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ABSTRACT

In this paper, a calibration method for a triaxial accelerometer us-
ing a triaxial gyroscope is presented. The method uses a sensor fu-
sion approach, combining the information from the accelerometers
and gyroscopes to find an optimal calibration using Maximum like-
lihood. The method has been tested by using real sensors in smart-
phones to perform orientation estimation and verified through Monte
Carlo simulations. In both cases, the method is shown to provide a
proper calibration, reducing the effect of sensor errors and improv-
ing orientation estimates.

Index Terms— Calibration, MEMS, Accelerometer, Sensor fu-
sion, Maximum likelihood.

1. INTRODUCTION

Accelerometers and gyroscopes (inertial sensors) measure linear
acceleration and angular velocity, respectively. By combining three
orthogonal accelerometers and three orthogonal gyroscopes, it is
possible to measure in three dimensions. These types of sensors have
many different applications, for example in navigation and motion
capture [1]. Advances in micro-electromechanical systems (MEMS)
have made inertial sensors widely available in everyday life, for in-
stance in smartphones. MEMS sensors are relatively small, cheap
and have low power consumption. The accuracy of these sensors
is highly dependent on a proper calibration that removes systematic
errors and sensor biases. Calibration refers to the procedure of mea-
suring some known quantity and estimating sensor parameters such
that the measurement output agree with that known information. An
example of the type of calibration discussed in this paper can be seen
in Fig. 1. MEMS inertial sensors are only approximately calibrated
by the manufacturer, and some sensor errors change over time [2].
Therefore, in order to obtain high accuracy measurements, the sen-
sors have to be recalibrated in the field.

Most existing methods for accelerometer calibration use mea-
surements from a set of different static orientations to estimate a
set of parameters. These methods are based on the fact that the
magnitude of the measured acceleration should be equal to the local
gravitational acceleration in static conditions. The choice of calibra-
tion method largely depends on the existing systematic errors. Some
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Fig. 1: Illustration of synthetic calibrated and uncalibrated ac-
celerometer measurements in 3D. The calibrated measurements ycal

t

(blue) are centered on a sphere with radius ‖g‖2 centered around the
origin. The uncalibrated measurements yt (red) form an ellipsoid,
possibly centered around an offset.

methods estimate three gains and three bias parameters [3, 4]. This
is sufficient if the accelerometer axes can be assumed to be perfectly
orthogonal, and if the cross-axis interference caused by electric cou-
pling in the electronics is negligible [5]. For lower quality sensors
these assumptions are typically not valid, and as a result of this, up
to three additional parameters have to be introduced and estimated
to compensate for these errors [6].

The methods discussed above concern the calibration of a stand-
alone triaxial accelerometer. However, if there are more sensors
available in the same platform, it makes sense to use a sensor fu-
sion approach. More specifically, accelerometers are typically avail-
able in combination with gyroscopes. Using these sensors together,
it is possible to formulate the calibration problem as a problem of
estimating the sensor’s orientation in the presence of unknown cal-
ibration parameters. A similar approach is used by Kok and Schön
in [7] for magnetometer calibration. They assume, however, that the
accelerometers are calibrated, which may not always hold for lower
quality sensors.

When calibrating sensors which are mounted in a larger sensor
platform, the relative orientation between the sensors becomes of
interest. To compensate for this inter-sensor misalignment, three ad-
ditional parameters need to be estimated [8, 9], giving a total of 12
calibration parameters.

In this paper we present a calibration method for a triaxial ac-
celerometer using a sensor fusion approach similar to [7]. However,
we only use information from the inertial sensors and disregard the
magnetometer. Including the gyroscope measurements allows for
more freedom in the way the sensors are rotated during the calibra-



tion procedure. The goal of this method is to allow for lower quality
sensors to be used in applications which require measurements of a
higher accuracy than these sensors initially provide.

2. MODEL AND PROBLEM FORMULATION

To formulate the calibration problem for the accelerometer we
first need to model the rotation of the sensor platform. Using the
angular velocity measurements provided by the gyroscope, we for-
mulate a dynamic model, which uses the gyroscope measurements
as inputs to predict the orientation of the sensor

xt+1 = xt � exp
∆t

2
ωt, (1)

where the state variables xt are unit quaternions, � denotes the
quaternion multiplication and exp the vector exponential. For back-
ground on quaternion algebra, see e.g. [10]. The input to the dy-
namic model is the angular velocity ωt, at time t, sampled with in-
terval ∆t. The gyroscope measurements, ω̄t, are modelled as

ω̄t = ωt + bω + vt, (2)

where bω is the gyroscope bias and vt ∼ N (0,Σω) is Gaussian
measurement noise. Estimating and removing the bias bω from (2)
will allow us to use the gyroscope measurements as input to (1).

Next we model the accelerometer measurements, which depend
on the orientation of the sensor platform and the unknown calibration
parameters to be estimated. The raw (uncalibrated) accelerometer
measurements, yt, are modelled as

yt = DR(xt)g + ba + et, (3)

where R(xt) is a rotation matrix describing the orientation of the
sensor. The sensor is assumed to be in constant linear velocity in the
gravitational field with acceleration g, which is true for stationary
sensors. The local gravitational acceleration g is also assumed to
be known. The sensor bias is modelled by the vector ba ∈ R3×1

and et ∼ N (0,Σa) is Gaussian measurement noise. Gains, non-
orthogonal sensor axes, cross-axis interference and inter-sensor mis-
alignments are modelled by the matrix D ∈ R3×3. In fact, D can
be seen as a product of matrices that model these errors separately,
and the number of unknown parameters that make up the elements
of D can be reduced if some of these errors are ignored. The desired
error-free accelerometer output is R(xt)g. Therefore, if D and ba
are known, the calibrated accelerometer measurements can be calcu-
lated as

ycal
t = D−1(yt − ba). (4)

In 3D space the calibrated accelerometer measurements will
form a sphere of radius ‖g‖2 with its center in the origin, while the
uncalibrated measurements form an ellipsoid centered around the
sensor bias ba, see Fig. 1.

The calibration problem is formulated as a Maximum likeli-
hood (ML) estimation problem for the unknown model parameters
θ = {D,ba}, where the ML estimator for θ is given by

θ̂ = arg max
θ

pθ(y1:T ) = arg max
θ

T∏
t=1

pθ(yt|y1:t−1), (5)

using all measurements from time t = 1 to T , and the convention
that y1:0 = ∅. The likelihood function, pθ(y1:T ), is obtained from
the one step ahead predictors, pθ(yt|y1:t−1). We use an extended
Kalman filter (EKF) to approximate the one step ahead predictors.

The EKF uses the nonlinear state space model given by (1) and
(3), and estimates the orientation of the sensor platform as the unit
quaternion states xt. For more details about the EKF implementa-
tion, see e.g. [11]. The one step ahead predictors are then approxi-
mated as

pθ(yt|y1:t−1) ≈ N (yt|ŷt|t−1(θ),St(θ)), (6)

which is a probability density function of a Gaussian random vari-
able yt with mean ŷt|t−1(θ) and covariance matrix St(θ).

An equivalent formulation of (5) is

θ̂ = arg min
θ

V (θ), (7)

where V (θ) is the negative log-likelihood, which will be referred to
as the cost function. It is given by

V (θ) =
1

2

T∑
t=1

‖yt − ŷt|t−1(θ)‖2
S−1
t (θ)

+ log detSt(θ), (8)

where ‖ · ‖
S−1
t (θ)

is the 2-norm weighted by the inverse of the co-
variance matrix. From the Kalman filter theory we can recognize
yt − ŷt|t−1(θ) as the output innovations, and St(θ) as the innova-
tion covariance. The EKF is hence used to evaluate the cost function
(8), which allows the optimization problem (7) to be solved using an
iterative method, see Section 3.

3. CALIBRATION ALGORITHM

The calibration algorithm, summarized in Algorithm 1, works
on sets of sequential measurements that should be divided into two
subsequent segments. In the first segment, the sensors are stationary
on a flat surface and in the second segment the sensors are rotated
into different orientations. The first segment is used to estimate the
initial orientation, x0, of the sensors and to estimate the parameters
bω,Σa and Σω . The noise covariance matrices Σa and Σω are as-
sumed to be diagonal. The gyroscope is assumed to be calibrated
after this first part. The second segment is then used to solve the
optimization problem in (7) for the parameters θ, with an iterative
method. In every iteration, the cost function (8) is evaluated by run-
ning the orientation estimation EKF described in Section 2, using the
current parameter estimates. To solve the optimization problem (7)
we use a Gauss-Newton method [12], which requires the gradients
and the approximate Hessian of the cost function. However, com-
puting the gradients of (8) is not straightforward, since the predicted
state x̂t|t−1 depends on the parameters θ through the previous mea-
surement updates of the filter. Therefore, a numerical gradient of
the cost function is calculated by approximating the partial deriva-
tives dV (θ)

dθ
using finite differences. The numerical gradient is then

used to approximate the Hessian as ( dV (θ)
dθ

)T ( dV (θ)
dθ

). Two indepen-
dent stopping criteria are used for the optimization algorithm. The
first criterion requires the Newton decrement [13] to be smaller than
some constant ε1. The second criterion will stop the algorithm if the
calculated step length found in the line search is smaller than some
other constant ε2, and does not satisfy the Wolfe conditions [12].
The constants ε1 and ε2 can be chosen as a compromise between
accuracy and computation speed.

4. EXPERIMENTAL RESULTS

The calibration algorithm was tested in two separate experi-
ments using real sensors in two different smartphones (Samsung



Algorithm 1 Calibration algorithm

1: Estimate accelerometer and gyroscope covariance, gyroscope
bias and the initial orientation of the sensor, Σ̂a, Σ̂ω, b̂ω, x̂0

from a stationary portion of the sampled measurements.
2: Initialize D̂0 = I3, a 3× 3 identity matrix and ba,0 = 03×1, a

3× 1 zero vector.
3: Set i = 0 and repeat:
4: Run the EKF using the current estimates θ̂i = {D̂i, b̂a,i} and

the initial orientation x̂0.
5: Approximate the partial derivatives of the cost function (8) as

finite differences and calculate the approximate Hessian.
6: Calculate θ̂i+1 by solving (7) as an unconstrained optimization

problem using a Gauss-Newton method and a line search algo-
rithm [12].

7: Set i = i+ 1 and repeat from step 4 until convergence.

Galaxy S5 and Google Nexus 4). Specifically, the sensors used were
the MPU-6050 for the Google Nexus 4, and the MPU-6500 for the
Samsung Galaxy S5, both sensors are manufactured by InvenSense
[14]. These sensors were of interest as we have previously seen
distinct variations in the magnitudes of the accelerometer measure-
ments for different orientations in stationary conditions, when using
these sensors. The method was also verified using synthetic data.

4.1. Real sensor data

In the first experiment, sensor data was collected from a Sam-
sung Galaxy S5 smartphone. The smartphone was initially at rest on
a flat surface for approximately 10 seconds. Subsequently, the phone
was picked up and rotated by hand. Two different datasets were
collected using different types of rotation. For the first dataset, the
smartphone was rotated into 6 different pre-specified orientations,
separated by approximately 90 degrees. The smartphone was sta-
tionary in these orientations for periods of approximately 10 seconds
before it was rotated again. For the second dataset, the smartphone
was continuously rotated around all of its axes. The datasets were
used to calibrate the sensors in the phone using Algorithm 1.

The results for the two datasets are seen in Fig. 2. After cali-
brating the accelerometer the measurement magnitudes become cen-
tered, close to ‖g‖2 = 9.82m s−2. The average magnitude of the
calibrated data was 9.81(σ = 0.23)m s−2 for the first dataset, and
9.80(σ = 0.30)m s−2 for the second dataset, with standard devi-
ations σ. This is a significant improvement over the uncalibrated
measurements, where the magnitude varies for different orientations.

Every time the phone is rotated the accelerometer data violates
the measurement model, which assumes that the accelerometer is
only affected by the gravitational acceleration. The second dataset
therefore contains more outliers than the first dataset. The effect
of having outliers in the calibration data is not examined further in
this paper. However, it could result in improper calibrations if the
number of outliers becomes very large.

4.2. Orientation estimation

In the second experiment a Google Nexus 4 smartphone was
used to test the calibration performance. The phone was attached to
a board which was stationary at first, followed by one complete ro-
tation around the roll, pitch and yaw axes. The rotation speed was in
the order of 9◦s−1. This was repeated three times. Reflective mark-
ers, that were detected and tracked by an optical reference system
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Fig. 2: Measurement magnitudes of the calibrated and uncalibrated
accelerometer in the Samsung Galaxy S5, from the two datasets ex-
plained in Section 4.1. Top: The phone was rotated into 6 different
fixed orientations. Bottom: The phone was continuously rotated by
hand.

(Vicon), were attached to the board. Using multiple markers, the ori-
entation of the board was obtained with high accuracy and used as a
reference. The measurements collected from the accelerometers and
gyroscopes of the phone were used to estimate the orientation of the
board using an EKF. The estimated orientations were then compared
with the reference measurements. Data from the first stationary part
and one rotation segment was used to calibrate the sensors, while the
orientation estimation was performed on the whole dataset.

The orientations of interest here are the roll and pitch angles,
which are observable by the accelerometer. The yaw angle, or head-
ing, can only be observed by introducing additional sensors, for ex-
ample a magnetometer. When using the uncalibrated accelerometer
the average absolute error of the estimated roll and pitch angles was
3.43◦ and 1.61◦, respectively. The errors were reduced to 1.82◦ and
0.78◦, respectively, when using the calibrated accelerometer mea-
surements.

4.3. Synthetic data

Monte Carlo simulations were performed to verify the func-
tionality of the calibration algorithm. Sensors with randomly gen-
erated parameters were calibrated using synthetic data. The syn-
thetic accelerometers had a gain in the range (0.5, 1.5), a inter-
sensor misalignment in the range of ±10◦, non-orthogonal sensor
axes in the range of ±30◦ and a bias in the range of ±1m s−2. The
synthetic gyroscopes had biases in the range of ±1rad s−1. The di-
agonal elements of the noise covariance matrices were in the range
of (10−3, 10−1) and (10−3, 10−2) for the synthetic accelerometers
and gyroscopes, respectively. All of the mentioned ranges have a
uniform distribution. The synthetic data represented one complete
rotation around each axis. A total of 1000 simulations were per-
formed.

The difference between the calibrated and uncalibrated mea-
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Fig. 3: Calibrated and uncalibrated measurement magnitudes and
angular errors for 1000 Monte Carlo simulations. The blue lines
represent the calibrated measurements ycal

t , and the red lines repre-
sent the uncalibrated measurements yt. The means are represented
as solid lines with a confidence interval of one standard deviation,
represented by the dashed lines.

surements can be seen in Fig. 3. After calibration, the magnitude
of the measurements are significantly closer to the true magnitude
‖g‖2 = 9.82m s−2. The absolute value of the angle between the
calibrated measurement vectors ycal

t , and the ideal (noise- and er-
ror free) measurement vectors (the angular error), also decreased
to an average of 2 degrees. The average absolute orientation esti-
mation errors also decreased significantly from 8.3(σ = 7.1)◦ to
0.32(σ = 0.40)◦ for the roll angle, and from 8.3(σ = 6.9)◦ to
0.33(σ = 0.43)◦ for the pitch angle. To speed up these simulations,
the Gauss-Newton method was allowed to perform a maximum of
10 iterations. However, the algorithm converged in 6 iterations or
less on average.

4.4. Cramér-Rao lower bound

A common tool used to evaluate the performance of estimators
is the Cramér-Rao lower bound (CRLB), which gives a lower bound
on the variance of an unbiased estimator [15]. The CRLB was calcu-
lated using the mean Hessian from 100 simulations using one fixed
set of parameters. The square root of the CRLB can be compared
with the root-mean-square error (RMSE), for the estimated param-
eters θ̂, see Fig. 4. The RMSE values were found to be close to
the square root of the estimated CRLB which suggests that the esti-
mator is efficient. Interestingly, for parameter 6, it can be seen that√

CRLB > RMSE. This could be because of the numerical approxi-
mation of the CRLB or because there is a small bias in the parameter
estimates.

5. CONCLUSIONS

In this paper, a calibration method for a triaxial accelerometer,
using sensor fusion with a triaxial gyroscope in the same platform,
has been presented. The main goal of the method is to allow sen-
sor platforms with lower quality sensors, e.g. smartphones, to be
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Fig. 4: Square root of the estimated CRLB and the RMSE for the
estimated parameters for 100 simulations using the same set of pa-
rameters. The first 9 parameters belong to the vectorized matrix D
and parameters 10-12 belong to the bias vector ba.

used in applications which require higher accuracy measurements.
The method has been tested using both real and synthetic data, and
has been shown to accurately calibrate the sensors. The estimated
parameters can be used to compensate for gain, inter-sensor mis-
alignment, non-orthogonal sensor axes, cross-axis interference and
bias. The method was used to calibrate the accelerometer in a smart-
phone, which brought the measurement magnitudes closer to ‖g‖2.
This was a significant improvement compared to the uncalibrated ac-
celerometer, where the magnitudes varied for different orientations.
It was also shown that the calibration works when using a smart-
phone to perform orientation estimation, improving the accuracy in
the estimated roll and pitch angles. Monte Carlo simulations show
a significantly reduced effect of sensor errors in the calibrated mea-
surements. Simulations also showed that the RMSE was close to the√

CRLB for the estimated parameters, which suggests that the Max-
imum likelihood estimator is efficient. The Gaussian noise model
used here cannot describe measurement outliers.

We see a number of interesting improvements and extensions of
the method. The problem of too many outliers could be handled by
different approaches: outlier detection, by using a heavytailed noise
distribution or by using robust Kalman filtering [16]. Another pos-
sible future extension would be to combine the method with magne-
tometer calibration for more accurate heading estimates. In addition
to these improvements, further analysis with sensors of varying qual-
ity, and comparisons to other methods would be interesting as future
work.
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