deviation of the estimates based on differ-
ent MC runs are also depicted on top of the estimates
in the same figures. The MAPF method produces esti-
mates with smaller covariance in comparison with the
Augmented PF approach. Another comparison is made
in order to illustrate the effects of changing the number
of particles on both algorithms. The MC runs are re-
peated for 50, 100, 200, 500 and 1000 particles and the
average RMS errors of the state estimate are compared.
In Figure 4, the average RMS state estimation errors
are plotted with respect to different number of particles
for both methods. The same curve for Oracle particle
filter(the particle filter which uses the true values of the
parameters) is also plotted. The performance gain by
marginalization can be observed more explicitly in this
plot. As an example, in order to achieve the performance
of the MAPF method which uses 100 particles, one needs
to use 500 particles in the state augmentation method.
On the other hand, for a fixed number of particles, one
can get lower RMS error with MAPF method especially
when the number of particles is kept low. Similar results
are obtained for the estimated parameters. In Figure 5,
the average RMS error of the measurement noise vari-
ance estimate is shown as an example. The average run-
time of a single MC run of the two methods on a PC are
given in Table 1. As can be seen from the table, the com-
putation time of the MAPF is only slightly higher than
that of the augmented PF and the algorithms are of the
same computational complexity. Hence a lower RMS er-
ror can be achieved for a fixed amount of available com-
putational power using MAPF.
Table 1
Average runtime of the algorithms in seconds:

] of Particles 50 100 200 500 1000

MAPF 0.95 1.24 1.89 4.71 12.96
Augmented 0.87 1.04 1.67 4.40 12.88

5.2 Forgetting Factor

In this section we illustrate the effects of changing the
forgetting factor. For this purpose we present a single
run of the algorithm for different values of λ. In Figures
6 and 7 the estimation results are shown for λ = 0.98
and λ = 0.995 respectively. 500 particles are used in the
algorithm. As can be seen from the figures, the variance
of the estimates are larger for smaller λ and smoother
estimates are obtained for larger λ. On the other hand
the smaller forgetting factor can track faster changes in
the parameters whereas a larger value of the forgetting
factor will produce a slower response.

6 Application to Odometry

In this section we test the proposed algorithm on real
data. An odometry application is investigated. Odom-
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Figure 2. Estimated mean and variance of the measurement
and the process noises of the MAPF method over 100 Monte
Carlo runs. The algorithm is run with 500 particles.
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Figure 3. Estimated mean and variance for the measurement
and the process noises of the augmented state PF over 100
Monte Carlo runs. The algorithm is run with 500 particles.

etry is the term used for dead reckoning the rotational
speeds of two wheels on the same axle of a wheeled ve-
hicle. It is used in a large range of robotics applications,
as well as in some vehicle navigation systems. As in all
dead-reckoning, sensor offsets generate a drift over time
that can be quite substantial. For odometry, the main
reason for the drift is due to unknown wheel radii. There-
fore, all odometric applications use some kind of abso-
lute reference sensor to correct the drift. For open air
conditions, the global positioning system (GPS) is the
perfect complement. For indoor applications, markers or
beacons are usually placed in the environment. The raw
signals are the angular velocities of the wheels which can
be measured by the ABS sensors in cars or wheel en-
coders in ground robots.
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Figure 4. Average RMS state estimation errors for different
number of particles.
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Figure 5. Average RMS error of the measurement noise vari-
ance estimates for different number of particles.

6.1 Modeling

The angular velocities can be converted to virtual mea-
surements of the absolute longitudinal velocity and yaw
rate assuming a front wheel driven vehicle with slip-free
motion of the rear wheels, as described in Chapter 13
and 14 of [7],

ϑvirt = ω3r + ω4r

2
(39a)

ψ̇virt = ω3r − ω4r

B
, (39b)

where ω3 and ω4 are the angular velocities of the rear
left and the rear right wheels respectively and r is the
nominal value of the wheel radii; see Figure 8 for the
notation. The actual wheel radii are unknown and may
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Figure 6. Estimated mean and variance for the measurement
and the process noises of the algorithm in a single run. The
forgetting factor is 0.98.
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Figure 7. Estimated mean and variance for the measurement
and the process noises of the algorithm in a single run. The
forgetting factor is 0.995.

Figure 8. Notation for lateral dynamics and curve radius
relations for a four-wheeled vehicle.

differ from their nominal value in practice,

r3 = r + δ3 (40a)
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r4 = r + δ4, (40b)

where r3 and r4 are the wheel radii of the rear left and
the rear right wheels respectively. The actual velocity
and yaw rate of the vehicle differ from the virtual mea-
surements, according to

ϑ = ω3r3 + ω4r4

2
(41a)

ψ̇ = ω3r3 − ω4r4

B
. (41b)

We model the error in the wheel radii with a noise term
which is subject to change in time,(

r3(t)
r4(t)

)
=

(
r

r

)
+ wr(t), (42)

where wr(t) is assumed to be Gaussian

wr(t) ∼ N

((
δ3

δ4

)
,

(
Σ3 0
0 Σ4

))
. (43)

Substituting (42) in equations (41a) and (41b) results in(
ϑ

ψ̇

)
=

(
ϑvirt

ψ̇virt

)
+

(
ω3
2

ω4
2

ω3
B

−ω4
B

)
wr. (44)

The odometric dead reckoning can be formulated using
the following discrete time model by defining the state
vector as the planar position and the heading angle:

xt =


Xt

Yt

ψt

 , xt+1 = xt +


Tϑt cos(ψ(t))
Tϑt sin(ψ(t))

T ψ̇t

 . (45)

Plugging in the observed speed and yaw rate gives the
following dynamic model with the process noise

Xt+1 = Xt +
(
ϑvirt(t) +

[
ω3(t)

2
ω4(t)

2

]
wr(t)

)
T cos(ψt),

(46a)

Yt+1 = Yt +
(
ϑvirt(t) +

[
ω3(t)

2
ω4(t)

2

]
wr(t)

)
T sin(ψt),

(46b)

ψt+1 = ψt +
(
ψ̇virt(t) +

[
ω3(t)

B
−ω4(t)

B

]
wr(t)

)
T.

(46c)

Note that the virtual measurements in (39a) and (39b)
of speed and yaw rate are computed from the rotational
speeds. Here, the rotational speeds are considered as in-
puts rather than measurements. This is in accordance
to all navigation systems where inertial measurements

are dead-reckoned in similar ways. This formulation is
in accordance with the general state space model given
in equations (19a) and (19b) where the GPS measure-
ments are used as the reference measurements(

xGP S
t

yGP S
t

)
=

(
1 0 0
0 1 0

)
xt + vt. (47)

6.2 Experiments

In the experiments, two sets of data are collected with
a passenger car in the urban area of Linköping. The car
is equipped with standard vehicle sensors, such as wheel
speed sensors, and a GPS receiver. We estimate the tire
radii as well as the trajectory via the GPS and the vir-
tual velocity and yaw rate measurements online. The
trajectory followed by the car is plotted in Figure 9. Two
runs are completed with different tire pressure settings
for the rear wheels. In the first setup, the tire pressure
of the rear left (RL) wheel is reduced to 1.5 bar where as
the tire pressure of the rear right (RR) wheel is kept at
its nominal value of 2.8 bar. In the second setup, the tire
pressure of the rear left wheel is kept at 2.8 bar and the
tire pressure of the rear right wheel is reduced to 1.4 bar.
The estimated tire radii in both experiments are plotted
in Figures 10 and 11. The true tire radii difference is cal-
culated by computing the effective tire radii using the
data collected during a long and straight segment of the
road. The true tire radius differences are approximately
1.5 mm and 1.9 mm in the two experiments in the Fig-
ures 10 and 11, respectively. As can be observed from
the figures, the mean value of the tire radii in the upper
plots can be estimated within sub-millimeter accuracy
by the algorithm. Note that the covariances of the tire
radii bias are larger for the tires with reduced pressure
than the ones with nominal pressure. This can be ex-
plained by the increased vibration amplitude of a soft
tire. The estimated trajectory in one run is also plotted
in Figure 9. The estimated trajectory matches the GPS
and roadmap successfully in both runs.

7 Conclusions

A new Bayesian solution of the noise adaptive filtering
problem is presented in this article. The algorithm is
based on particle filtering, and it can be applied to a
large class of nonlinear state space models. The algo-
rithm makes use of marginalization and conjugate priors,
such that analytic posterior distributions of the noise pa-
rameters is obtained, which makes the implementation
simple and efficient. We employ the maximum entropy
approach in computing the posterior distribution of the
noise parameters where the parameters are assumed to
be slowly varying but the evolution of the parameters is
unknown. The solution utilizes the exponential forget-
ting factor which prevents the accumulation of error in
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Figure 9. GPS position measurements of the driven tra-
jectory. Estimated trajectory is shown by the dashed line.
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permission)
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Figure 10. Estimated mean and covariance of the tire ra-
dius errors of the rear wheels where the tire pressures are
RR = 2.8 bar and RL = 1.5 bar.

the sufficient statistics of the noise. Performance of the
algorithm is tested on a highly non-linear benchmark
models and in an odometry application using real data.
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A Appendix

A.1 Proof of Theorem 1

The proof is described for discrete densities for sim-
plicity. Proof of the continuous version is technically
more complex but completely analogous using the infi-
nite dimensional setting of Karush-Kuhn-Tucker condi-
tions [30].

Consider a distribution pconst ≡ pconst(θt+1|e1:t) and
a measure u ≡ u(θt+1|e1:t) to be defined on a discrete
set of parameters θt+1 ∈ {θ1, . . . , θm}. Maximization of
entropy of a distribution p∗ ≡ p∗(θt+1|e1:t) is then anm-
dimensional optimization problem in p∗

i , i = 1, . . . ,m,

p∗
i = arg max(−

∑
p∗

i log p
∗
i

ui
),

KL(p∗||pconst) ≤ κ,
m∑

i=1
p∗

i = 1.

Using the definition of KL divergence, the Lagrangian
of the optimization problem is:

∑
i

p∗
i ln p

∗
i

ui
+µ(

∑
i

p∗
i ln p∗

i

pconst,i
−κ)+λ(

∑
i

p∗
i −1) = 0,

yielding a set of Karush-Kuhn-Tucker conditions:

(ln p∗
i − ln ui) + 1 + µ(ln p∗

i − ln pconst,i + 1) + λ = 0,
(A.1)∑

p∗
i (ln p∗

i − ln pconst,i) ≤ κ,

(A.2)
µ(
∑

p∗
i (ln p∗

i − ln pconst,i) − κ) = 0,
(A.3)
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∑
p∗

i = 1, µ ≥ 0.
(A.4)

From (A.1) it follows that

p∗
i ∝ u

1
1+µ

i p
µ

1+µ

const,i. (A.5)

The conditions (A.3) are satisfied if: (i) µ = 0, p∗
i = pu ∝

ui and KL(pu||pconst) ≤ κ, or (ii) KL(pu||pconst) > κ,
µ > 0, in which case p∗ (A.5) is at the boundary

KL(p∗||pconst) = κ. (A.6)

An analytical solution for (A.6) is not available,
however, it is a smooth function in µ, for µ → ∞,
KL(p∗||pconst) → 0 and for µ → 0, KL(p∗||pconst) > κ.
Hence, there exists a value µ∗ such that (A.6) holds. The
equality (10) corresponds to (A.5) under substitution
λt = µ/(1 + µ). Since entropy is a convex function and
the Slater regularity condition is trivially satisfied for
p∗ = pconst, (10) is the global maximum of the entropy.

A.2 Invariant measure

Over the classical formulation of forgetting in [10], the
entropy formulation has an additional degree of free-
dom in the choice of the invariant measure u(·). This
element is equivalent to the alternative distribution of
decision theoretic approach [15], which compares sev-
eral of its possible choices. In this text, we focus on
the original formulation of [8], in which the main pur-
pose of the invariant measure is to preserve invariance
of the entropy under the change of coordinates. How-
ever, it should be as uninformative as possible. Hence,
its choice is governed by the same rules that apply to
uninformative prior distributions [9,11]. This was the
case in Examples 2 and 3, where the Jeffrey’s invariant
measures for location and scale parameters were used,
respectively. In cases where prior information is avail-
able, as a prior distribution pu(θt+1) ∝ u(θt+1), it can
be used as the invariant measure. Note that the influ-
ence of this choice on the posterior can be significant.
To see that, consider a stationary λt = λ and a constant
u(θt+1) = u(θt) = . . . = pu(·|Vu, νu). Recursive substi-
tution of (5) into Bayes rule yields:

p̂(θt|e1:t, λt) ∝ p(θt|e1:t−1, λt)p(et|θt)

∝ u(θt)
t∏

τ=1
p(eτ |θτ )λt−τ

.

Hence, u(θt) can be interpreted as a prior for estimation
of a stationary parameter θt on an exponential window
of the measurements with the effective number of records
1/(1 − λ). The posterior may become prior dominated
especially for small values of λ.
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