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Abstract—Target tracking in ground sensor networks requires
an accurate calibration of sensor positions and orientations, as
well as sensor offsets and scale errors. We present a calibra-
tion algorithm based on the EM (expectation maximization)
algorithm, where the particle filter is used for target tracking
and a non-linear least squares estimator is used for estimation
of the calibration parameters. The proposed algorithm is very
simple to use in practice, since no ground truth of the target
position and time synchronization are needed. In that way,
opportunistic targets can also be used for calibration. For road-
bound targets, a road-constrained particle filter is used to
increase the performance. Tests on real data shows that a sensor
position accuracy of a couple of meters is obtained from only
one passing target.

I. INTRODUCTION

Bias estimation (encompassing the concepts sensor cali-

bration, registration, localization and alignment) is a crucial

element of multisensor tracking. Reliable tracking requires the

sensor data to be aligned and consistent, otherwise there is an

obvious risk for degraded performance or even ghost tracks.

There are many previous works dealing with bias estimation

(for example [10] or [2]). Here we focus on methods applicable

to a ground sensor network. The different biases, here denoted

bias parameters, may include location errors, orientation er-

rors, range measurements etc., depending on sensor type.

There are two main groups of techniques for calibrating the

sensors: using reference targets, or using targets of opportunity.

Both can be performed on-line or off-line.

In the ground sensor applications, the reference targets

could typically be one or more vehicles carrying satellite

navigation equipment, e.g. GPS. One must make sure that

enough measurements are generated for each sensor with the

target at different locations. Problems to consider are how to

make the GPS data available to the fusion centre, and also

the fact, that the GPS data may be corrupt, especially in an

urban environment. Once the data has been collected, one can

apply e.g. a Maximum Likelihood (ML) method, to estimate

the bias parameters that make observations of the target fit the

reference data best.

In case no reference targets can be used, one needs to track

targets of opportunity for the purpose of bias estimation. This

may however be hard, as tracking may not work well without

having the bias estimates. One approach is to simultaneously

estimate track states and biases, which can be accomplished

by forming augmented state vectors that combine target state

estimates together with bias estimates [2]. With a large number

of targets and sensors this will hardly be tractable due to

computational requirements etc. There are however suboptimal

but very efficient techniques to decouple target state and

bias estimation process [4] or [10], fully feasible for on-line

operation.

This paper examines an off-line approach to bias estimation

with targets of opportunity. As the number of measurements

suitable for bias estimation can be quite low, it is desirable

to find a method that uses them as effectively as possible.

To this end, the method considered in this paper is based on

Expectation Maximization (EM) [9], with additional perfor-

mance enhancing features, in particular using road constraints

together with particle filtering and smoothing. In EM, the

entire set of measurements is processed iteratively to provide

both state estimates and bias parameters [5]. This will be

described in detail in Section III after the formal definition in

Section II. The techniques are developed further in Section IV

and Section V with particle filtering and smoothing for on-road

and off-road motion. Finally, Section VI provides experimental

results.

II. PROBLEM DEFINITION

A. Sensor and Motion Models

A ground target is detected by a number of sensors, resulting

in a set of observations YK = {yk}
K
1 of a target states

XK = {xk}
K
1 , where yk is a single measurement, or set

of measurements stacked as a vector, and xk is target state

at time k. The measurements are affected by a number of

bias parameters and by a measurement noise. All the bias

parameters, for all sensors, are collected in a single vector

b.
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The measurement model for each sensor is assumed to be

a known, nonlinear function h(xk, b) of the state xk, with

measurement bias b, and is defined as

yk = h(xk, b) + νk (1)

where νk is an additive noise with known distribution pνk
(·).

In general we assume that observed target moves according

to a nonlinear motion model

xk+1 = f(xk, ηk+1) (2)

with motion model f(·) assumed to be known and with ηk
being a process noise with known distribution pηk

(·).
There is a number of sensor types used in ground target

tracking, from which we can distinguish four basic types:

a) Linear range (TOA, time of arrival): The time τ of a

signal arrival (transmission time) is measured, and by using the

known speed v in the propagation media (speed of light/sound

in air/water etc.) one can estimate range to the target. The

measurement function is defined as

hTOA(xk, b) = |pk − (s+ bp)|+ br (3)

where pk is target positions vector at time k, s is the sensor

position vector, bp is the sensor position bias vector and br is

an additive range measurement bias.

b) Linear range difference (TDOA, time difference of

arrival): The transmission time is here unknown, but by using

two sensors one can estimate a relative time of arrival, thus

relative distance to the target. The measurement function takes

then a form

hTDOA(xk, b) = |pk − (s1 + b1p)| − |pk − (s2 + b2p)|+ bd
(4)

where sn is the n-th sensor position vector, bnp is the n-

th sensor position bias vector and bd is an additive range

difference measurement bias.

c) Bearing measurements (DOA, difference of arrival):

The sensor provides bearing (direction, angle) to the target,

with measurement function

hDOA(xk, b) = atan2

(

pxk − (sx + bx)

pxk − (sy + by)

)

+ bθ (5)

where pxk and pyk are target positions, sx and sy are sensor

positions, bx and by are sensor position biases in x and y
direction respectively and bθ is called north alignment bias.

d) Logarithmic range (power measurements).: The sen-

sor measures the strength of a received signal, that can be of

a different kind, e.g. acoustic or electromagnetic wave. The

measurement function is then defined as

hRSS(xk, b) = log(1− bG) + PLOG
k − β log(r) (6)

where r = |pk − (s+ bp)| is the distance to the target, PLOG
k

is a logarithm of power emitted by the target at time k, β
is called path loss constant and bG is a gain bias related to

miscalibration of sensors.

The list of sensor models and bias parameters above is

not exhaustive, but can be considered as a good illustration

of the calibration problem considered herein. Further, sensor

modalities can be mixed arbitrarily in our framework. Also

combined sensors can be included easily, such as a radar

sensor, providing both range and bearing measurements.

B. General Estimation Framework

The estimation approach consists in finding the bias param-

eters b that maximize the marginal likelihood

pb(YK) =

∫

pb(XK , YK)dXK (7)

where b indicates dependence on bias parameters. The EM

algorithm computes the maximum likelihood estimate by

iteratively solving an filtering problem to get Xk given an

estimate of the bias, and an estimation problem to get bk,

given an estimate of Xk.

A general framework on the EM algorithm for estimating

parameters in a nonlinear dynamic system is provided in [9].

III. EXPECTATION MAXIMIZATION ALGORITHM

The ideas behind EM, as applicable to our problem, can

be summarized as follows. It is an iterative method used for

finding the Maximum Likelihood (ML) or Maximum Posterior

(MAP) estimates of parameters, when a model depends on

latent (hidden) values. In case of bias estimation, where

we based on set of measurements YK want to estimate the

bias vector b, the latent variables are the sequence of state

vectors XK . The two steps described below are repeated

until convergence. The first step is an Expectation (E) step.

Introducing the notation

ln pb(XK , YK) = Lb(XK , YK) (8)

one computes the Q(b, b̂), that is a minimum variance estimate

[9] of above log likelihood, made use of the available data set

{yk}
K
1 and an assumption b̂ of the true value of bias vector b.

Function is defined as

Q(b, b̂) = E
b̂
{Lb(XK , YK)|YK}

=

∫

Lb(XK , YK)p
b̂
(XK |YK)dXK (9)

The core idea behind the above procedure is that it should be

much easier to maximize the complete likelihood pb(XK , YK)
than pb(YK) in eq. ( 7).

The second step is Maximization (M) step, where one

calculates new bias estimate

b̂n+1 = argmax
b

pb(YK) = argmax
b

Q(b, b̂n) (10)

This vector is used as an input for the next iteration of the

two steps. As a result, with further iterations, the algorithm

delivers a sequence of estimates b̂n that are increasingly, with

each iteration, better approximations of the ML estimate. As

an initial value b0 one can use zeros or any other data one may

have available. The EM algorithm is presented in Algorithm

1 and details of the Expectation and Maximization steps are

given in the following sections.
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Algorithm 1 - EM Algorithm

(1) Set n = 0 and initialize b̂n
(2) (E)xpectation step:

Calculate: Q(b, b̂n)

(3) (M)aximization step:

Calculate: b̂n+1 = argmaxb Q(b, b̂n)

(4) Update n = n+1 until convergence.

The important problem in the EM algorithm is evaluation

of the distribution p
b̂
(XK |YK) in (9), which is a smoothing

problem. It should be discussed a bit wider due to the fact

that there exist multiple ways to obtain estimates of b through

EM.

In case of a linear measurement model and a linear motion

model with normally distributed noise, one obtains a direct so-

lution to the estimation problem by using a Kalman Smoother

in the Expectation step together with Weighted Least Squares

algorithm to obtain bias estimates in the Maximization step.

It is then a wellknown property of the EM algorithm that it

will converge to a local maximum of the likelihood function.

In the nonlinear case we need to use approximative algo-

rithms. One general solution to the nonlinear filtering problem

is provided by the Particle Smoother, that can obtain an

arbitrarily good approximation of the Q(b, b̂n) function. Then,

one can use a gradient method to solve for b (which is

equivalent to Nonlinear Least Squares problem). This method

in detail is presented in [9].

Another way is to use linearization of the motion model

and/or measurement model. With a linearized model, one can

use the Extended Kalman Smoother to obtain smoothed state

estimates [5]. Linearization allows for an iterative solution

where the model is linearized at each new iterate.

In this paper, the method with linearized measurement func-

tion and particle smoother is used to obtain an approximation

of p
b̂
(XK |YK).

A. Expectation step

We now focus on how to calculate Q(b, b̂n) defined in (9).

Using the Bayes’ rule, the log likelihood (8) can be expressed

as

Lb(XK , YK) = ln pb(YK |XK) + ln pb(XK) (11)

Actually, only the first term depends on the biases related

to the measurement function, so under the assumption of

known initial state distribution p(x1), the second term can be

considered as a constant. Thus keeping only terms dependent

on b, and including other terms into the constant term, one

can write (8) in an extended form as

Lb(XK , YK) =

K
∑

k=1

ln pb(yk|xk) + const (12)

Assuming that measurements are obtained from true target

states xk through a known, nonlinear measurement function

yk = h(xk, b) + νk (13)

defined in (1), with b being the bias vector and νk assumed to

follow a Normal distribution with a known covariance R, we

then have

Lb(XK , YK) = −
1

2

K
∑

k=1

(hT (xk, b)R
−1h(xk, b)

−2yTk R
−1h(xk, b)) + const (14)

where the terms independent of the bias b were again consid-

ered as constants.

Due to its nonlinearity, the measurement function needs to

be linearized in order to obtain a closed form solution for

bias estimates. The best point for linearization is around the

state estimate x̂k|K = E
b̂
{xk|YK}. A motivation to use this

value comes directly from the fact, that computing of Q(b, b̂n)
requires calculation of this value. It is due to expectation

over Yk in (9), which requires computing p
b̂
(XK |YK). As

will be seen below, linearization around the smoothed state

estimate will simplify the final solution (by making some terms

disappear).

In this paper, the particle filter together with a particle

smoother will be applied to obtain smoothed state estimates.

First, in the filtering step one obtains a set of particles {xi
k}

M
i=1

together with their weights {wi
k}

M
i=1, where M is the number

of particles, that are used in the smoothing step to compute

the smoothed estimate x̂k|K . Detailed description of these

algorithms will be provided in Section 3 and 4 respectively.

To proceed, the measurement function is linearized around

the smoothed estimate x̂k|K and bias estimate b̂n using a

Taylor 1st order expansion, resulting in

h(xk, b) ≈ h(x̂k|K , b̂n)+Hb
k(b− b̂n)+Hx

k (xk − x̂k|K) (15)

with Jacobians

Hx
k = ∂h(xk,b)

∂xk

∣

∣

∣ xk=x̂k|K

b=b̂n

and Hb
k = ∂h(xk,b)

∂b

∣

∣

∣ xk=x̂k|K

b=b̂n

Substituting (15) into (14) and applying the expectation

operator E
b̂
{·|YK} to (14), in order to calculate Q(b, b̂n) (cf.

(9)), and by again throwing away terms that do not depend

on b, together with terms that are linear in xk − x̂k|K , as their

expectation value vanishes (as a direct result of linearization

around smoothed state estimate). What remains is

Q(b, b̂) = −
1

2

K
∑

k=1

(− 2(yk − h(x̂k|K , b̂) +Hb
k b̂)

TR−1Hb
kb

+ bT (Hb
k)

TR−1Hb
kb) + const (16)

B. Maximization step

In the maximization step, we compute new bias estimate

b̂n+1 from (10). The maximum can be found by solving

∂Q(b, b̂n)

∂b
= 0 (17)
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for b and using the property of symmetry of measurement

covariance matrix R = RT . Because (16) has a form of Ab+
bTBb+ const, where

A =

K
∑

k=1

(yk − h(x̂k|K , b̂) +Hb
k b̂)

TR−1Hb
k (18)

B =
1

2

K
∑

k=1

(Hb
k)

TR−1Hb
k (19)

with B as mentioned symmetric and const independent of b,
the result is simply b̂n+1 = −B−1A/2, or explicitly

b̂n+1 =

(

K
∑

k=1

(Hb
k)

TR−1Hb
k

)−1

·

(

K
∑

k=1

(Hb
k)

TR−1(yk − h(x̂k|K , b̂) +Hb
k b̂)

)

(20)

C. Comments on observability and convergence

For the maximization step to work it is necessary that B
is invertible (or rather, that b̂n+1 = −B−1A/2 is a well-

conditioned problem). Typically this is not the case: there are

too many degrees of freedom for the bias parameters. The

freedom can be restricted in different ways: fixing certain

parameters or using road constraints can be very helpful, but

not always enough. There are also requirements on the set of

measurements. If there are too few measurements, of if e.g.

the target has not moved in the measurement set, it will in

most cases also be impossible to find the parameters. Using

priors is also another way to ensure observability.

The proof of a convergence of the EM algorithm can be

found in literature in [9] or [1].

IV. PARTICLE FILTERING

As mentioned in the previous section, to obtain bias es-

timates b̂n through the EM algorithm, we require smoothed

state estimates x̂k|K . To obtain those estimates, we will use

the particle smoother. To be able to apply smoothing, we

first need to run a particle filter, that will provide a set

of particles, together with their weights, further used in a

smoothing step. In this section, a simple SIR (Sequential

Importance Resampling) algorithm will be used to obtain the

required particles and weights, followed by its modification

with applied road constraints.

A. Particle Filter

In general, we assume that the observed target moves

according to a nonlinear motion model defined in (2)

xk+1 = f(xk, ηk+1) (21)

with motion model f(·) assumed to be known and with

ηk being a process noise with known distribution pηk
(·).

The measurement function used to obtain target observations

was previously defined in (13). A simple SIR particle filter

algorithm [3] [7] is presented in Algorithm 2.

Algorithm 2 - SIR Particle Filter

(1) Initialize: Set k = 1 and initialize particles

{xi
0}

M
i=1 ∼ p(x0) (22)

(2) Prediction: Predict the particles by drawing M i.i.d.

samples according to

x̃i
k ∼ p(x̃k|x

i
k−1), i = 1, . . . ,M (23)

(3) Update: Compute the importance weights {wi
k}

M
i=1,

wi
k = w(x̃i

k) =
pb(yk|x̃

i
k)

∑M
j=1 pb(yk|x̃

j
k)

, i = 1, . . . ,M (24)

(4) Resampling: For each j = 1, . . . ,M draw a new particle

xi
k with replacement (resample) according to

P (xj
k = x̃i

k) = wi
k, i = 1, . . . ,M (25)

(5) Increment k = k + 1 while k < K and return to step 2,

otherwise terminate.

B. Road Constrained Particle Filter

When the target moves on a road, and a map of the road

is available, it is natural to try to use this extra knowledge

as a constraint in order to obtain more accurate estimates. In

this section a road constrained particle filter (where the target

moves only on the road map) will be described in detail.

There are many ways to apply road constraints to the par-

ticle filter. In this paper it will be assumed, that the road map

is represented by a road network defined as JRN . The road

network is a set of definitions of straight segments together

with a description of their attributes. Each segment is build of

2 points (a start point and an end point). Points common for

3 or more segments are considered to be junctions.

In general, the target state is defined in some coordinate

system, let us call it global for a purpose of this paper. For

the road constrained filtering there exists a need of using an

extra coordinate system, that will describe target position in

road coordinates. The state at time k in this system will be

denoted as xr
k, where r denotes road coordinate system.

The on-road state vector xr
k = [zk lk]

T is combined of two

vectors: zk = [sk vk]
T describing a one-dimensional motion

model, where sk is a total distance traveled on the road since

k = 1, vk is a speed, and lk informs about the road segment

the target is on, location on the segment and direction of

movement.

The motion model for the on road case is, as in general

case, also nonlinear and defined [6] as

xr
k+1 = fr(xr

k, JRN , ηrk+1, ν
r
k+1) (26)

where ηrk is a process noise with known distributions pηr
k
(·)

and νrk is a discrete process noise, determining the choice of

next road segment with known distributions pνr
k
(·)
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Because the measurement function h(xk, b) is usually de-

fined in global coordinates, there is a need to be able to convert

target state from road to global coordinates. Thus we assume,

there exists a transformation that allows exact conversion

from global coordinates to road coordinates and opposite.

Let Γr2g(·) be the function converting road coordinates to

global coordinates and let Γg2r(·) be the transformation from

global coordinates to road coordinates. In the on-road case,

the measurement function (13) takes the form

yk = h(Γr2g(xr
k), b) + νk. (27)

The procedure for on road filtering is analogous to the one

presented in Algorithm 2, but with a few modifications. In

the initialization step, particles can be initialized directly

on the road (in road coordinates) or projected onto road

in the case when the initial distribution is only known in

global coordinates. Then initial samples (particles) need to be

projected using some known projection function. In general,

equation (22) in Algorithm 2, for road constrained case, takes

the form

{xr,i
0 }Mi=1 ∼ p(xr

0) (28)

Next, in prediction step one needs to consider the on road

motion model together with the probability of choosing one

of the next road segments (in case of junctions or end of the

road [8]). The likelihood in (23), which we sample from in

step (2) of Algorithm 2, is then

p(xr
k|x

r
k−1) = p(zk, lk|zk−1, lk−1)

=
p(zk, lk, zk−1, lk−1)

p(zk−1, lk−1)
, (29)

where Bayes theorem was used. By using the property of

independence of zk−1 and lk−1, and Bayes theorem again,

(29) can be rewritten as

p(xr
k|x

r
k−1) =

p(lk, lk−1|zk, zk−1)

p(lk−1)

p(zk, zk−1)

p(zk−1)

=
p(lk|lk−1, zk, zk−1)p(lk−1|zk, zk−1)

p(lk−1)
p(zk|zk−1)

(30)

Using the fact that p(lk|zk, zk−1) = p(lk), terms from nomi-

nator and denominator disappear and we finally get

p(xr
k|x

r
k−1) = p(zk|zk−1)p(lk|lk−1, zk, zk−1) (31)

As was mentioned before, in the update step of Algorithm

2 there might be a need to convert particles from road to

global coordinates. To calculate pb(yk|x̃
i
k) we should use the

coordinate conversion function, as in (27).

Modified version for road constrained particle filter is pre-

sented in Algorithm 3.

Now we focus more deeply on sampling from the distri-

bution p(x̃r
k|x

r,i
k−1) in (33), with respect to known motion

model and noise distribution. According to the first term in

the equation, p(z̃k|z
i
k−1), we sample with respect to the on-

road motion model. The second term depends on the road map,

and is called junction selection likelihood.

q �
�

�
��

@@q

q

xr
k−1 = (zk−1, lk−1)

x̃r
k = (zk, lk)

q (1)
@

@
@

@
@R

�
��

(a)

(b)

(c)

Fig. 1. Junction example

Algorithm 3 - Road constrained Particle Filter

(1) Initialize: Set k = 1 and initialize particles

{xr,i
0 }Mi=1 ∼ p(xr

0) (32)

(2) Prediction: Predict the particles by drawing M i.i.d.

samples according to ( 31)

x̃r,i
k ∼ p(x̃r

k|x
r,i
k−1), i = 1, . . . ,M (33)

(3) Update: Compute the importance weights {wi
k}

M
i=1,

wi
k = w(x̃r,i

k ) =
pb(yk|Γ(x̃

r,i
k ))

∑M
j=1 pb(yk|Γ(x̃

r,j
k ))

, i = 1, . . . ,M

(34)

(4) Resampling: For each j = 1, . . . ,M draw a new particle

xr,i
k with replacement (resample) according to

P (xr,j
k = x̃r,i

k ) = wi
k, i = 1, . . . ,M (35)

(5) Increment k = k + 1 while k < K and return to step 2,

otherwise terminate.

The particle xr,i
k−1 at time k − 1 is located on a certain

segment, and its location is described by the vectors zk−1 and

lk−1 (as presented in Figure 1).

The first step is to sample a new z̃k from distribution

p(z̃k|z
i
k−1). Having a new sample z̃k = [s̃k ṽk]

T , we need to

calculate the distance made by particle on road, d = s̃k−sk−1,

which is a difference between total distance s at time k and

k − 1. If the distance d is smaller or equal to the remaining

distance to the junction (1) (end of a segment (a)), particle

does not cross the junction and stays on segment (a) with

probability 1, so l̃k = lk−1.

In case, when the distance d is larger than the remaining

distance to the junction (1), the particle changes road segment.

As we can see on the example in Figure 1, the particle has

2 possible paths to follow (red to segment (b) or black to

segment (c)). In this paper, the distribution pνr
k
(·), determining

the choice of the next road segment, is assumed to be uniform,

so particle changes its location to one of two possible segments

((b) or (c)) with an equal probability 1
m

, where m is a number
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Fig. 2. Multiple junction example

of possible segments to move onto (in this example m = 2).

In case where at one time step the particle crosses more

than one junction, we repeat the above procedure until the

distance d is smaller than the remaining distance to the end

of the segment the particle is on.

V. SMOOTHING

As was mentioned before, to calculate smoothed state

estimates we need to run first the particle filter and store

all predicted particles {x̃i
k}

M
i=1 and corresponding weights

{wi
k}

M
i=1 for all k = 1, . . . ,K and then run Algorithm 4 [9].

Algorithm 4 - Particle Smoother

(1) Initialization: Set filtered terminal weights {wi
k} to be

initialized smoothed weights at time k = K as

wi
K|K = wi

K , i = 1, . . . ,M (36)

(2) Smoothing: Use filtered weights {wi
k} and sets of

stored particles {x̃i
k, x̃

i
k+1}

M
i=1 to compute smoothed weights

{wi
k|K}Mi=1 using formulas below:

wi
k|K = wi

K

M
∑

j=1

wj

k+1|K

p(x̃j
k+1|x̃

i
k)

vjk
(37)

where

vjk =

M
∑

i=1

wi
kp(x̃

j
k+1|x̃

i
k) (38)

(3) While k > 0 decrease k = k − 1 and return to step (2),

otherwise terminate.

In case of road constrained algorithm, the above procedure

needs to be modified, analogously to the filtering case. The

main difference is in calculating the probability p(x̃j
k+1|x̃

i
k),

between 2 particles, as in step (2) and (3) of Algorithm 4. In

the road constrained case it follows, as defined in (31)

p(x̃r,j
k+1|x̃

r,i
k ) = p(z̃jk+1|z̃

i
k)p(l̃

j
k+1|l̃

i
k, z̃

j
k+1, z̃

i
k) (39)

There are two main problems regarding evaluation of this

probability.

The first term of equation (39) is directly related to the

one-dimensional on-road motion model, as defined in (26).

The second term is related to the road network. In a simple

case, when particles x̃r,j
k+1 and x̃r,i

k are located on the same

segment, the second term is equal to 1. In case when particles

are located on corresponding segments (problem analogous to

the one presented on Figure 1), the probability is equal to 1
m

,

where m is the number of possible segments the particle can

choose.

In general case, when the on-road path between 2 particles

crosses more than one junction (as presented on Figure 2),

one needs to consider all the possible trajectories between two

particles. As seen in the figure, particle moving from segment

(a), through (b) to (c), can pick two possible trajectories. Thus,

the second term in (39), for trajectories between (a) and (b)

is equal to 1, and between (b) and (c) to 1
m

with m = 2. That

makes the junction selection probability between segment (a)

and (c) equal to 1 · 1
2 = 1

2 .

A second problem is that the probability in (39) needs to be

computed for each pair of particles in each smoothing step k,

thus the complexity of one step is equal to M2, where M is

the number of particles. Because computation of the likelihood

requires finding all possible paths between two points on-

road, it is computationally demanding. This is considered as

an important part to be improved in future.

Having the set of particles {x̃i
k}

M
i=1 and their smoothed

weights {wi
k|K}Mi=1, the minimum mean square error estimate

of the target state can be computed as

x̂k|K =

M
∑

i=1

wi
k|K x̃i

k, (40)

and used to obtain bias estimate b̂n through equation (20).

Because the EM algorithm is, in general, defined in global

coordinates, there is a need to convert estimates in case when

road constraints are applied. In this paper particles in road

coordinates are converted first to global coordinates using the

Γr2g mapping, and together with the smoothed weights are

used to obtain the state estimate in global coordinates through

x̂k|K =

M
∑

i=1

wi
k|KΓr2g(x̃r,i

k ). (41)

Because, in the above, we are using particles converted to

global coordinates it might happen that the estimate will not

be on-road. A natural remedy is to compute the particle that

minimizes the mean square error,

x̂k|K = argmin
x̃
j

k

‖x̃i
k −

M
∑

i=1

wi
k|K x̃i

k‖
2. (42)

Since each particle is constrained to be on-road, this procedure

will guarantee that also the estimate is on-road.

VI. EXPERIMENTAL RESULTS

The EM algorithm with applied road constraints will be

compared with the version without constraints in the exper-

iment, where a single target is moving on-road and is being
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observed by a number of sensors measuring (unknown) acous-

tic power emitted by the target. Evaluation will be performed

on real data. In both versions of the EM algorithm, a constant

velocity (CV) motion model [6] was considered with an extra

state representing logarithm of acoustic power P log emitted by

the target. The motion model in global coordinates, defined in

(21), was represented by a two-dimensional CV model defined

as
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where T = 1, pxk and pyk represent x and y position at time

k respectively, vxk and vyk represent x and y velocities at time

k, P log
k is the emitted acoustic power at time k and ηk is a

three-dimensional Gaussian process noise with zero mean and

covariance Q = diag([25 25 0.1]).
The on-road motion model is defined as
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where
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P log
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P log
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 ηrk+1

(45)

and where sk and vk represent a one-dimensional distance and

velocity at time k respectively and ηrk is a two-dimensional

Gaussian process noise with zero mean and covariance Qr =
diag([0.01 0.1]) and νrk is a discrete process noise with

uniform distribution.

In this experiment, measurements are obtained from N
identical acoustic sensors (microphones). The measurement

function for the n-th sensor, as defined in (6), is

ynk = hn
RSS(xk, b

n)+νnk = log(1−bng )+P log
k −β log(rn)+νnk

(46)

where rn =
√

((pxk − (snx − bnx))
2 + (pyk − (sny − bny ))

2) is a

distance from the sensor to the target, β = 2 is the path loss

exponent, the bias vector for the n-th sensor is defined as

bn = [bnx bny bng ]
T , where bnx , bny and bng represent position

biases in x and y sensor position and gain error respectively,

snx and sny is a sensor position, pxk and pyk are positions of the

target in global coordinates at time step k and νnk represents a

scalar Gaussian noise with zero mean and variance σ2
n = 0.22.

A. Scenario description

In the considered scenario, N = 12 acoustic sensors are

located as in Table I.

Scenario overview
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Fig. 3. Target trajectory and sensor positions
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TABLE I
SENSOR POSITIONS

n 1 2 3 4 5 6

s
n
x
[m] 77.0 88.6 43.3 59.9 10.0 30.6

s
n
y
[m] 7.0 22.2 10.0 16.3 10.2 16.8

n 7 8 9 10 11 12

s
n
x
[m] 23.4 9.1 46.0 37.7 78.1 65.5

s
n
y
[m] 34.9 40.0 41.4 50.3 52.3 36.7

A single target is moving on the road and K = 30 measure-

ments are collected for every n-th sensor. The measurements

are related to the target positions xk at time steps k = 1 : K
with units in seconds. The scenario is presented on Figure 3.

Acoustic power measurements are obtained by first taking the

square of the sound signal from each sensor and then averaging

it for each T = 1 second. As an example, the raw sound

data and the acoustic power measurements generated from it,

for sensor nr 6, are presented in Figure 4. The ground truth

reference target state is obtained using GPS.

B. Results

In the experiment, position biases are added to the sensors

by simply switching the positions of two pairs of sensors

(3–4 and 7–8, respectively). Also the prior knowledge about

biases is introduced for each n-th sensor as zero mean

bnπ = [bnx,π bny,π bng,π]
T = [0 0 0]T with covariance

Pn
π = diag([52 52 0.12]). A total number of Mc = 70

Monte Carlo runs of the particle filter are performed for each

case, with I = 30 number of EM iterations. The number of

particles in each case is equal to M = 500. The results are

described below.
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The RMS error based on Monte Carlo runs is presented in

Figure 5. Numerical results for selected biases are presented
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Fig. 5. Mean RMS error based on Monte Carlo runs

in Table II. Figure 6 presents true and predicted logarithmic

TABLE II
MONTE CARLO RESULTS FOR BIAS ESTIMATES IN SIMULATED SCENARIO

Bias True EM algorithm EM algorithm
index bias Without constraints With constraints

b
3
x

16.67 12.64± 3.24 11.03± 2.37
b
3
y

6.25 1.48± 4.23 4.13± 0.89
b
3
g

0 0.01± 0.04 −0.04± 0.01

b
4
x

-16.67 −15.3± 3.79 −16.42± 3.49
b
4
y

-6.25 −3.53± 3.7 −6.16± 1.29
b
4
g

0 0.04± 0.04 0.02± 0.01

b
7
x

-14.27 −10.26± 3.22 −11.44± 2.43
b
7
y

5.08 6.88± 6.09 4.59± 0.99
b
7
g

0 −0.01± 0.03 0.01± 0.01

b
8
x

14.27 16.09± 4.21 16.15± 3.4
b
8
y

-5.08 −9.74± 5.34 −10.11± 2.15
b
8
g

0 −0.16± 0.04 −0.15± 0.03

power measurements for sensor 4 before and after calibration

for both unconstrained and road constrained version of the EM

algorithm for one of the MC runs. Figure 7 presents filtered

and smoothed estimates for I = 30th iteration of the EM

algorithm (after calibration) compared to ground truth.
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Fig. 6. Predicted power measurements (obtained from smoothed state
estimates) before and after calibration
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Fig. 7. Filtered and smoothed estimates after calibration together with ground
truth

VII. CONCLUSION

In this paper, the EM algorithm was presented as a general

solution to calibrate ground sensor network without special

equipment, both natural and opportunistic targets can be used.

Application of road constraints to the particle filter provides

improvement in bias estimation quality, especially in terms of

the standard deviation of the bias estimates. It provides also

much better state estimates for the target in the scenario with

missed detections.
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