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Abstract

Sensor networks are everywhere around us. Developments in sensor technology
and advances in hardware miniaturization open up brand-new application areas.
In the future networks of cheap and small sensor nodes will be deployed for a
variety of purposes. Military needs have been a major motivation for the devel-
opment in the past, but today it has changed. Other applications such as traffic
monitoring, security threat detection, ecology and environmental protection are
the new driving forces behind further development.

The thesis considers the problem of calibration of ground sensor networks. In
order to perform its operational tasks – detection, classification and tracking of
objects of interest, the network has to be correctly calibrated. Improper calibra-
tion might result in a degraded performance, problems with data association and
appearance of multiple track instances representing one object.

In order to find the unknown calibration parameters (biases), in most cases we
need to use reference targets with known positions. If such targets are not avail-
able, one has to use opportunistic targets and simultaneously estimate both tar-
get positions and bias parameters. In this thesis, the expectation maximization
algorithm is applied to that problem, where the unknown states are treated as
latent (unknown) variables in the process of bias estimation.

Next, the problem of estimating a large number of calibration parameters is
tackled. In the case when the measurement data is not informative enough –
due to a limited range of sensors or a small number of samples – standard ap-
proaches such as the least squares algorithm might provide unreliable results.
One solution to the problem is to apply a regularization (or prior in a Bayesian
case). In this thesis, the problem of selecting the parameters (the so called hyper-
parameters) for the regularization process, based on the set of measurements,
is considered. The solution is provided through the evidence approximation
method, where both the bias parameters and the hyper-parameters are estimated
simultaneously. As a result, one obtains a robust algorithm that, thanks to the
application of Occam’s razor, allows to find the good trade-off between model
complexity and its fit to the data.

Finally, both methods are combined together, in order to provide a robust and
accurate algorithm for the calibration of sensor networks using targets of oppor-
tunity.

The applicability of algorithms was also verified during field trials with good
final outcome, confirming the expected performance.
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Populärvetenskaplig sammanfattning

Sensornätverk finns överallt omkring oss. Klassiska exempel är meteorologiska
stationer för väderprognoser samt seismometrar för att lokalisera jordbävningar
och explosioner. Utvecklingen av små och billiga sensorer möjliggör sensornät-
verk i en helt ny omfattning jämfört med tidigare. En vanlig vision är att sprida
ut tusentals små enheter som decentraliserat samverkar för att lösa komplexa
problem. Ett specifikt exempel på en sådan vision är att alla världens smarta tele-
foner utbyter sensordata med varandra. I princip kan accelerometrarna användas
för att upptäcka jordbävningar, mikrofonerna kan lokalisera bullerkällor och ex-
plosioner, gps-mottagarna kan modellera atmosfäriska fenomen, barometrar och
termometrar kan matas in i väderprognosmodeller, dopplereffekter i mottagna
radiosignaler kan användas för att följa alla jordens fordon, etc. Algoritmer för
detta finns redan idag.

En flaskhals i exemplet ovan och rent allmänt i utrullning av sensornätverk är
att sensorerna måste vara väl kalibrerade samt att deras positioner måste vara
kända för att meningsfulla slutsatser ska kunna dras. Denna avhandling behand-
lar detta problem i detalj. Idag krävs tidsödande manuellt arbete för att mäta ut
exakt var sensorerna placeras samt att jämföra deras så kallade biasparametrar.
Båda problemen kan lösas halvautomatiskt, t. ex. för ett mikrofonnätverk genom
att flytta runt en ljudkälla till kända positioner. Denna avhandling beskriver en
metod som gör detta helautomatiskt genom att utnyttja tillfälliga ljudkällor som
råkar passera förbi, t. ex. en bil eller fågel. Metoden bygger på att alla kalibre-
ringsparametrar skattas simultant med ljudkällans position.

De sensorer som använts i detta arbete har mellan tre och tio kalibreringspa-
rametrar, så för nätverk med hundratals eller kanske tusentals sensorer så kan
skattningarna lätt bli dåliga. Avhandlingen beskriver en utvidgning av en grund-
metod som bygger på att de flesta parametrar oftast är tillräckligt välkalibrerade,
och detekterar automatiskt vilka parametrar som behöver kalibreras.

Metoderna är utvärderade på data från fältförsök med akustiska sensornätverk
med utmärkta resultat.
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całej mojej rodzinie, bo to dziȩki Wam zawsze mam do czego wracać.
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1
Introduction

This introductory chapter presents a brief background and motivation behind the
work presented in this thesis. An introduction to sensor networks and the cali-
bration problem is provided. Published works of relevance, in which the author
has been involved in, are listed together with corresponding contributions. Last
section concludes the chapter and gives an outline to the rest of the thesis.

1.1 Background and Motivation

Sensor networks (sn) are constantly becoming more present in our everyday life.
In recent years, a huge amount of research in this area has lead to a great improve-
ment in technology and algorithms used in the development of sensor networks.
Significant advances in digital electronics, wireless communication and micro
electro-mechanical systems (mems) have made deployment of sensors networks
relatively cheap and more available.

Initially used in the military area, in the last 20 years sn have started to play a
more significant role in areas like health monitoring, terrorist threat detection,
environment monitoring, traffic monitoring and many more. Nowadays, a great
amount of research is focused in the area of unattended ground sensor networks
(gsn) that can be quickly deployed e.g. in the battlefield. To make it possible, the
networks need to have a flexible structure, be energy efficient and have an ability
to self-organize in order to provide reliable observations.

Progress in the technology led us from primitive centralized networks initially
to the most sophisticated unattended wireless sn today. Networks, originally de-
signed to monitor a certain phenomenon (usually a ground target), have evolved
into what we can undoubtedly call intelligent networks. The principles underly-
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4 1 Introduction

ing their operational purpose remained the same though: to detect, classify and
track objects moving within the area covered by the network.

In order to perform the task of correct detection, classification and tracking of
the targets, a precise calibration and knowledge of the sensor positions within
the network is crucial. Any disturbances (called bias parameters, biases) in the
network might result in degraded performance of the gsn, appearance of ghost
tracks (indication of inexistent targets) or wrong measurement-to-track associa-
tion in a multi-target scenario.

In this thesis two subsequent problems regarding gsn calibration are considered:
calibration using targets of opportunity (as a reference) and a problem of sparse
estimation of a bias vector.

1.1.1 Calibration using Targets of Opportunity

The correct calibration of the network is a crucial but not a trivial problem. Stan-
dard approaches might suggest the use of stationary beacons or vehicles of known
trajectories as a calibration reference. Measurements can be collected using for
example a global positioning system (gps) and then simple estimation algorithms
can be applied to obtain the bias parameters. In cases where the gps is unavail-
able, or reference targets cannot be deployed, it is necessary to use targets of
opportunity to calibrate the network.

There are many approaches in the literature for handling the problem of simulta-
neous target state and bias estimation. One of the basic ideas is to augment the
state vector with the unknown parameters and then use one of the well known
filtering methods like Kalman filter (kf). Since this may lead to computational
problems, approaches to overcome these difficulties by decoupling the problem
into two sub-tasks have been proposed, both in online and offline applications
(Vermaak et al. (2005), Ignagni (1981), Sviestins (1999)) .

In the research leading to the contributions presented in this thesis, an offline
approach to the problem was considered. Since for the gsn the amount of avail-
able measurements is usually low, causing problems with observability, one is
forced to use any (available) extra knowledge about the scenario or bias parame-
ter vector when solving the problem. Additional information can be extracted by
applying constraints to the model or by utilizing knowledge of the structure of
the bias vector.

To tackle that problem an expectation maximization (em) algorithm is applied,
that provides a solution to the maximum likelihood estimation in a presence
of the unknown (latent) variables. The method is extended with some enhance-
ments improving the quality of both the state and the bias estimation.

1.1.2 Sparse Estimation

Another problem can be a large number of unknown parameters to be estimated.
It might happen that some of them might be unobservable. The problem appears
particularly relevant in scenarios, where the amount of information contained in
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the measurements is low. It might be a result of a limited range of the sensors
or a very few observations. To handle that problem one has to consider applying
a regularization to the estimation process, corresponding to the use of priors in
a Bayesian framework. The problem arises when the regularization parameters
cannot be set arbitrarily.

In parallel it is also reasonable to consider a reduction of the bias model com-
plexity, since it is usually not necessary to estimate the full set of parameters.
Under the assumption that a large number of parameters can be dropped (set
to zero due to their irrelevance – this feature is called sparsity), the problem of
automatic selection of regularization/prior parameters is addressed in the thesis.

To solve the problem, a Bayesian concept of an evidence function is applied.
Regularization parameters are computed simultaneously with bias parameters,
based on the set of collected measurements. It is shown that this method applies
Occam’s razor, that leads to an optimal balance between the model complexity
(number of parameters set to zero) and fit to the measurement data. The sparsity
feature is implied through the shrinkage priors.

1.2 Contributions

Published works of relevance to this thesis are listed below in chronological order,
together with short summary and corresponding contributions.

Paper A: Expectation Maximization Algorithm for Calibration of Ground Sen-
sor Networks using a Road Constrained Particle Filter

M. Syldatk, E. Sviestins, and F. Gustafsson. Expectation maximiza-
tion algorithm for calibration of ground sensor networks using a road
constrained particle filter. In Proceedings of the 15th International
Conference on Information Fusion (FUSION), pages 771–778, Singa-
pore, July 2012.

Summary: The research presented in this paper was conducted during my two
year stay at Saab AB in Järfälla, Sweden between June 2010 and May 2012. The
problem of calibrating the acoustic sensor network with only one target of oppor-
tunity and limited number of observations is considered. In order to improve the
accuracy of the estimate an expectation maximization algorithm is applied, using
a road constrained particle filter/smoother to provide necessary state estimates.
The em algorithm is used to obtain a maximum a posteriori (map) estimates of
the bias parameters.

Contribution: The main contribution is the derivation of a road constrained par-
ticle filter and smoother to be applied in the em framework. Application of the
road constraints minimizes the degrees of freedom and results in much better
target state estimates, implying better calibration results.
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Paper B: Simultaneous Tracking and Sparse Calibration in Ground Sensor Net-
works using Evidence Approximation

M. Syldatk and F. Gustafsson. Simultaneous tracking and sparse cal-
ibration in ground sensor networks using evidence approximation.
In Proceedings of the 38th International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Vancouver, Canada, May 2013.

Summary: This paper tackles the problem of applying regularization to the pro-
cess of sensor network calibration with targets of opportunity. Application of the
prior reduces problems related to low observability. The parameters of the prior
are determined using the two-stage Bayesian evidence approximation (ea) frame-
work, where through the evidence function one implies application of Occam’s
razor. This feature allows for a good balance between model complexity (number
of non-zero parameters) and fit to the data. As an extra feature the algorithm has
the ability to detect non-zero bias parameters and determine which parameters
are well determined by measurement data.

Contribution: The main contribution is an application of the ea framework to
the calibration of sensor network. The algorithm is also modified to handle the
case of an unknown set of target states. Good estimation results were obtained
compared to the standard maximum likelihood (ml) approach, especially with
high sparsity in the bias vector.

Paper C: Expectation Maximization Algorithm for Simultaneous Tracking and
Sparse Calibration

M. Syldatk and F. Gustafsson. Expectation maximization algorithm
for simultaneous tracking and sparse calibration of sensor networks.
In IEEE Transactions on Signal Processing (TSP). To be submitted.

Summary: In the paper the problem of applying ea to the calibration of sensor
networks is exploited again. Targets of opportunity are used to obtain amap esti-
mate in the expectation maximization framework. Combining the evidence and
expectation maximization framework results in a robust and accurate algorithm
for sparse parameter estimation.

Contribution: This paper combines together results from the previous two pa-
pers. A two stage inner-looped algorithm is derived, combining features of the
em algorithm (handling the ml case with latent variables) and the ea algorithm
(application of the prior and evaluation of sparsity through Occam’s razor).

1.3 Thesis Outline

After the introduction to the problem and basic contributions in Chapter 1, a
more detailed description of gsn is presented in Chapter 2. Starting from the
basic description of sn, through a general sensor measurement model to the in-
troduction of different sensor types at the end. In Chapter 3 the calibration prob-
lem is presented in detail. The description is supported by the analysis of the
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effects incorrect calibration might have on sn performance, together with bias
sensitivity analysis. Next, in Chapter 4 least squares (ls) techniques are pre-
sented together with maximum likelihood and regularization methods. Later
basic state estimation techniques are presented together with analysis of param-
eter observability and estimation performance. Chapter 5 describes more sophis-
ticated methods for simultaneous state and bias parameter estimation, including
expectation maximization and evidence approximation algorithms. Finally, the
thesis is summarized in Chapter 6, with overall conclusions and suggestions for
future research.





2
Sensor Networks

Over the last few decades the area of ground sensor networks has grown from
being in an experimental phase into a highly developed and sophisticated tech-
nology. A progress in development of different types of sensors, including minia-
turization, communication methods and power consumption performance has
resulted in wider and wider application of sensor networks in everyday life.

The chapter provides a short description and a classification of the typical sen-
sor network. A general mathematical model for the sensor measurements is pro-
vided, followed by a detailed characterization of different types of sensors used
in the area of ground sensor networks. The material presented in this chapter is
based on the extensive review of sensor networks by Chong and Kumar (2003)
and Akyildiz et al. (2002), where a great survey on wireless sensor networks
can be found. The overview of sensor models is based on the theory provided
in Gustafsson (2012).

2.1 Sensor Network Definition

The objective of this section is to provide a formal definition of sn together with
examples of sensor networks applications. A more detailed description of a typi-
cal sensor node and the way it operates within the network is given. The descrip-
tion is followed by an overview of the different network configurations (central-
ized, decentralized and distributed) and the way data fusion is performed. At the
end of the section a generic mathematical model for a sensor is given.

A sensor network can be understood as a set of nodes, which usually contain
sensors. Nodes communicate with a central node or with each other, using wired
or wireless connection, and are used to observe a certain phenomenon. Methods

9
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presented in this thesis are mainly related to the area of ground sensor networks.
In the definition of a ground sensor network (gsn) we include all networks with
nodes placed on the ground and distributed over a certain area to be surveilled.

There is a variety of applications where sensor networks can be used. The most
common for the gsn is surveillance, where a number of targets are observed. Cur-
rent and possible applications include military sensing, security provision, envi-
ronmental monitoring, traffic monitoring and many more. In this thesis, the area
of ground surveillance will be covered, where the targets to be considered are
for example road vehicles, airplanes or people. For that type of applications, es-
pecially in the military area, fast deployment, performance and reliability of the
network are necessary to perform the main operational tasks. Sensor networks
in that case are usually a part of command, control, communications, intelligence,
surveillance, target acquisition and reconnaissance (C3ISTAR) systems.

A typical network node contains four basic components: a sensing unit, a pro-
cessing unit, a communication interface and a power unit (Akyildiz et al., 2002).
Different types of sensors can be classified according to type of measurements,
range, size, communication method etc. Based on the type of measurements gath-
ered, we can distinguish between the basic sensor types used in gsn, as: acoustic
sensors, seismic sensors, radar sensors, light sensors, cameras, magnetometers and
many more. Further in this chapter, in Section 2.3, some of the aforementioned
sensor types will be described in detail.

Depending on the configuration of the network we can distinguish centralized,
decentralized and distributed networks (Figure 2.1). In the first type all sensors
are gathering information and then deliver it to a central node, where the fusion
is done to get an overview of the situation. On the other hand, in decentralized
networks, fusion is performed at selected independent nodes. The third type of
sn does not have a strict structure, and thus each sensor can be a fusion node.
This of course implies a problem of determining which sensors, among those
observing the target at the moment, should perform the fusion. The ability to
self-organize is crucial in order to improve the performance, limit the bandwidth
and thus the power consumption, which is especially important for large battery
powered networks.

The goal of a ground sensor network is to detect, classify and track object within
the area of the network. One way it can be achieved will be presented on the
example of a distributed sensor network.

In that type of sn each sensor has an ability to autonomously detect the target. Af-
ter the detection of sound (for acoustic sensors), vibrations (for seismic sensors),
change in magnetic field (for magnetometers) or visual image (for cameras) has
been indicated, the signal can be used to perform a (single-node) target classifi-
cation (Brännström et al., 2004). This process can be understood as determining
the type of the target (person, road vehicle of plane).

Sometimes the term classification is used to describe the process of finding dif-
ferences between objects of the same type, e.g. determining the model of the car
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Sensor node                  Fusion node               Sensor/Fusion node

(a) Centralized (b) Decentralized (c) Distributed

Figure 2.1: Three different types of sensor network configurations: central-
ized, decentralized and distributed.

or distinguishing two discussing people. For each target there usually exists a
special signature, obtained by feature extraction, that can be computed based on
the measurements. It can be further compared with a database of signatures, in
order to determine the target class.

It is common that a single node has a limited ability to perform tracking alone,
thus sensor nodes must cooperate with each other. In order to correctly fuse
the data from multiple sensors, a correct association needs to be done – it has
to be determined which groups of sensors observe the same target. In parallel,
groups of sensors can be combined in order to improve the quality of sensing and
classification. A good example is an acoustic array, where measurements from
three or more sensors (in that case microphones) are processed together. Thanks
to that, an angle (bearing) to the target can be determined. Further, by using two
or more arrays to perform triangulation, an exact position of the target can be
determined.

After performing the classification/data association and making sure the sensors
observe the same target, a track has to be initiated. Usually the sensor node clos-
est to the observed target initiates the track – it becomes a track agent. When the
track is initiated, all neighboring sensors send their observations to the process-
ing node (track agent), so that it can be fused into one consistent scenario. Unless
a new target is observed, none of the other sensors are allowed to initiate new
tracks. Also, in this step the classification can be improved by combining data
from multiple sensors.

Track agents move across the network, following the observed targets that are
present within the observed area. It is their task to manage the sensors currently
observing the target, to coordinate the communication between nodes and be-
tween the track agents and the operators (users) as well as perform the fusion.
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There of course appear a number of issues concerning the network organiza-
tion in that case. A curious reader is encouraged to take a look at the paper by
Brännström et al. (2004), where problems of automatic data association, sensor
selection, data fusion, information lookup and finally robustness and scalability
are further discussed.

In the contrary to the distributed sn, the problem of network self-organization
does not apply to the centralized and decentralized networks. In that configura-
tions all sensors are connected to, and managed by, one central node (for central-
ized sn) or few fusion nodes (also called routers; for decentralized sn). These
central nodes are then responsible for the fusion and the classification after sens-
ing nodes have detected the target. An example of a decentralized ground sensor
network is presented in Figure 2.2.

Sensor node #1
(signal processing)

Observed target

Communication between
sensor nodes

Local user

Transmission to 
remote userSensor node #2

(signal processing)

Sensor node #A
(signal processing + fusion)

Sensor node #B
(data fusion)

Figure 2.2: An example of a ground sensor network (gsn). Sensors #1, #2
and #A observe a target. The target that is present within the range of sensors
but its position is unknown. Observations from Sensor #1 are transmitted to
Sensor #A, that fuses it with its own measurements and then retransmits the
result to Sensor #B. Sensor #B fuses these information with measurements
transmitted from Sensor #2. The final result of the fusion (and estimated
target position) is then transmitted to the local user or further retransmitted
to the remote user.

All types of mentioned sensor network configurations have advantages, but also
drawbacks. Even though self-organizing distributed networks are more flexible
than centralized sn when it comes to adding new sensors and robustness to sen-
sor failures, there appear several problems regarding the sensor fusion and the
sensor management. This is a result of none of the sensors having a full informa-
tion about the information possessed by the other network nodes. On the other
hand, centralized networks are easier to manage and allow for easier data fusion.
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This is because usually the central node receives information from all the nodes
within the sn, so it has a full overview of the scenario. In that case data fusion
is much easier and more accurate. The decentralized sn, can be considered as a
hybrid of these two types inheriting both the advantages and the drawbacks.

Even though sensor networks might provide large amounts of data, in order to
provide consistency in inferred information, the sn has to be precisely calibrated.
It is necessary to perform correct detection, classification and target tracking
within the area under surveillance. Before stating a proper definition of the cali-
bration problem in Chapter 3, the next two sections will present a generic sensor
model equations followed by a presentation of different types of sensors relevant
to gsn applications.

2.2 Sensor Model

In general a sensor, gathering a measurement yk of a target state xk at time step
k, can be defined by the following (known) measurement function

yk = hk(xk , θk , νk), (2.1)

where yk might be a scalar or a vector and hk( · ) is the corresponding, usually
nonlinear, measurement function at time k. Further, the set of unknown sensor
parameters, that will also be called biases in the aspect of calibration, is denoted
θk . Finally, νk represents a noise term distributed according to some distribution
pνk ( · ), that might change over time.

In the problems presented in this thesis a simpler sensor model with additive
noise term is considered, where the parameter vector θ is constant over time.
The equation describing the model is given by

yk = hk(xk , θ) + νk , (2.2)

where the usually nonlinear measurement function hk( · ) depends only on the
state of the target xk and the parameter vector θ. The noise term is additive,
distributed according to some known distribution pν( · ) constant over time k.

In a practical applications it is very often reasonable to linearize the measure-
ment function, in order to simplify its computation. Since bias parameters θ are
usually close to zero, and estimates of the state xk are close to the true values, one
can consider a first order Taylor expansion of hk( · ). A model presented in (2.2),
linearized around x̂k and θ̂, takes the form

yk = hk(x̂k , θ̂) + Hx
k (xk − x̂k) + Hθ

k (θ − θ̂) + νk , (2.3)

where

Hθ
k =

∂hk(xk , θ)
∂θ

∣∣∣∣∣ θ = θ̂
xk = x̂k

, Hx
k =

∂hk(xk , θ)
∂xk

∣∣∣∣∣ θ = θ̂
xk = x̂k

(2.4)

are Jacobians computed for hk( · ) at each time step k, using values of θ = θ̂ and
xk = x̂k .



14 2 Sensor Networks

2.3 Types of Sensors

Default sensor model presented in (2.2) can be further extended in order to de-
scribe different types of measurements collected by the sensors. This section in-
troduces most popular types present in the gsn applications.

There is a large variety of sensor models used to collect measurements within
gsn. One can distinguish between sensors providing range to the target, angle
to the target, received signal power or just simply a binary signal indicating pres-
ence of the target. The following subsections provide a basic description of the
measurement function h( · ) for the different types of sensors. All models will be
considered static functions h( · ), with an additive noise term, according to (2.2).
A typical set of corresponding bias parameters θ will also be introduced.

It is important to note that this section provides only a very generalized mathe-
matical representations, without going into details behind the signal processing
part etc. Further and more detailed discussion over different measurement mod-
els (with extensive examples) can be found in Gustafsson (2012).

2.3.1 Linear Range (TOA, Time of Arrival)

In time of arrival sensors, the time difference τ of the time when signal is emitted
and received is measured. Knowing the average speed of the signal v in the prop-
agation media (speed of light/sound in air/water), the distance to the observed
target xk can be determined. If both times are known (emission and reception),
the model representing linear range to the target can be determined as

htoa(xk , θ) = rk + θr , (2.5)

where

rk = ‖pk − (s + θs)‖ (2.6)

is the range to the observed target, pk is the position of the target at time k (part
of state vector xk), s is the sensor position, θs and θr are position and additive
range measurement uncertainty biases.

In case the time of emission of the signal is unknown, there appears one more
term in the model that needs to be estimated together with the target state vector
xk – the range re factor. It corresponds to the emission time multiplied by the
known speed of of the signal v. The model takes the form

htoa(xk , θ) = rk + re + θr , (2.7)

where as previously rk = ‖pk − (s + θs)‖ and rest of the parameters remain un-
changed.

As an example of time or arrival (toa) sensor a radar or an ultrasound sensor can
be considered, where the emitted electromagnetic/acoustic signal is reflected and
received by the sensor. Therefore we can determine distance to the target. Sample
measurements for toa sensor are presented in Figure 2.3.
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Sample measurements for the range sensor (TOA)

yk = h(xTRUE
k )

yk = h(xTRUE
k ) + νk

(b) Sample measurements.

Figure 2.3: Sample one target scenario and corresponding noiseless/noisy
measurements for the linear range (toa) sensor.

2.3.2 Linear Range Difference (TDOA, Time Difference of Arrival)

In case we do not know when the signal was emitted, in order to remove the
unknown emission time re, a time difference can be computed (related to the
range through known speed of the signal) between target xk and two sensors.
That approach is known as a time difference of arrival (tdoa), and the model is
given by

htdoa(xk , θ) =
(
r1
k − r

2
k

)
+ θd , (2.8)

where

r1
k = ‖pk − (s1 + θs

1
)‖, (2.9a)

r2
k = ‖pk − (s2 + θs

2
)‖ (2.9b)

are distances to the target respectively from Sensor 1 and 2 , sn is the position
of n-th sensor, θs

n
and θr are position (of the n-th sensor) and additive range

measurement uncertainty biases.

An example of tdoameasurements is a group of acoustic sensors (microphones)
detecting sound emitted by the target. Application of signal processing allows
to compute time differences in signal reception time between the sensors, so the
range difference can be computed. Sample measurements for tdoa sensor are
presented in Figure 2.4.
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Sample measurements for the linear range difference (TDOA) sensor

yk = h(xTRUE
k )

yk = h(xTRUE
k ) + νk

(b) Sample measurements.

Figure 2.4: Sample one target scenario and corresponding noiseless/noisy
measurements for the linear range difference (tdoa) sensor.

2.3.3 Bearing Measurements (DOA, Direction of Arrival)

The sensor provides bearing (direction, angle) to the target xk . A simple model,
representing direction measurements, is given by

hdoa(xk , θ) = ϕk + θϕ , (2.10)

where

ϕ = arctan

pyk − (sy + θs
y
)

pxk − (sx + θsx )

 (2.11)

is the angle to the target at time k, pxk and pyk are x- and y- positions of the target
at time k, sx and sy are x- and y- positions of the sensor. The parameters θs

x

and θs
y

are the position biases corresponding to the sensor positions respectively
and θϕ is a north alignment bias – an uncertainty in the sensor orientation in
reference to the global coordinate system.

A typical sensor used to obtain this type of measurements in gsn is a microphone
array, where three (or more) microphones are combined together in a geometric
shape. Using the differences between the signals and applying signal processing,
a bearing to the target can be extracted. Sample measurements for doa sensor
are presented in Figure 2.5.

2.3.4 Radar

A radar sensor is a very popular sensor, especially in application to air surveil-
lance/traffic control, but it is also found in gsn. Radar sensors are usually very
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Sample measurements for the direction of arrival (DOA) sensor

yk = h(xTRUE
k )

yk = h(xTRUE
k ) + νk

(b) Sample measurements.

Figure 2.5: Sample one target scenario and corresponding noiseless/noisy
measurements for the direction of arrival (doa) sensor.

accurate and provide very good measurements. A basic, two dimensional radar
sensor combines both range and bearing measurements. It can of course be ex-
tended by an elevation in a three dimensional radar case, or by a radial target
velocity for a doppler radar.

The main concept underlying the radar is the emission and reception of electro-
magnetic pulse in a known direction (in a spectrum of microwaves; in case of
light spectrum we can distinguish a laser radar – LIDAR). Thus, after applying
signal processing to the signal, we can determine bearing and range to the sensor.

A simple radar sensor model, stated in a very general way, can be defined as

hradar(xk , θ) =
[
htoa(xk , θ) hdoa(xk , θ)

]T
, (2.12)

where according to previous definitions, htoa(xk , θ) corresponds to the range
measurement and hdoa(xk , θ) represents the bearing.

The radar sensor model presented here is relatively simple, and consists only of
positioning, range and angle measurement offset biases. Real application situa-
tions are more complicated. In brief, the number of bias parameters for one radar
sensor can exceed 10 different components including, except position and offset,
also biases in antenna pitch and roll or time delays. The typical set of bias pa-
rameters for a single three dimensional radar sensor, used in a real application
(thanks to the courtesy of Dr Egils Sviestins, Saab AB) can include: measurement
time offset, target altitude bias, sensor positioning bias, sensor axis tilt bias, sensor
north alignment bias, range offset and gain bias together with antenna pitch and roll
bias.
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Sample measurements for radar sensor (range and the corresponding bearing)
are presented in Figure 2.6.
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Figure 2.6: Sample one target scenario and corresponding noiseless/noisy
measurements for the radar sensor.

2.3.5 Logarithmic Range (Power Measurements, RSS, Received
Signal Strength)

The distance between the target and the sensor can also be determined by mea-
suring the received power of a signal emitted by the target. The power usually
decays inversely with the distance between the emitter and the receiver. This
property can then be exploited to determine the range.

rss (received signal strength) measurements are obtained by integrating the ob-
served signal (within a certain frequency band) over the specified time window.
In order to extract the required frequency the signal can be filtered using a band-
pass filter. As a source an acoustic (recorded sound etc.) or an electromagnetic
(wifi/3G etc.) signal can be considered.

The sensor model is defined as a logarithmic model

hrss(xk , θ) = (1 − θg)P 0
k − β log(rk), (2.13)

where

rk = ‖pk − (s + θs)‖ (2.14)

is the distance to the target, P 0
k is the power emitted by the source (target), pk is

a position of the target at time k, s is the sensor position, θs and θG are position
and gain biases.
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The power P 0
k emitted by the target is not always known. In that case the emitted

power can be considered as an another parameter that needs to be estimated. An-
other option is to combine measurement from a few sensors, in order to eliminate
the unknown emitted power (analogously to the tdoa case).

An example of rss measurements (raw signal and computed power measure-
ment) is presented in Figure 2.7.
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Figure 2.7: Sample one target scenario and corresponding noiseless/noisy
measurements for the logarithmic range (rss) sensor.

2.3.6 Other Sensor Types

Except the basic concepts behind sensor models defined in previous subsections,
there are commonly used in the area of gsn. Among them we can distinguish
sensors that indicate presence or direction of the moving target, for example

• geophones (or any other seismic sensors) – measure vibrations in the ground
and thus indicate presence of the target within the surveilled area,

• infrared sensors – the change in an infrared image can indicate target mov-
ing within the range of the sensor,

• magnetometers – used to detect metallic object by measuring changes in
the magnetic field, can also indicate the direction of movement and the
orientation of the target, and

• cameras – can be used to visually detect, track and classify observed objects.
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2.4 Summary

In this chapter a typical sensor network concept was introduced together with
the mathematical description of the sensor model. The subject was extended
by a presentation of typical sensors used in the gsn applications. Having intro-
duced the measurement model, the calibration problem can be properly stated in
Chapter 3.
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Calibration

As was mentioned earlier, to have a correct calibration of the sn is crucial in or-
der to achieve the desired performance of the network. After deploying the nodes
of the network there might still be some uncertainty in the location and orienta-
tion of the sensors, depending on how accurate prior information is available.
Another cause of inaccuracies is incorrect calibration during the manufacturing
process – for example the antenna gain. Also the sensor aging process and the
material wear-off might be critical sources of errors.

This chapter provides an introduction to the calibration problem, stated together
with a short introduction to the online and the offline bias estimation methods.
Next, results of the incorrect calibration on the performance of the sn are pre-
sented with corresponding examples. The end of the chapter is dedicated to the
analysis of the way the estimation performance is affected by different bias val-
ues.

3.1 Problem

In order to provide a basis for the calibration methods presented in further part
of the thesis, a formal definition of the calibration problem has to be stated
first. Having a set of measurements YK = {yk}Kk=1, collected during time steps
k = 1 . . . K , one wants to estimate the set of bias parameters θ. In case the
states XK = {xk}Kk=1 of a reference targets, corresponding to the measurements,
are known, we can directly estimate the bias parameters by using one of the
available standard methods. A few fundamental algorithms will be described
in further chapters.

In a practical application, we are interested in an estimate of θ, given by its mean

21
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value µθ and covariance Pθ that represents the uncertainty about our estimate.
One might also be interested in finding a posterior distribution p(θ|XK , YK ) of
the bias vector θ, given the set of measurements YK and corresponding states XK .
In that case, in order to obtain a point estimate, a value maximizing the posterior
can be found as

θ̂ = arg max
θ

p(θ|XK , YK ). (3.1)

In case there is no target reference available, one also needs to estimate the set of
states XK . Thus, the joint posterior p(XK , θ|YK ) of bias parameters and states is
in the scope of interest. Given the distribution, in order to obtain a posterior for
biases only, one needs to integrate out the state XK

p(θ|YK ) =
∫
p(XK , θ|YK )dXK . (3.2)

Then the point estimate can again be obtained by finding the maximum of the
posterior

θ̂ = arg max
θ

p(θ|YK ). (3.3)

Another way to find a point estimate is to use minimum mean square error
(mmse) estimate, that is defined by

θ̂mmse =
∫
θp(θ|YK )dθ. (3.4)

3.2 Approaches to Calibration

There are different practical approaches to calibration, depending on what kind
of information is available and whether or not the calibration process should be
performed online or offline. Online calibration runs in parallel with the operation
of the tracking system, whereas in the offline approach the calibration algorithm
is run on the complete data set collected during a certain period of time.

In order to properly calibrate a network, a set of raw measurements (collected
by the nodes we want to calibrate) is processed together with the state of the tar-
gets observed by the network. As targets we can consider beacons with known
locations (obtained by gps or any other accurate method) or a target following
a known trajectory. As an example one might consider a car with a mounted
gps receiver, where collected positions, together with the set of raw sensor mea-
surements, are used in the calibration process. The calibration in this case is
presented in Figure 3.1.

Unfortunately, reference sources can not be used if their positions are unknown.
In that case we need to use targets of opportunity. By that term we consider
objects with unknown true state, that has to be estimated during the state estima-
tion process. Estimation, based on the sensor measurements, is thus performed
simultaneously with the calibration process. As an example of opportunistic tar-
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Sensor node #1
(signal processing)

Reference target

Sensor node #2
(signal processing)

Sensor node #3
(signal processing)

Sensor node #4
(signal processing)

Beacon
(known signal source)

Beacon
(known signal source)

Sensor node #A
(signal processing + fusion)

Communication between
sensor nodes

POI
(chimney)

Known target, POI and
beacon positions

Figure 3.1: Calibration using known reference targets. Sensors #1 to #4 ob-
serve the reference target, (static) calibration beacons and points of interest
(poi). Measurements are transmitted to a fusion node, together with the
known positions of the reference targets. All the information are then com-
bined together (also with observations collected by Sensor #A) to perform
the calibration of the network.

gets one can consider vehicles, various signal sources (e.g. antennas) and different
points of interest (poi) like buildings, trees, chimneys etc. That type of situation
is presented in Figure 3.2.

Both calibration approaches (using known and unknown reference targets) can
be performed in an online and in an offline manner. Using the online approach,
the calibration algorithm usually works in parallel with the tracker to provide
bias estimates. They are then used to correct the measurements immediately
while the system is running. The offline calibration methods utilizes the com-
plete data set, typically in an iterative manner, to make use of all the information
available in the data and provide as accurate bias estimates as possible. Calcu-
lated bias values can then be applied to the sensor network to compensate the
errors.

3.3 Consequences of Miscalibration

Any uncertainty in sensor position or measurements might cause serious con-
sequences, including degraded accuracy, appearance of ghost tracks and wrong
data to track association.
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Sensor node #1
(signal processing)

Observed target
(unknown position)

Sensor node #2
(signal processing)

Sensor node #3
(signal processing)

Sensor node #4
(signal processing)

POI
(tree)

Sensor node #A
(signal processing + fusion)

Communication between
sensor nodes

POI
(chimney)

Beacon
(unknown signal source)

Figure 3.2: Calibration using targets of opportunity. Sensors #1 to #4 ob-
serve the target, (static) beacons and points of interest (poi). All the observed
targets are of unknown locations. Measurements are transmitted to a fusion
node – Sensor #A, where they are combined together (also with observations
collected by Sensor #A). Results of the data fusion – estimated positions of
these unknown targets, are then used in the calibration process.

True target trajectory
Observations from Sensor 1
Observations from Sensor 2

x

y

Figure 3.3: Degraded performance. Due to the large values of measurements
biases, the corresponding observations of one target from two sensors are
inconsistent, causing the degradation of the overall performance.
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Figure 3.3 presents a sample set of measurements collected by two different sen-
sors observing the same target. Inconsistency in measurements, shown as a large
difference between measurements from two different sensors, is a direct result
of improper sensor calibration. This situation usually results in a degradation
of the tracking process performance and significant increase in the estimation
uncertainty.

True trajectory of  Target 1
Observations of  Target 1
Estimated trajectory of  Target 1

True trajectory of  Target 2
Observations of  Target 2
Estimated trajectory of  Target 2

x

y

Figure 3.4: Wrong data-to-track association. Due to the large measurement
biases, observations corresponding to one of the targets are incorrectly as-
signed to the estimated trajectory of the other target.

Another consequence of incorrect calibration is presented in Figure 3.4. In a
case when more than one target is being tracked, measurements are incorrectly
assigned to a track they do not belong to. A shift in measured position of the
target one, makes it more probable to be wrongly assigned to the track of target
two. This might of course cause unexpected problems and errors in the tracking
process for both targets, including merging the two targets into one.

True target trajectory
Observations from Sensor 1
Observations from Sensor 2
First estimated trajectory
Second estimated trajectory

x

y

Figure 3.5: Appearance of ghost tracks. For one true target there appear two
separate tracks due to the large measurement biases.

Finally, so called ghost tracks might appear when all measurements collected
by sensors are shifted in the measurement space. This can directly lead to the
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appearance of two or more tracks corresponding to only one target. The situation
is presented in Figure 3.5.

3.4 Bias Sensitivity Problem

In order to get some understanding of how crucial the problem of correct cali-
bration is, this section will investigate the problem of bias sensitivity. In order
to check how the sensor bias (an input) affects the filtering results (an output), a
simple scenario with one target and N = 8 toa sensors will be considered.

Measurements are modeled using (2.7) and are assumed to be independent and
to have an additive zero mean Gaussian noise with standard deviation σ = 10 me-
ters.

For each sensor both the position and the north alignment will be biased, and the
filtering root mean square (rms) error of the state estimation will be computed.
Biases will be generated according to a zero mean Gaussian distribution with a
standard deviation of σxy = {0, 5, 10, . . . , 100} meter for the sensor location bias
and σr = {0, 5, 10, . . . , 100} meter for the range measurement offset bias. To be
able to compare the results in a reasonable manner, N

MC
= 50 Monte Carlo simu-

lations were performed for the each possible pair of the bias standard deviations.

The scenario with an example target trajectory, together with the error visualiza-
tion for all bias standard deviation combinations is presented in Figure 3.6. As
one could expect, the larger the biases are, the more the estimation quality is af-
fected. It can be thus easily concluded, that the process of calibration is crucial
for a good performance of the sensor network.

3.5 Summary

In the chapter the problem of calibration was stated in detail. Different ap-
proaches to calibration using reference targets/targets of opportunity were pre-
sented, both for online and offline application. The effects of improper calibra-
tion, including ghost tracks and problems with track to data association were
described. The end of the chapter was dedicated to sensitivity analysis, where it
was shown how the different values of bias parameters affect the performance of
the sn.
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Figure 3.6: Target state estimation RMS error for different standard devia-
tions of randomly generated bias parameters. Results were generated using
50 Monte Carlo simulations for each set of parameters, with target trajectory
randomly generated within the network.





4
Basic Estimation and Analysis

It was mentioned in previous chapter that there are many approaches to the cali-
bration (online/offline and using known/unknown targets). A correct calibration
process implicitly requires knowing of the state of the target (or the calibration
beacon) used for the estimation purpose. Thus aside from the methods for the
bias parameter estimation, one also needs some techniques to find the states of
the targets in case they are unknown.

This chapter briefly introduces basic concepts for both the parameter and the
state estimation. Basic least square methods will be initially presented; to be
further extended by the regularization and its relation to the Bayesian methods.
Subsequent sections will describe basic ideas behind a filtering and smoothing
processes, that will provide a necessary background to more sophisticated meth-
ods presented in Chapter 5. End of the chapter is dedicated to the Cramér-Rao
lower bound (crlb) together with the parameter observability problem.

4.1 Basic Parameter Estimation Methods

Having defined the problem and the necessary measurement models in Chap-
ter 2, some basic techniques for estimating the bias vector θ can be now intro-
duced. This section will present approaches to solve the problem of calibration
in the case when the reference target state is known. The following subsections
will describe in detail the nonlinear least squares and regularization concepts
(`1 and `2, for ill-posed problems) together with its reference to the maximum
likelihood and the maximum a posteriori methods.

29



30 4 Basic Estimation and Analysis

4.1.1 Least Squares (LS) and Weighted Least Squares (WLS)

One of the basic approaches to the parameter estimation is to use the nonlinear
least squares (nls). The idea underlying the nls is to minimize the squared sum
of residuals εk(θ), where εk(θ) = yk − hk(xk , θ), w.r.t. the unknown parameter θ,
in order to obtain its estimate. In case the measurement noise covariance Rk =
cov(νk) is known, it can be used as a weighting factor, and the method takes a
form of the nonlinear weighted least squares (nwls) (Gustafsson, 2012). The
estimate is obtained by finding the minimizing argument of

θ̂NWLS = arg min
θ

VNWLS(θ), (4.1)

where VNWLS(θ) is a cost function, representing a weighted squared sum of the
residuals, and is defined as

VNWLS(θ) =
1
2

K∑
k=1

εTk R
−1
k εk =

1
2

K∑
k=1

(yk − hk(xk , θ))T R−1
k (yk − hk(xk , θ)) (4.2)

In case there is no weighting (Rk = I), the problem simplifies to the nls problem.

In a linear case when the function hk( · ) is linear (i.e. hk( · ) = Hkxk), the method
takes a form of the least squares (or weighted least squares, wls, for known Rk).
Both the regular and the weighted estimates are then unbiased. wls is also the
best linear unbiased estimator (blue), which means that the covariance of esti-
mates must follow cov(θ̂WLS) ≤ cov(θ̂LS) (Gustafsson, 2012).

4.1.2 Regularization (`1 and `2)

In a situation when the nwls problem is ill-posed (there appear problems with
observability etc.), a typical approach to make it well-posed is to apply the reg-
ularization. In the calibration framework it relates to choosing those bias vector
elements, that are well determined by the data and thus should be estimated.

Another motivation to use the regularization is to control the overfitting of the
model to the data and/or to imply sparsity. Especially when the measurement
data are not informative enough, it is sometimes reasonable to search for as sim-
ple model as possible. The regularization term (added in the form of a penalty
to the cost function) allows us to control the solution complexity and the number
of elements from the θ vector, we wish to estimate. This is done by introduc-
ing λ – a so called regularization parameter, that controls the penalty impact on
the estimation. In this section two most popular types of regularization will be
considered – the so called `1 and the `2 regularization.

The cost function, defined in (4.2), with an extra penalty term corresponding to
the `j={1,2} regularization, takes the form of

V `j (θ) = VNWLS(θ) + Jj (θ), (4.3)
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where Jj (θ) is a penalty term, that for `2 regularization takes the form of

J2(θ) =
1
2
λ ‖θ‖2, where ‖θ‖2 = θT θ =

N∑
n=1

θ2
n, (4.4)

where θn is the n-th element of a bias vector. For `1 regularization, the penalty
term is defined as

J1(θ) =
1
2
λ ‖θ‖1, where ‖θ‖1 =

N∑
n=1

|θn|. (4.5)

The main difference between these two regularization methods comes from the
shape of regularization term. In the case of `2, the penalty forces some of the esti-
mated elements of θ to take values close to zero (depending what value of λ was
chosen). On the other hand, for the `1 regularization, some of these bias vector
elements take values exactly equal to zero – the penalty implies sparsity. This be-
havior is called shrinkage, and is used to shrink some of the parameters towards
zero. Further detailed description of that property can be found for example in
Bishop (2006) or Hastie et al. (2005). An elaborate general discussion on regular-
ization methods for system identification and signal processing problems can be
found in thesis by Ohlsson (2010) or in the book by Hastie et al. (2005).

As we will see later, inclusion of the regularization terms corresponds to the appli-
cation of a (non-uniform) prior to the maximum likelihood estimation problem.

4.1.3 Maximum Likelihood (ML)

In a case the measurement noise νk is Gaussian with a known covariance matrix
Rk , the nwls estimate corresponds to the maximum likelihood estimate. Theml
estimate is defined as

θ̂ML = arg max
θ

p(YK |θ). (4.6)

Using the fact that a logarithm is an increasing function, the above is equivalent
to minimizing the negative log of p(YK |θ), thus

θ̂ML = arg min
θ

− log p(YK |θ). (4.7)

The negative log likelihood (− log p(YK |θ)), is directly related to the nwls cost
function through

− log p(YK |θ) = C + VNWLS(θ), (4.8)

where C is some constant term (Gustafsson, 2012).

4.1.4 Maximum a Posteriori (MAP)

In case one has some prior information about the unknown parameter vector, it
is reasonable to use this knowledge to obtain better estimates. Thus, introducing
the distribution p(θ), that describes the prior knowledge about the θ, one can ob-
tain maximum a posteriori estimate (map). In that case, instead of (maximizing)
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the likelihood one maximizes the posterior distribution. Themap estimate of the
parameter vector, is defined by

θ̂MAP = arg max
θ

p(θ|YK ) = arg min
θ

− log p(θ|YK ). (4.9)

Using the Bayes’ theorem to decompose the posterior, we get

p(θ|YK ) =
p(YK |θ)p(θ)

p(YK )
=

1
C̃
p(YK |θ)p(θ), (4.10)

where C̃ is a normalization constant independent of θ. We can identify the nega-
tive log of the posterior for θ as

− log p(θ|YK ) = C̃ − log p(YK |θ) − log p(θ), (4.11)

which is the sum of the negative log likelihood (as in theml case) and the negative
log of the prior.

Choosing the right prior distribution is crucial for the practical estimation pro-
cess. Usually one selects its parameters according to some knowledge available,
for example accuracy of a sensor positioning or a gain tuning. It can easily be
shown that choosing certain prior is directly connected to the `1 and `2 regular-
ization. For example using a Laplace distribution corresponds to `1, and choosing
a Gaussian distribution corresponds to `2 regularization. For further details on
the Gaussian and the Laplace distributions see the Appendix A.

Assuming bias parameters θn are independent, one can define the priors as a
product of independent distributions according to

for `2 : p(θ) =
N∏
n=1

N (θn|µn, σ2
n ), (4.12a)

for `1 : p(θ) =
N∏
n=1

L(θn|µn, βn), (4.12b)

where µn corresponds to the mean and σ2
n is a variance of the Gaussian distribu-

tion N ( · ). For the Laplace distribution L( · ), µn is defined as a location parame-
ter and βn ≥ 0 is a scale parameter. Having defined the priors, and by assuming
µn = 0, the negative log posterior can be written as

− log p(θ|YK ) = C̄ + VNWLS(θ) + Jj (θ), (4.13)

where C̄ is a constant and VNWLS(θ) is a nwls cost function. Regularization
(penalty) terms Jj (θ) can then be identified for both regularization methods, as

for `2 : J2(θ) =
1
2

N∑
n=1

λn θ
2
n, (4.14a)

for `1 : J1(θ) =
1
2

N∑
n=1

λn |θn|. (4.14b)



4.1 Basic Parameter Estimation Methods 33

The regularization parameter for that case is directly related to the variance of
Gaussian distribution for `2, as λn = 1/σ2

n , and to the scale parameter of Laplace
distribution for `1, as λn = 1/βn. In case the regularization parameter takes the
same value for each corresponding θn, (λ = λ1 = . . . = λn), one gets situation
analogous to the one presented in (4.4 - 4.5).

The type of priors that we have considered above, with mean (for the Gaussian)
or location parameter (for the Laplace) equal to zero, are the so-called shrinkage
priors. That kind of priors is used when we would like to imply the sparsity, since
they have an ability to shrink some of the estimated parameters towards zero.
The situation is analogous to the shrinkage process via regularization, introduced
in Section 4.1.2 or presented in Hastie et al. (2005).

When the bias parameters are correlated, we might consider using a multivariate
prior distribution. An example might be a Gaussian prior, where the normal
distribution is then defined as p(θ) = N (θ|µ,Σ) with µ being the mean and Σ

being the covariance matrix for the prior of θ. In that case there is no longer
direct correlation between regularization and application of the prior, because
the corresponding λ-s cannot be precisely identified. It is due to the fact that Σ
is not a diagonal matrix anymore.

There of course in practice exist different prior distributions that can be applied,
as well as the regularization methods, but they are out of the scope of this thesis.

4.1.5 Existence of the Closed Form Solution

There exist different approaches to minimization of the cost function for both the
regularized and the non-regularized problems. For the linear case (ls and wls)
it is possible to find a closed form solution by taking a gradient and equalling it
to zero. Since there usually does not exist a closed form solution to the nonlinear
case, the optimization problems can be solved, e.g., using one of the optimiza-
tion techniques (like the Gauss-Newton) or a dedicated toolbox, e.g. CVX

1 or
YALMIP

2. It is also possible to linearize the measurement function and turn the
problem intowls, using the Taylor series expansion, according to (2.3).

An analogous situation applies to the ml case. In the linear and Gaussian case
there exists direct closed form solution, analogous to thewls solution. Using the
idea for a nonlinear case, an approximate (closed form) solution can be obtained
using local linearization. In other cases, of course depending on a likelihood
form, the problem usually does not have a direct solution, and the numerical
optimization methods might be necessary to apply.

For the regularized problem, a closed form solution can be found for linear `2
case. For `1, there is usually no direct solution. In that case numerical optimiza-
tion method needs to be used.

1CVX toolbox can be found at: http://cvxr.com/cvx/
2YALMIP toolbox can be found at: http://users.isy.liu.se/johanl/yalmip/

http://cvxr.com/cvx/
http://users.isy.liu.se/johanl/yalmip/
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The situation as above is analogous to the map problem, where the closed form
solution can be obtained only for the linear case with a normal prior distribution.

4.2 State Estimation Techniques

The problem of estimating the latent state of the target generating the observa-
tions from multiple sensors is one of the basic problems of data fusion. This sec-
tion describes two principal approaches to state estimation: filtering and smooth-
ing. Both methods estimate the state based on the gathered measurements. The
main difference is that filtering is an online process, where the state estimate x̂k is
obtained using a stream of noisy measurements up to current time k. The smooth-
ing is a batch process, where also the future observations, up to time k+m, m ≥ 1,
are used in order to obtain more accurate estimates.

For the purpose of this section, a general nonlinear model for the target (motion
model) and observations (measurements model) is assumed, and is defined as

xk+1 ∼ p(xk+1|xk), (4.15a)

yk ∼ p(yk |xk). (4.15b)

The transition process between xk and xk+1 is described by p(xk+1|xk), under the
assumption of first order Markov property on the dynamics. The observation
model states, that the measurement yk at k-th time step depends on the current
state xk .

The full, nonlinear model, that describes both sensors and targets can then be
defined by extending the sn model presented in (2.1). After adding the motion
model it can be restated as

yk = hk(xk , θ, νk), (4.16a)

xk+1 = fk(xk , ηk), (4.16b)

where yk is the measurement, xk is the state of the target at time k, hk( · ) and
f ( · ) are (known) measurement and motion models at time k respectively, θ is a
parameter vector and νk and ηk are measurement and process noises respectively.
Both noises are distributed according to some distribution pνk ( · ) and p

η
k ( · ).

For the purpose of this thesis, a model with the additive Gaussian noise will be
considered. The model in (4.16) takes hence a form of

yk = hk(xk , θ) + νk , (4.17a)

xk+1 = fk(xk) + ηk . (4.17b)

For the simplicity of the presentation of filtering and smoothing problems, it
is assumed that the set of bias parameters of the sn is known – the network is
correctly calibrated.
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4.2.1 Filtering

This section describes a Bayesian approach to nonlinear filtering problem. Hav-
ing a set of measurements Yk = {yi}ki=1 gathered by all sensors, a task is to esti-
mate the set of corresponding target states Xk = {xi}ki=1. Thus we are interested
in finding a sequential approximation of a joint distributions of states given mea-
surements, p(Xk |Yk) and a likelihood p(Yk). Having those distributions one can
directly sample the entire trajectory Xk , or just obtain a distribution for current
state xk , by applying the marginalization.

In the literature filtering is usually understood as a process of estimating the con-
ditional distribution p(xk |Yk) of the current state, based on a set of observations
up to the time step k, rather than sampling from p(Xk |Yk). In practical applica-
tions we are usually interested in obtaining:

• The filtering distribution: p(xk |Yk), where the state at time k is estimated
based on measurement up to time k.

• The prediction distribution: p(xk+m|Yk), where the state at future time k +
m,m ≥ 1, is predicted, based on the set of measurements Yk .

In order to obtain those posteriors, a general Bayesian update recursion can be
applied, which for the model defined in (4.15) consists of two main steps:

• Time update: in this step a prediction xk+1 – for the next time instant,
is computed using current estimate of xk . It is done by marginalizing xk
through integration from

p(xk+1|Yk) =
∫
p(xk+1, xk |Yk)dxk =

∫
p(xk+1|xk)p(xk |Yk)dxk , (4.18)

where the Markov property of the model was used.

• Measurement update: having the prediction p(xk+1|Yk) from the previous
step, when a new measurement yk+1 at time k + 1 arrives, it is reasonable to
incorporate that extra information to get the posterior for xk+1 given all the
measurements up to the current time. A measurement update, using Bayes’
theorem, is given by

p(xk+1|Yk+1) =
p(yk+1|xk+1)p(xk+1|Yk)

p(yk+1|Yk)
, (4.19)

where

p(yk+1|Yk) =
∫
p(yk+1|xk+1)p(xk+1|Yk)dxk+1, (4.20)

is considered as a normalization constant independent of xk+1.

• Initialization: the filtering recursion is initiated by p(x1|y0) = p(x0).

A solution to the filtering problem is very broadly described in the literature.
Among practical applications of Bayesian recursion one can distinguish most pop-
ular filtering methods:
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• Kalman Filter (kf): provides an optimal solution to the filtering problem in
case, when both process model and measurement model are linear together
with an additive Gaussian noise. Thanks to the linearity there exists an
exact, closed form solution to each subsequent step of the filtering process.

• Extended Kalman Filter (ekf): An extension to the Kalman filtering prob-
lem to nonlinear models. In this case modeling the nonlinearity is ad-
dressed through the first or second order Taylor series expansion of a mo-
tion model and/or measurement function.

• Unscented Kalman Filter (ukf): provides a solution for the nonlinear prob-
lem. In this case an unscented transform is used, where the distribution
is approximated by a set of deterministic (so called sigma) points. The
sigma points are then propagated through the non-linear functions (motion
model or measurement function), and then fit with a Gaussian distribution.

• Point Mass Filter (pmf): is not limited to any linear or Gaussian model,
since it provides a numerical approximation to the nonlinear problem. The
underlying idea is to apply a grid over the state space in order to compute
the posterior. The main limiting factor is the curse of dimensionality for
higher state dimensions.

• Particle Filter (pf): provides a similar solution methodology of solving the
nonlinear filtering problem as a pmf, but with an adaptive stochastic grid
over the state space. In this case grid points are chosen automatically ac-
cording to their relevance. This method also suffers from the curse of di-
mensionality, but there are some approaches to particularly solve the prob-
lem. One of these approaches is marginalization, where the state is split
into a part that enters the model in a linear and a part that enters in a non-
linear way. The pf is then used only to estimate the nonlinear part, and the
kf can be used to estimate the linear part (see Andrieu and Doucet (2002)
or Nordlund and Gustafsson (2009)).

Detailed description of the methods mentioned above (together with derivation
process etc.) can be found in basic literature in this area, including Bar-Shalom
et al. (2004) and Gustafsson (2012). An introduction to particle filtering can
be found in one of the tutorial papers (Arulampalam et al. (2002), Cappé et al.
(2007) or Gustafsson (2010)) or books (Ristic et al. (2004) or Gustafsson (2012)).

In order to retrieve an estimate x̂k|k of the state vector (and its covariance P̂k|k)
from the posterior p(xk |Yk), a minimum mean square error (mmse) estimate of
the state can be used, defined by

x̂mmsek|k =
∫
xkp(xk |Yk)dxk , (4.21)

for the mean, and

P̂mmsek|k =
∫

(xk − x̂mmsek|k )(xk − x̂mmsek|k )T p(xk |Yk)dxk , (4.22)

for the covariance of the state vector estimate.
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4.2.2 Smoothing

Filtering, as presented in previous section, is a process of estimation of the cur-
rent state of the target based on set of measurements up to the current time step.
The idea underlying the problem of smoothing is similar, but here we are inter-
ested in the estimation of a state distribution given also all the measurements up
to some time K ≥ k. The estimates tend to be smoother since more information is
used. This section will briefly describe basic concept and methods for obtaining
smoothed estimates.

Analogous to the filtering problem there are two possible concepts regarding
smoothing. First is to sample from joint posterior p(XK |YK ), where XK is a set of
target states estimated based on the complete set of measurements YK . Another
approach is to compute marginal distribution p(xk |YK ) for each k. The marginals
can be computed in principle by integrating out the remaining states from the
joint posterior.

In order to obtain smoothed estimates for time k, one can either use only few
future measurements up to time k + L ≤ K , or a full set of measurements up to
time K . The solution to the first problem is given by:

• Fixed-lag smoothing: The idea is to perform smoothing using a fixed-lag L.
Thus one is interested in using number of L future measurements in order
to compute the posterior density p(xk−L|Yk) for the estimate of xk−L using
measurements up to time k. The estimation process is thus lagged and it is
possible to use the future knowledge about measurements.

Among methods, where we use the full set of measurements in a batch manner,
we can specify two example solutions:

• Forward-backward recursion: Is a two step process proposed in (Doucet
et al., 2000). First perform filtering forward and then, having estimated
set of states {x̂k|k}Kk=1, perform smoothing backwards in order to obtain the
smoothed estimates {x̂k|K }Kk=1. In order to perform forward-backward recur-
sion one has to:

– Compute and store, during the filtering step, a set of marginal distri-
butions p(xk |Yk),

– Compute backwards p(xk |YK ) using the set of marginals computed in
previous step. Backward recursion is initiated with the final state dis-
tribution p(xK |YK ).

• Two filter formula: The idea (Bresler, 1986) underlying the two filter for-
mula is an introduction of a set of artificial probability distributions p̃k(xk),
together with the the joint distribution p̃k(xk:K |yk:K ), which are related to
the backward information filter. The basic idea (omitting the details) is as
follows:

– Use standard forward recursion to obtain a set of marginal distribu-
tions p(xk |Yk−1),
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– Use a backward recursion to obtain a set of p̃(xk |yk:K ) distributions,

– Combine both above distributions in order to obtain smoothed poste-
rior p(xk |YK ).

As for the filtering, there exist different approaches to implementation of smooth-
ing. Each filtering method has its complimentary smoothing method – for Kalman
filter one has Rauch-Tung-Striebel equations (so called Kalman smoother), with
an extension to the nonlinear problem analogous to the ekf. Smoothing is also
solved using particle methods, where the Particle Filter is used in conjunction
with a Particle Smoother. Further discussion about smoothing methods can be
found for example in Cappé et al. (2007) or Doucet and Johansen (2009).

4.3 Simultaneous State and Parameter Estimation

So far the problems of calibration and state estimation were presented separately.
In real applications it is most common, that neither the target trajectory is known
nor the sensor network is correctly calibrated. In this thesis a deeper look at that
problem will be taken in Chapter 5 and particularly in Part II. So far, in order to
introduce the problem, a simple method to estimate both unknown variables is
presented – an approach to filtering with an augmented state vector.

In order to estimate both state and bias parameters, a basic idea is to extend the
state vector xk with unknown bias vector θ, to form the augmented vector

xaugk =
[
xk
θ

]
. (4.23)

Then one of the filtering methods can be applied, in order to obtain a posterior
for augmented state p(XaugK |YK ) = p(XK , θ|YK ), where XaugK = {xaugk }Kk=1.

If the bias parameters change over time, and we have some understanding about
the character of these changes, it is wise to extend the bias vector model with

θk+1 = fθ(ξk), (4.24)

where fθ(ξk) is some linear/nonlinear transition function of the bias vector and
ξk is a process noise with some known distribution pξk ( · ).

When we want to use a particle filter in the estimation process, and biases en-
ter the model in a linear Gaussian way, it is possible to use the marginalization.
In that case a pf is used to estimate the state and a kf is used for the linear
part. The method has been known as marginalized particle filter (mpf) or Rao-
Blackwellized pf. Further details can be found e.g. in Andrieu and Doucet (2002)
or in Nordlund and Gustafsson (2009).

Although the approach is simple, the method suffers some practical problems.
The augmented vector might be very large in a multiple target and multiple sen-
sor scenario, which might cause estimation problems. When the kf is applied,
the necessity of computing (and inverting) large covariance matrices might de-
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grade performance drastically. Also lack of the observability can cause numerical
problems.

The approach presented above can be for example found in (Dhar, 1993). In the
literature there also exist different approaches to decompose the problem of si-
multaneous estimation of state and parameter vector into two nested subsequent
problems, presented for example in Ignagni (1981) or Sviestins (1999). In the
further part of the thesis a main focus will be placed on decomposition of the
problem into two sub-problems: state estimation and calibration, that can be
solved separately but in parallel.

4.4 Basic Analysis

This section describes a problem of parameter observability and estimation per-
formance, taking into account typical applications in the ground sensor networks
area. The problem of parameter observability and ways to improve it are pre-
sented. Further, the Cramér-Rao lower bound is introduced, that is a measure of
a lower achievable bound on the variance of parameter estimates.

4.4.1 Parameter Observability

The problem of observability for both parameters and the states is a serious prob-
lem in the area of gsn. The number of sensors observing one particular target at
the same time might be quite low (usually due to a limited range of the sensors).
Also trajectories of targets of opportunity might not be very informative, for ex-
ample when targets are far from the sensor or move along only one path. Both of
these result in a low amount of information contained in the measurements.

Another problem corresponds to the form of the measurement function, where
one type of biases can be replaced with other. For example in the case of time
of arrival measurement, a range measurement offset can be easily replaced with
the uncertainty of position in the x- and y- direction. The situation is graphically
explained in Figure 4.1 The problem of observability can be explained in detail
by using the problem of computing a wls estimate as an example. Consider a
measurement function linear with respect to the bias parameter vector

yk = Hk(xk)θ + νk . (4.25)

It can be reformulated to a compact form

ȳ = H̄θ + ν̄, (4.26)

where ȳ = [yT1 . . . y
T
K ]T is a (stacked) vector, containing all measurements for

all time instances k, H̄ = [H1(x1) . . . HK (xK )]T and ν̄ = [νT1 . . . νK ]T . A solution
to wls problem, being a solution to maximization of the cost function defined
in (4.2), is given by the following estimate

θ̂ =

 K∑
k=1

Hk(xk)R
−1HT

k (xk)


−1  K∑

k=1

Hk(xk)R
−1yk

 =
(
H̄ R̄−1H̄T

)−1
H̄ R̄−1ȳ. (4.27)
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Figure 4.1: Interchangeability of biases. For the range sensor, in the case of
presented target trajectory, it is impossible to uniquely determine whether
inaccuracy in measurements comes from the position offset (left side of the
figure) or from the range offset (right side of the figure). A change in x- and y-
sensor location is then equivalent to the additive measurement bias, making
it unobservable.

In a shorter form

θ̂ = B−1A(ȳ), (4.28)

where we can identify the term B = H̄ R̄−1H̄T and the term A(ȳ) = H̄ R̄−1ȳ.

For a unique solution to exist, the problem of maximization of the cost function
must be well-conditioned. In other words the B matrix must be invertible. It
means that it must have a full rank, so rank(B) = M, where M is the size of θ
vector. A problem appears when there are too many degrees of freedom for the
bias parameters, making a unique solution unavailable.

There are different ways to restrict the freedom of the bias parameters. One of
the ideas is to use known road constraints (on the motion model) in order to elim-
inate some degrees of freedom – otherwise one might encounter rotations and
displacements of sensor networks that are unobservable. In case the number of
measurements is low, and not sufficiently informative, it might happen that it is
impossible to get reasonable estimates. Here one of the ideas is to use regulariza-
tion, presented earlier in Section 4.1.2, in order to force some of the parameters
towards zero and only estimate these ones for which the measurements are infor-
mative enough. An equivalent way of the regularization is to apply priors to the
parameters in a Bayesian manner.
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The main problem, both with the regularization and with the application of the
priors is usually the lack of knowledge of the prior (or the corresponding regular-
ization parameters). In the next chapter the problem of finding the parameters
of a prior for the bias vector will be described with a possible solution using the
evidence method. It is based on the maximization of the probability of the data
with respect to the hyper-parameters we want to find.

In the next subsection the Cramér-Rao lower bound (crlb) will be presented,
which is an analytical measure of the lower bound on achievable estimation accu-
racy for the problem of parameter and state estimation for a certain scenario.

4.4.2 Cramér-Rao Lower Bound (CRLB)

The Cramér-Rao lower bound is a measure of a lower bound on the variance of
the estimated parameter, when the estimator is unbiased. It is defined as an
inverse of the Fisher information matrix (fim). The crlb is to be interpreted
as a minimal value of the variance of the unbiased estimator of a parameter we
are trying to find. An estimator that achieves the lower bound is the minimum
variance unbiased estimator (Gustafsson, 2012), which means that it has achieved
a minimum mean squared error. The lower bound for bias parameter θ is thus
defined as

Cov(θ) ≥ I−1(θ), (4.29)

where a positive definite Fisher information matrix I (θ) is computed using the
following formula (Gustafsson, 2012)

I (θ) = E

(d log p(YK |θ)
dθ

) (
d log p(YK |θ)

dθ

)T  , (4.30)

where p(YK |θ) is a likelihood. Analogously one can define crlb for state esti-
mates, as

Cov(XK ) ≥ I−1(XK ), (4.31)

where in this case the crlb determines the lower bound for the variance of state
estimates.

To present an example of how crlb is distributed along the area covered by a sn,
a simple scenario will be considered withN = 8 direction of arrival (doa) sensors.
The measurement function considered here is given by (2.10) and measurements
are assumed to be independent. Measurement noise here is additive, normally
distributed with zero mean and standard deviation taken as σ = 10 degrees.

Figure 4.2 presents the crlb for the sensor network example. Upper left plots
shows the configuration of the network. Other two plots present two and three
dimensional presentation of the minimum achievable rms for the estimation of
the target position (in meters). As was expected, the best achievable performance
is within the area covered by the network. The further we drift from the center
of the network, the worse the minimum achievable error gets.
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Figure 4.2: Cramér-Rao lower bound for the position estimates in the doa
sensor network. Upper left plot presents the sensor network configuration.
Other two plots present the two and the three dimensional plots of the min-
imum achievable error for the state estimation performance of the network.

4.5 Summary

Basic concepts for both the parameter and state estimation were presented in this
chapter. In the next chapter the problem of simultaneous estimation of bias pa-
rameters and target states, introduced in Section 4.3, will be further extended. It
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will be shown that the solution can be found using the expectation maximization
(em) algorithm, since the unknown state can be treated as a latent (unknown)
variable.

The next problem to be tackled is a situation of the lack of observability. As was
mentioned earlier, one way to solve this is to apply priors to the estimation pro-
cess. Since the prior knowledge is not always available, next chapter will describe
a method of selecting prior parameters based on maximization of evidence func-
tion, where the evidence is a measure of how well the proposed model describes
the data.





5
Advanced Methods

It was mentioned before that the maximum likelihood methods can be easily ap-
plied to the problem of calibration in the situation when the set of target states
is known. In a case when both bias parameters and target states are unknown,
one can use state vector augmentation, as was presented earlier in Section 4.3.
Even though there exist some ways to decouple the problem, in the first part of
this chapter an alternative method called expectation maximization (em) will be
presented. It is a two step iterative procedure, used to compute the maximum
likelihood (or the maximum a posteriori) estimates in a presence of the unknown
(latent) variables.

Another problem that appears very often, in reference to the maximum a poste-
riori estimate, is the choice of parameters for the prior distribution. Because the
prior is driven by a set of hyper-parameters, that are usually unknown, there is a
need to estimate them using for example the observation data. Since the case is
not trivial, second part of the chapter will be devoted to the evidence approxima-
tion (ea) method, that provides a solution to this problem.

Evidence approximation is an iterative method used to simultaneously estimate
the parameters and the unknown hyper-parameters. One of the advantages of the
method is a fact, that it uses the Occam’s razor principle. The razor helps to find
an optimal balance between the model complexity and the fit to the measurement
data. Using the so-called shrinkage priors also implies the sparsity of a parameter
vector.

End of the chapter will be dedicated to a brief introduction to Paper C, where
both methods are combined together. A result is a robust, lopped em-like algo-
rithm for simultaneous state estimation and sparse bias estimation.

45
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5.1 Expectation Maximization (EM) Algorithm

The expectation maximization algorithm (Dempster et al. (1977); McLachlan et al.
(2004)) is a technique used to compute the maximum likelihood estimate in a
presence of unknown (latent) variables. These variables are observed indirectly,
through some function h : X → Y , in a presence of the observation (measure-
ment) noise. The likelihood for the set of measurements YK is governed by the
set of parameters θ, which value we want to find. The likelihood for YK can be
written as

p(YK |θ) =
∫
p(XK , YK |θ)dXK , (5.1)

where the joint likelihood for measurements and latent variables is given by
p(XK , YK |θ). For the problem of calibration, YK represents the set of observations
of the target state XK . Observations are collected using a measurement function
h(xk , θ), in a presence of the measurement noise. Set of bias parameters θ is then
the unknown we want to estimate.

In the em algorithm an important assumption is, that the maximization of the
joint likelihood p(XK , YK |θ) should be much simpler than the direct maximiza-
tion of the incomplete data likelihood p(YK |θ). It might be, for example, that
even though the joint likelihood belongs to the exponential family, the marginal
p(YK |θ) typically does not (Bishop, 2006).

The method comprises of two subsequent step: expectation (e) step, where the
expectation of the joint log likelihood is computed using some initial value of
the bias vector θ̂old . The resulting expectation is expressed as Q(θ, θ̂old), which
is a function of the unknown bias vector. It is then maximized in maximization
(m) step in order to obtain a new estimate θ̂new. These steps will be described in
detail below.

5.1.1 Expectation (E) Step

In the (e) step, an expectation of the log of joint likelihood is computed under the
assumption of some known, initial value of θ̂old . The expectation takes a form of
a function of the bias vector θ, given by

Q(θ, θ̂old) = Eθ
[
log p(XK , YK |θ)

∣∣∣YK , θ̂old] , (5.2)

or equivalently

Q(θ, θ̂old) =
∫

log p(XK , YK |θ)p(XK |YK , θ̂old)dXK . (5.3)

For the problem of calibration, considered in this thesis, a posterior for the set
of states p(XK |Yk , θ̂old) is obtained using a smoothing algorithm (Rauch-Tung-
Striebel smoother in a linear case or particle smoother for the nonlinear case)
based on the set of observations YK , when using a fixed value of the bias vector
θ̂old .
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Algorithm 1 Expectation maximization (em) algorithm
1. Initialization:

• Initialize algorithm at iteration n = 0 with some initial value of the
parameter vector θ̂(n) = θ̂0

2. For n = 1 . . . N :
• Expectation (e) step:

– Assign θ̂old = θ̂(n−1)

– Compute Q(θ, θ̂old) as in (5.3)
• Maximization (m) step:

– Obtain new estimate of θ as in (5.4)
– Assign new estimate so θ̂(n) = θ̂new

3. If (n == N ) or algorithm has converged: end iterations;
otherwise: increment (n = n + 1) and continue.

5.1.2 Maximization (M) Step

In the maximization step a new value of θ̂ is obtained by maximizing the expec-
tation (computed in the previous step), according to

θ̂new = arg max
θ

Q(θ, θ̂old). (5.4)

It is worthwhile to notice an important property, that was briefly mentioned ear-
lier. Since in the (e) step one computes the expectation of a logarithm of the joint
distribution, then in case when p(XK , YK |θ) comprises a member of the exponen-
tial family the logarithm will cancel the exponential. In that case the maximiza-
tion in (m) step will be much simpler than a maximization of incomplete data log
likelihood p(YK |θ).

Another significant property of the expectation maximization algorithm is a fact
that it has a guaranteed convergence to (at least local) optimum. This property is
proven in Dempster et al. (1977) and Bishop (2006).

The iterative procedure of the expectation maximization algorithm is presented
in Algorithm 1.

5.1.3 Computation of the MAP Estimate

In case the prior for parameter vector is given, p(θ), it is possible to use the expec-
tation maximization algorithm to maximize the posterior p(θ|YK ). Using a fact
that we can decompose the logarithm of the posterior, it can be rewritten as

log p(θ|YK ) = log p(YK |θ) + log p(θ) − log p(YK ), (5.5)

by using the Bayes’ rule and the properties of the logarithm. Since p(YK ) is a
constant, it can be easily shown (Bishop (2006)), that a new Q(θ, θ̂old) function
computed in the (e) step, for the maximum a posteriori estimate takes a form of

Qmap(θ, θ̂
old) = Q(θ, θ̂old) + log p(θ). (5.6)
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In order to obtain a new map estimate of the parameter vector, one must maxi-
mize the expectation computed above with respect to θ. Hence

θ̂new = arg max
θ

Qmap(θ, θ̂
old). (5.7)

5.2 Evidence Approximation (EA) Algorithm

When introducing a prior to the problem of maximum likelihood estimation,
there arises a problem of assigning correct values of the hyper-parameters that
govern the distribution. For the Gaussian prior, these parameters correspond
to a precision (an inverse of a standard deviation) or to a scale parameter for the
Laplace prior. For more details see Appendix A. In most cases the correct value of
these parameters is unknown and needs to be determined from the measurement
data.

This section briefly describes concepts underlying the evidence approximation
method, introduced in MacKay (1992). It is a two step Bayesian inference method,
where the Occam’s razor is used to find the hyper-parameters. As a result a good
balance between model complexity and fit to the measurement data is achieved.

The method is also known as Type-II Bayes (Berger, 1985) or sparse Bayesian
learning (Wipf and Rao, 2004), and is as well the core idea underlying the rele-
vance vector machines algorithm (Tipping, 2001).

5.2.1 Two Levels of Bayesian Inference

The idea underlying the method comes directly from the data modeling area,
where one considers different models Mi . Each i-th model is assumed to have
a set of corresponding parameters θ and is defined by two probability distribu-
tions: a prior for parameters p(θ|Mi) and a predictive distribution p(D |θ,Mi).

The process of Bayesian modeling contains two inference levels. In the first step
different models are fit to the observation data set D. Next, in the second step
those models have to be evaluated and ranked in terms of how well they describe
the particular data set.

In the first level of inference one assumes the model Mi is correct and fits that
model to the data set D. Using Bayes’ rule, the posterior for the parameter vector
is given by

p(θ|D,Mi) =
p(D |θ,Mi)p(θ|Mi)

p(D |Mi)
. (5.8)

Second level of the inference is the model comparison, where one wants to find
out which model is the most reliable given the data set. Using Bayes’ again, the
posterior probability for each of the models is proportional to

p(Mi |D) ∝ p(D |Mi)p(Mi). (5.9)

Only the first term on the right hand side of the above equation depends on the
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data set. The term is called the evidence for the modelMi , and was seen above
as normalizing constant in (5.8). Having the same prior p(Mi) for each of the
models, to rank different models it is only necessary to evaluate the evidence.
The evidence is computed by integrating out the set of the parameters

p(D |Mi) =
∫
p(D |θ,Mi)p(θ|Mi)dθ. (5.10)

Interesting feature of the evidence is that it can be evaluated for the full spectrum
of models, including parametric and non-parametric models. It is therefore a
very useful and portable measure of the model preference.

5.2.2 Occam’s Razor

Under an assumption that the posterior for parameters p(θ|D,Mi) in (5.8) is
sharply peaked around its most probable value θ̂, the evidence can be approx-
imated as

p(D |Mi) ' p(D |θ̂,Mi)p(θ̂|Mi)∆θ, (5.11)

where p(D |θ̂,Mi)p(θ̂|Mi) corresponds to a height of the peak of the integrand
and ∆θ corresponds to its width. Or in other words

Evidence ' Best fit likelihood ×Occam factor. (5.12)

The Occam factor is here interpreted as a penalty for the model complexity. In
the process of evidence maximization the best model, corresponding to a trade-
off between maximizing the fit to the data and minimizing its complexity, can be
chosen. A full and exhaustive description and analysis of the evidence procedure
and Occam’s razor can be found in MacKay (1992).

5.2.3 Application to the Calibration Problem

The approach presented above can be easily applied to the problem of sensor
network calibration. Analogously to the problem of maximum a posteriori es-
timation, it is assumed that the dataset D = {XK , YK } contains both set of sen-
sor measurements YK and corresponding target states XK for all time instances
k = 1 . . . K . The model is determined by a set of (unknown) bias parameters θ,
that we wish to estimate together with corresponding hyper-parameters α of the
prior p(θ|α). In this application different sets of hyper-parameters are considered
as different modelsMi .

In the first level of inference model is fit to the data under the assumption, that
the set of hyper-parameters is known (α = α̂). By applying the Bayes’ formula,
and at the same time skipping XK for clarity in the notation, the posterior for θ
is given as

p(θ|YK , α̂) =
p(YK |θ, α)p(θ|α)

p(YK |α)

∣∣∣∣∣α = α̂
. (5.13)
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Instead of integrating out the unknown set of hyper-parameters from

p(θ|YK ) =
∫
p(θ|YK , α)p(α|YK )dα, (5.14)

as it should be done properly in a fully Bayesian way, the following approxima-
tion was used

p(θ|YK ) ' p(θ|YK , α)
∣∣∣∣α = α̂

. (5.15)

It is allowed under an assumption that posterior for α is sharply peaked around
the estimated value of α̂, and thus p(α|YK ) ≈ δ(α − α̂).

In the second level of inference one aims to find the value of unknown hyper-
parameter α, that maximizes the evidence function. Here the Occam’s razor is
applied to tune the parameters in a way, that the value of α is as small enough to
fit the data to the model, but not too small (to avoid the over-fitting).

Using Bayes’ formula again, analogously to the previous step, posterior for α is
given by

p(α|YK ) =
p(YK |α)p(α)

p(YK )
. (5.16)

Assuming a flat prior p(α) for the hyper-parameters, the only factor that counts is
the evidence p(YK |α), the normalizing factor in (5.13). The evidence is obtained
by integrating out θ from

p(YK |α) =
∫
p(YK |θ, α)p(θ|α)dθ. (5.17)

Finally in order to obtain a value for the hyper-parameters, the evidence function
is maximized with respect to α

α̂ = arg max
α

p(YK |α). (5.18)

The algorithm takes an iterative form, where one switches between two levels of
inference. In the first step, assuming some initial value of α̂, a new value of θ̂
is estimated. It is then used in the next step to compute a new value of α̂ by
maximizing the evidence. The procedure is repeated until the convergence.

The iterative procedure of the evidence approximation is presented in the Algo-
rithm 2.

5.2.4 Application of the EM Algorithm

Taking another look at the evidence function presented in (5.17), it is easily seen
that θ can be considered as a latent variable. Thus it should be possible to apply
the em algorithm to iteratively estimate α̂. It is a fact indeed, and according to
Algorithm 1, in the expectation step one needs to compute the expectation of a
log of joint likelihood p(YK , θ|α), using some initial value of α̂old . This is done as

Q(α, α̂old) =
∫
p(YK , θ|α)p(θ|YK , α̂old)dθ, (5.19)
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Algorithm 2 Evidence approximation (ea) algorithm
1. Initialization:

• Initialize algorithm at iteration n = 0 with some initial values of the
parameter vector θ̂(n) = θ̂0 and the hyper-parameters α̂(n) = α̂0

2. For n = 1 . . . N :
• 1st level of inference:

– Assign α̂old = α̂(n−1)

– Compute p(θ|YK , α̂old) according to the (5.13) together with the
point estimate θ̂new

– Assign θ̂(n) = θ̂new

• 2nd level of inference:
– Compute the evidence function p(YK |α), using results from the

previous step of inference, as in (5.17)
– Maximize the evidence to obtain a new value α̂new

– Assign the new hyper-parameter estimate so α̂(n) = α̂new

3. If (n == N ) or algorithm has converged: end iterations;
otherwise: increment (n = n + 1) and continue.

where p(θ|YK , α̂) is computed as in (5.13). Next, in maximization step theQ(α, α̂old)
is maximized with respect to α in order to obtain new estimate α̂ as

α̂new = arg max
α

Q(α, α̂old). (5.20)

The procedure is repeated iteratively until convergence.

Application of the em to that problem has a very useful practical consequence – it
is then natural to extend the problem to a case with one extra latent variable – un-
known set of states XK of the observed target. The problem takes then a form of
maximization of the evidence function obtained through the double integration

p(YK |α) =
∫ ∫

p(XK , YK , θ|α)dXKdθ. (5.21)

The em applies here in a natural way by decomposing the problem into two sub-
sequent expectation steps, where the first is used to compute new values of α̂. A
new Q( · ) function can be stated as

Q(α, α̂old) =
∫ ∫

ln p(XK , YK , θ|α)p(XK , θ|YK , α̂old)dXKdθ. (5.22)

In order to solve the problem, as it is in detail described in Paper C, it is further
necessary to compute the posterior for θ. It is due to the fact that (5.22) can be
decomposed into

Q(α, α̂old) =
∫
g(α)

∫
p(XK , θ|YK , α̂old)dXKdθ + const, (5.23)

where g(α) is some function of α, written in a short form for simplicity. Then, the
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inner integral is equivalent to computing the aforementioned posterior for θ as

p(θ|YK , α̂old) =
∫
p(XK , θ|YK , α̂old)dXK . (5.24)

Analogously to the case in Section 5.1, this problem is a problem of computing
the posterior for bias vector in a presence of the latent variable XK – the unknown
target state. Thus applying the em again, the expectation step yields

Qmap(θ, θ̂
old ) =

∫
ln p(XK , θ|YK , α̂old )p(XK |YK , θ̂old , α̂old )dXK + ln p(θ|α̂), (5.25)

where the posterior for XK can be computed using one of the available filter-
ing/smoothing procedures.

After providing both expectations, the corresponding maximization steps are
performed. One computes there a new value for both parameters θ and hyper-
parameters α respectively. Both steps of Bayesian inference using the em proce-
dure are performed iteratively until convergence.

The iterative procedure of evidence approximation using the em is presented
in Algorithm 3. A detailed description of the process with two latent variables,
followed by a further discussion, is presented in Paper C.

5.3 Summary

This chapter handles the advanced problems in the parameter estimation – the
case of unknown (so called latent) variables and unknown priors.

In the first section, the application of the expectation maximization (em) iterative
procedure, to solve the problem of simultaneous tracking and parameter estima-
tion is described. The underlying idea is further extended in Paper A, where the
calibration problem is solved with a help of the road constraints used to improve
the performance of filtering and smoothing.

In further sections the problem of estimating the hyper-parameters of the prior
was described in the evidence maximization framework. The algorithm was in-
troduced and it was briefly shown how to apply it to the problem of calibration
of a sensor network. Further reading on that problem can be found in Paper B,
which provides also an ad-hoc solution to the calibration problem where both
target states and the hyper-parameters are unknown.

Finally, a double-looped iterative procedure for maximization of the evidence
function using the emwas introduced. Further reading, together with a complete
derivation and examples of application of the algorithm, can be found in Paper C.

The resulting algorithm is relatively robust to the case where the number of mea-
surements is low (due to the application of the prior) and at the same time allows
the user to simultaneously estimate both, the bias parameters and the unknown
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Algorithm 3 Sparse calibration algorithm using em for evidence approximation
1. Initialize algorithm at iteration n = 0 with some initial values of the param-

eters θ̂(n) = θ0 and the hyper-parameters α̂(n) = α0.
2. For n = 1 . . . N :

• Initialize algorithm with α̂ = α̂(n−1)

First level of inference:
• Initialize the em algorithm at j = 0 with the initial values θ̂(j) = θ̂(n−1)

• For j = 1 . . . J :
Expectation (E1) step:

– Assign θ̂old = θ̂(j−1)

– Obtain Qmap(θ, θ̂old) function according to (5.25)
Maximization (M1) step:

– Obtain a new estimate of θ that maximizes Qmap(θ, θ̂old)
– Assign the new estimate, so θ̂(j) = θ̂new

• If (j == J) assign θ̂(n) = θ̂(J) and go to (E2);
otherwise: increment (j = j + 1) and go to (E1).

Second level of inference:
• Expectation (E2) step:

– Assign α̂old = α̂(n−1)

– Compute Q(α, α̂old) as in (5.22)
• Maximization (M2) step:

– Obtain a new estimate of α that maximizes Q(α, α̂old)
– Assign the new estimate, so α̂(n) = α̂new

3. If (n == N ) or algorithm has converged: end iterations;
otherwise: increment (n = n + 1) and continue.

states of the target. Form of the evidence function implies Occam’s razor, that pro-
vides a good balance between model complexity, represented in this case by num-
ber of non-zero bias parameters, and a fit to the measurement data. The sparsity
is obtained through application of shrinkage priors, with the hyper-parameters
estimated during the evidence maximization process.





6
Concluding Remarks

6.1 Conclusions

The below conclusions have been in a large part previously presented at the end
of each of the corresponding chapters. In this section some of them will be re-
peated for the completeness of the final summary.

The thesis begins with a brief introduction to the problem of calibration of sensor
networks, which is a main subject of this thesis. Problem is presented together
with a list of contributions that are all contained in Part II. Next chapters describe
the sensor networks in detail together with an introduction to both basic and
more advanced calibration techniques.

After the introduction of the problem of calibration in the first chapter, Chapter 2
describes what the sensor network is in detail. Different sensor models are pre-
sented together with typical biases one might expect and sample measurements.

Having defined the measurement model, the calibration problem is stated in
Chapter 3. The impact miscalibration might have on the performance of state
estimation is presented, together with the analysis of the sensitivity to different
bias values.

In Chapter 4 a basic estimation methods were introduced. Regularization con-
cept was presented and it was shown how the `1 and `2 regularization correspond
to application of different priors (Laplace and Gaussian respectively) inmap esti-
mation. End of the chapter contains a discussion about the observability problem
and the crlb.

In order to provide necessary background, a basic concept of Bayesian filtering
and smoothing was introduced in Chapter 4. It was followed by a basic solution
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to simultaneous tracking and network calibration problem through augmenta-
tion of the target state vector with bias vector.

Chapter 5 describes the problem of calibration with targets of opportunity to-
gether with an introduction to sparse calibration. Expectation maximization (em)
technique is applied to solve the simultaneous problem of the state and the pa-
rameter estimation, with further details provided in Paper A. Next introduced
problem is the estimation of the hyper-parameters of the prior. The evidence ap-
proximation (ea) method is applied together with the so-called shrinkage priors,
where thanks to the Occam’s razor a good trade-off between model complexity
(number of non-zero bias parameters) and fit to the measurement data is ob-
tained.

Finally, a problem of application of the evidence method in case of unknown set
of the target states is considered. Thanks to the application of the em algorithm,
both the filtering and the sparse parameter estimation using Occam’s razor can
be done simultaneously. Further details on the ea can be found in Paper B and
the extension using em is in detail described in Paper C.

6.2 Future Work

Further research regarding the calibration problem should investigate in more
detail the simultaneous state and parameter estimation. More effort should be
put on developing methods for non-linear and non-Gaussian cases, with a direct
attention towards numerical methods. There is a great room for application of
Markov chain Monte Carlo methods or Gaussian Process techniques in order to
solve some of the problems in the area of calibration.

Further focus should be also put on the different particle filtering methods, in-
cluding implementation using the road and the terrain constraints as a remark-
able source of extra information. As was shown in Paper A, the application of
simple road constraints can improve the filtering results and remove some de-
grees of freedom. It makes the problem much better determined – especially in
the terms of a small number of measurements.

The limited number of measurements is a problem by itself. The application of
regularization/priors helps to solve this difficult problem at least within some
constraints. It should be thus reasonable to further investigate different regular-
ization methods with respect to the calibration problem.

Last area that was insufficiently explored is the application of various machine
learning methods. There still exists a vast number of algorithms that can be in-
vestigated in terms of possible application in the area of data fusion, in other to
improve currently used techniques and, hopefully, provide some useful results.
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A
Probability Distributions

The chapter provides the basic knowledge about the probability distributions
used in the rest of the thesis.

A.1 Gaussian Distribution

The Gaussian (also called the Normal) distribution is one of the basic distribu-
tions used in statistics. It belongs to the class of exponential distributions and in
a one dimensional case it has a probability density function given as

N (x|µ, σ2) =
1

√
2πσ2

e
− 1

2
(x−µ)2

σ2 , (A.1)

where x is a scalar, µ represents a mean of the distribution and σ is a standard
deviation (σ2 thus corresponds to a variance). An inverts of the variance is called
the precision (α = 1/σ2). The random variable x with a Gaussian distribution is
considered to be normally distributed. The distribution for different parameter
values is presented on Figure A.1.

In a multidimensional case the vector x of a size N × 1 is distributed with a gener-
alized one-dimensional distribution called a multivariate Gaussian (or Normal)
distribution. It is expressed by

N (x|µ,Σ) =
1√

(2π)N |Σ|
e−

1
2 (x−µ)Σ−1(x−µ)T , (A.2)

where µ is a mean of size N ×1 and σ is a N ×N covariance matrix. The inverse of
the covariance matrix is called a precision matrix (A = Σ−1). A two dimensional
example distribution is presented on Figure A.2.
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Figure A.1: One dimensional Gaussian distribution.

−4
−2

0
2

4

−4
−2

0
2

4
0

0.1

0.2

x
y

P
ro

ba
bi

lit
y

de
ns

ity

Two dimensional Gaussian distribution

Figure A.2: Two dimensional Gaussian distribution.

A.2 Laplace Distribution

Another type of the exponential distribution considered in this thesis is a Laplace
distribution. A random variable x has the Laplacian distribution with the proba-
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bility density function given by

L(x|µ, b) =
1

2b
e−
|x−µ|
b , (A.3)

where µ is a location parameter and a scale parameter b ≥ 0. The distribution for
different parameter values is presented on Figure A.3.
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Figure A.3: One dimensional Laplace distribution.

It is worthwhile to notice that, in opposition to the Gaussian case, there does not
exist a natural unique multivariate Laplace distribution. There appear few ap-
proaches to solving the problem or stating the multivariate Laplace distributions.
For example in Anderson (1992), author presents the distribution as a specific
multivariate Linnik distribution. On the other hand, in Eltoft et al. (2006) the
distribution is presented as a multivariate scale mixture of Gaussian models, us-
ing an exponential prior for the scale factor. Thus differentiation bases on the
assumption of which properties we want the distribution to carry, and which are
less important and thus can be neglected.
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Abstract

Target tracking in ground sensor networks requires an accurate cali-
bration of sensor positions and orientations, as well as sensor offsets
and scale errors. We present a calibration algorithm based on the em
(expectation maximization) algorithm, where the particle filter is used
for target tracking and a non-linear least squares estimator is used for
estimation of the calibration parameters. The proposed algorithm is
very simple to use in practice, since no ground truth of the target posi-
tion and time synchronization are needed. In that way, opportunistic
targets can also be used for calibration. For road-bound targets, a
road-constrained particle filter is used to increase the performance.
Tests on real data shows that a sensor position accuracy of a couple of
meters is obtained from only one passing target.

1 Introduction

Bias estimation (encompassing the concepts sensor calibration, registration, lo-
calization and alignment) is a crucial element of multisensor tracking. Reliable
tracking requires the sensor data to be aligned and consistent, otherwise there is
an obvious risk for degraded performance or even ghost tracks.

There are many previous works dealing with bias estimation (for example Svi-
estins (1999) or Dhar (1993)). Here we focus on methods applicable to a ground
sensor network. The different biases, here denoted bias parameters, may include
location errors, orientation errors, range measurements etc., depending on sensor
type.

There are two main groups of techniques for calibrating the sensors: using refer-
ence targets, or using targets of opportunity. Both can be performed on-line or
off-line.
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In the ground sensor applications, the reference targets could typically be one or
more vehicles carrying satellite navigation equipment, e.g. gps. One must make
sure that enough measurements are generated for each sensor with the target at
different locations. Problems to consider are how to make the gps data available
to the fusion centre, and also the fact, that the gps data may be corrupt, especially
in an urban environment. Once the data has been collected, one can apply e.g.
a maximum likelihood (ml) method, to estimate the bias parameters that make
observations of the target fit the reference data best.

In case no reference targets can be used, one needs to track targets of opportunity
for the purpose of bias estimation. This may however be hard, as tracking may
not work well without having the bias estimates. One approach is to simultane-
ously estimate track states and biases, which can be accomplished by forming
augmented state vectors that combine target state estimates together with bias es-
timates (Dhar, 1993). With a large number of targets and sensors this will hardly
be tractable due to computational requirements etc. There are however subop-
timal but very efficient techniques to decouple target state and bias estimation
process (Ignagni (1981) or Sviestins (1999)), fully feasible for on-line operation.

This paper examines an off-line approach to bias estimation with targets of oppor-
tunity. As the number of measurements suitable for bias estimation can be quite
low, it is desirable to find a method that uses them as effectively as possible. To
this end, the method considered in this paper is based on expectation maximiza-
tion (em) (Schön et al., 2011), with additional performance enhancing features,
in particular using road constraints together with particle filtering and smooth-
ing. In em, the entire set of measurements is processed iteratively to provide
both state estimates and bias parameters (Li et al., 2010). This will be described
in detail in Section 3 after the formal definition in Section 2. The techniques are
developed further in Section 4 and Section 5 with particle filtering and smooth-
ing for on-road and off-road motion. Finally, Section 6 provides experimental
results.

2 Problem Definition

2.1 Sensor and Motion Models

A ground target is detected by a number of sensors, resulting in a set of observa-
tions YK = {yk}Kk=1 of a target states XK = {xk}Kk=1, where yk is a single measure-
ment, or set of measurements stacked as a vector, and xk is target state at time
k. The measurements are affected by a number of bias parameters and by a mea-
surement noise. All the bias parameters, for all sensors, are collected in a single
vector θ.

The measurement model for each sensor is assumed to be a known, nonlinear
function h(xk , θ) of the state xk , with measurement bias θ, and is defined as

yk = h(xk , θ) + νk , (1)
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where νk is an additive noise with known distribution pν( · ).

In general we assume that observed target moves according to a nonlinear motion
model

xk+1 = f (xk , ηk+1), (2)

with motion model f ( · ) assumed to be known and with ηk being a process noise
with known distribution pη( · ).

There is a number of sensor types used in ground target tracking, from which we
can distinguish four basic types:

Linear range (TOA, time of arrival) The time τ of a signal arrival (transmission
time) is measured, and by using the known speed v in the propagation media
(speed of light/sound in air/water etc.) one can estimate range to the target. The
measurement function is defined as

hT OA(xk , θ) = |pk − (s + θp)| + θr , (3)

where pk is target positions vector at time k, s is the sensor position vector, θp is
the sensor position bias vector and θr is an additive range measurement bias.

Linear range difference (TDOA, time difference of arrival) The transmission time
is here unknown, but by using two sensors one can estimate a relative time of
arrival, thus relative distance to the target. The measurement function takes then
a form

hT DOA(xk , θ) = |pk − (s1 + θ1
p)| − |pk − (s2 + θ2

p)| + θd , (4)

where sn is the n-th sensor position vector, θnp is the n-th sensor position bias
vector and θd is an additive range difference measurement bias.

Bearing measurements (DOA, difference of arrival) The sensor provides bearing
(direction, angle) to the target, with measurement function

hDOA(xk , θ) = atan2
(
pxk − (sx + θx)

pxk − (sy + θy)

)
+ θθ , (5)

where pxk and p
y
k are target positions, sx and sy are sensor positions, θx and θy

are sensor position biases in x and y direction respectively and θθ is called north
alignment bias.

Logarithmic range (power measurements). The sensor measures the strength of
a received signal, that can be of a different kind, e.g. acoustic or electromagnetic
wave. The measurement function is then defined as

hRSS (xk , θ) = log(1 − θG) + P LOGk − β log(r), (6)

where r = |pk − (s + θp)| is the distance to the target, P LOGk is a logarithm of power
emitted by the target at time k, β is called path loss constant and θG is a gain bias
related to miscalibration of sensors.

The list of sensor models and bias parameters above is not exhaustive, but can
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be considered as a good illustration of the calibration problem considered herein.
Further, sensor modalities can be mixed arbitrarily in our framework. Also com-
bined sensors can be included easily, such as a radar sensor, providing both range
and bearing measurements.

2.2 General Estimation Framework

The estimation approach consists in finding the bias parameters θ that maximize
the marginal likelihood

pθ(YK ) =
∫
pθ(XK , YK )dXK , (7)

where θ indicates dependence on bias parameters. The em algorithm computes
the maximum likelihood estimate by iteratively solving a filtering problem to get
Xk given an estimate of the bias, and an estimation problem to get θk , given an
estimate of Xk .

A general framework on the em algorithm for estimating parameters in a nonlin-
ear dynamic system is provided in Schön et al. (2011).

3 Expectation Maximization (EM) Algorithm

The ideas behind em, as applicable to our problem, can be summarized as fol-
lows. It is an iterative method used for finding the maximum likelihood (ml)
or maximum posterior (map) estimates of parameters, when a model depends
on latent (hidden) values. In case of bias estimation, where we based on set of
measurements YK want to estimate the bias vector θ, the latent variables are the
sequence of state vectors XK . The two steps described below are repeated until
convergence. The first step is an expectation (e) step. Introducing the notation

ln pθ(XK , YK ) = Lθ(XK , YK ), (8)

one computes theQ(θ, θ̂), that is a minimum variance estimate Schön et al. (2011)
of above log likelihood, made use of the available data set {yk}K1 and an assump-
tion θ̂ of the true value of bias vector θ. Function is defined as

Q(θ, θ̂) = Eθ̂{Lθ(XK , YK )|YK } =
∫
Lθ(XK , YK )pθ̂(XK |YK )dXK . (9)

The core idea behind the above procedure is that it should be much easier to
maximize the complete likelihood pθ(XK , YK ) than pθ(YK ) in (7).

The second step is maximization (m) step, where one calculates new bias estimate

θ̂(n+1) = arg max
θ

pθ(YK ) = arg max
θ

Q(θ, θ̂(n)). (10)

This vector is used as an input for the next iteration of the two steps. As a result,
with further iterations, the algorithm delivers a sequence of estimates θ̂(n) that
are increasingly, with each iteration, better approximations of the ml estimate.
As an initial value θ0 one can use zeros or any other data one may have available.
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The em algorithm is presented in Algorithm 1 and details of the expectation and
maximization steps are given in the following sections.

Algorithm 1 em algorithm

1. Set n = 0 and initialize θ̂(n)

2. (e)xpectation step:
Calculate: Q(θ, θ̂(n))

3. (m)aximization step:
Calculate: θ̂(n+1) = arg maxθ Q(θ, θ̂(n))

4. Update n = n + 1 until convergence.

The important problem in the em algorithm is evaluation of the distribution
pθ̂(XK |YK ) in (9), which is a smoothing problem. It should be discussed a bit
wider due to the fact that there exist multiple ways to obtain estimates of θ
through em.

In case of a linear measurement model and a linear motion model with normally
distributed noise, one obtains a direct solution to the estimation problem by
using a Kalman smoother in the expectation step together with weighted least
squares (wls) algorithm to obtain bias estimates in the maximization step. It is
then a well known property of the em algorithm that it will converge to a local
maximum of the likelihood function.

In the nonlinear case we need to use approximative algorithms. One general solu-
tion to the nonlinear filtering problem is provided by the particle smoother, that
can obtain an arbitrarily good approximation of the Q(θ, θ̂(n)) function. Then,
one can use a gradient method to solve for θ (which is equivalent to nonlinear
least squares (nls) problem). This method in detail is presented in Schön et al.
(2011).

Another way is to use linearization of the motion model and/or measurement
model. With a linearized model, one can use the extended Kalman smoother
to obtain smoothed state estimates (Li et al., 2010). Linearization allows for an
iterative solution where the model is linearized at each new iterate.

In this paper, the method with linearized measurement function and particle
smoother is used to obtain an approximation of pθ̂(XK |YK ).

3.1 Expectation Step

We now focus on how to calculate Q(θ, θ̂(n)) defined in (9). Using the Bayes’ rule,
the log likelihood (8) can be expressed as

Lθ(XK , YK ) = ln pθ(YK |XK ) + ln pθ(XK ). (11)

Actually, only the first term depends on the biases related to the measurement
function, so under the assumption of known initial state distribution p(x1), the
second term can be considered as a constant. Thus keeping only terms dependent
on θ, and including other terms into the constant term, one can write (8) in an
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extended form as

Lθ(XK , YK ) =
K∑
k=1

ln pθ(yk |xk) + const. (12)

Assuming that measurements are obtained from true target states xk through a
known, nonlinear measurement function

yk = h(xk , θ) + νk , (13)

defined in (1), with θ being the bias vector and νk assumed to follow a Normal
distribution with a known covariance R, we then have

Lθ(XK , YK ) = −1
2

K∑
k=1

(hT (xk , θ)R−1h(xk , θ) − 2yTk R
−1h(xk , θ)) + const, (14)

where the terms independent of the bias θ were again considered as constants.

Due to its nonlinearity, the measurement function needs to be linearized in order
to obtain a closed form solution for bias estimates. The best point for lineariza-
tion is around the state estimate x̂k|K = Eθ̂{xk |YK }. A motivation to use this value
comes directly from the fact, that computing of Q(θ, θ̂(n)) requires calculation
of this value. It is due to expectation over Yk in (9), which requires computing
pθ̂(XK |YK ). As will be seen below, linearization around the smoothed state esti-
mate will simplify the final solution (by making some terms disappear).

In this paper, the particle filter together with a particle smoother will be applied
to obtain smoothed state estimates. First, in the filtering step one obtains a set of
particles {xik}

M
i=1 together with their weights {wik}

M
i=1, where M is the number of

particles, that are used in the smoothing step to compute the smoothed estimate
x̂k|K . Detailed description of these algorithms will be provided in Section 3 and
4 respectively.

To proceed, the measurement function is linearized around the smoothed esti-
mate x̂k|K and bias estimate θ̂(n) using a Taylor 1st order expansion, resulting in

h(xk , θ) ≈ h(x̂k|K , θ̂
(n)) + Hθ

k (θ − θ̂(n)) + Hx
k (xk − x̂k|K ), (15)

with Jacobians

Hx
k =

∂h(xk , θ)
∂xk

∣∣∣∣∣ xk=x̂k|K
θ=θ̂(n)

, Hθ
k =

∂h(xk , θ)
∂θ

∣∣∣∣∣ xk=x̂k|K
θ=θ̂(n)

. (16)

Substituting (15) into (14) and applying the expectation operator Eθ̂{ · |YK } to (14),
in order to calculate Q(θ, θ̂(n)) (cf. (9)), and by again throwing away terms that
do not depend on θ, together with terms that are linear in xk − x̂k|K , as their
expectation value vanishes (as a direct result of linearization around smoothed
state estimate). What remains is

Q(θ, θ̂) = −1
2

K∑
k=1

(−2(yk − h(x̂k|K , θ̂) +Hθk θ̂)T R−1Hθk θ + θT (Hθk )T R−1Hθk θ) + const. (17)
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3.2 Maximization Step

In the maximization step, we compute new bias estimate θ̂(n+1) from (10). The
maximum can be found by solving

∂Q(θ, θ̂(n))
∂θ

= 0 (18)

for θ and using the property of symmetry of measurement covariance matrix
R = RT . Because (17) has a form of Aθ + θT Bθ + const, where

A =
K∑
k=1

(yk − h(x̂k|K , θ̂) + Hθ
k θ̂)T R−1Hθ

k , (19)

B =
1
2

K∑
k=1

(Hθ
k )T R−1Hθ

k , (20)

with θ as mentioned symmetric and const independent of θ, the result is simply
θ̂(n+1) = −B−1A/2, or explicitly

θ̂(n+1) =

 K∑
k=1

(Hθ
k )T R−1Hθ

k


−1  K∑

k=1

(Hθ
k )T R−1(yk − h(x̂k|K , θ̂) + Hθ

k θ̂)

 . (21)

3.3 Comments on Observability and Convergence

For the maximization step to work it is necessary that θ is invertible (or rather,
that θ̂(n+1) = −B−1A/2 is a well-conditioned problem). Typically this is not the
case: there are too many degrees of freedom for the bias parameters. The free-
dom can be restricted in different ways: fixing certain parameters or using road
constraints can be very helpful, but not always enough. There are also require-
ments on the set of measurements. If there are too few measurements, of if e.g.
the target has not moved in the measurement set, it will in most cases also be
impossible to find the parameters. Using priors is also another way to ensure
observability.

The proof of a convergence of the em algorithm can be found in literature in
Bishop (2006) or Schön et al. (2011).

4 Particle Filtering

As mentioned in the previous section, to obtain bias estimates θ̂(n) through the
em algorithm, we require smoothed state estimates x̂k|K . To obtain those esti-
mates, we will use the particle smoother. To be able to apply smoothing, we first
need to run a particle filter, that will provide a set of particles, together with their
weights, further used in a smoothing step. In this section, a simple sir (sequential
importance resampling) algorithm will be used to obtain the required particles
and weights, followed by its modification with applied road constraints.
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4.1 Particle Filter

In general, we assume that the observed target moves according to a nonlinear
motion model defined in (2)

xk+1 = f (xk , ηk+1), (22)

with motion model f ( · ) assumed to be known and with ηk being a process noise
with known distribution pη( · ). The measurement function used to obtain target
observations was previously defined in (13). A simple sir particle filter algorithm
Gordon et al. (1993) Ristic et al. (2004) is presented in Algorithm 2.

Algorithm 2 sir particle filter
1. Initialize: Set k = 1 and initialize particles

{xi0}
M
i=1 ∼ p(x0) (23)

2. Prediction: Predict the particles by drawing M i.i.d. samples according to
x̃ik ∼ p(x̃k |xik−1), i = 1, . . . , M (24)

3. Update: Compute the importance weights {wik}
M
i=1,

wik = w(x̃ik) =
pθ(yk |x̃ik)∑M
j=1 pθ(yk |x̃

j
k)
, i = 1, . . . , M (25)

4. Resampling: For each j = 1, . . . , M draw a new particle xik with replace-
ment (resample) according to

P (xjk = x̃ik) = wik , i = 1, . . . , M (26)
5. Increment k = k + 1 while k < K and return to Step 2, otherwise terminate.

4.2 Road Constrained Particle Filter

When the target moves on a road, and a map of the road is available, it is natural
to try to use this extra knowledge as a constraint in order to obtain more accu-
rate estimates. In this section a road constrained particle filter (where the target
moves only on the road map) will be described in detail.

There are many ways to apply road constraints to the particle filter. In this paper
it will be assumed, that the road map is represented by a road network defined as
JRN . The road network is a set of definitions of straight segments together with a
description of their attributes. Each segment is build of two points (a start point
and an end point). Points common for three or more segments are considered to
be junctions.

In general, the target state is defined in some coordinate system, let us call it
global for a purpose of this paper. For the road constrained filtering there exists
a need of using an extra coordinate system, that will describe target position in
road coordinates. The state at time k in this system will be denoted as xrk , where
r denotes road coordinate system.

The on-road state vector xrk = [zk lk]T is combined of two vectors: zk = [sk vk]T

describing a one-dimensional motion model, where sk is a total distance traveled
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on the road since k = 1, vk is a speed, and lk informs about the road segment the
target is on, location on the segment and direction of movement.

The motion model for the on road case is, as in general case, also nonlinear and
defined (Gustafsson et al., 2012) as

xrk+1 = f r (xrk , JRN , η
r
k+1, ν

r
k+1), (27)

where ηrk is a process noise with known distributions pηr ( · ) and νrk is a discrete
process noise, determining the choice of next road segment with known distribu-
tions pνr ( · )

Because the measurement function h(xk , θ) is usually defined in global coordi-
nates, there is a need to be able to convert target state from road to global coor-
dinates. Thus we assume, there exists a transformation that allows exact conver-
sion from global coordinates to road coordinates and opposite. Let Γ r2g ( · ) be the
function converting road coordinates to global coordinates and let Γ g2r ( · ) be the
transformation from global coordinates to road coordinates. In the on-road case,
the measurement function (13) takes the form

yk = h(Γ r2g (xrk), θ) + νk . (28)

The procedure for on road filtering is analogous to the one presented in Algo-
rithm 2, but with a few modifications. In the initialization step, particles can be
initialized directly on the road (in road coordinates) or projected onto road in
the case when the initial distribution is only known in global coordinates. Then
initial samples (particles) need to be projected using some known projection func-
tion. In general, equation (23) in Algorithm 2, for road constrained case, takes
the form

{xr,i0 }
M
i=1 ∼ p(xr0). (29)

Next, in prediction step one needs to consider the on road motion model together
with the probability of choosing one of the next road segments (in case of junc-
tions or end of the road (Salmond et al., 2007)). The likelihood in (24), which we
sample from in step (2) of Algorithm 2, is then

p(xrk |x
r
k−1) = p(zk , lk |zk−1, lk−1) =

p(zk , lk , zk−1, lk−1)
p(zk−1, lk−1)

, (30)

where Bayes theorem was used. By using the property of independence of zk−1
and lk−1, and Bayes theorem again, (30) can be rewritten as

p(xrk |x
r
k−1) =

p(lk , lk−1|zk , zk−1)
p(lk−1)

p(zk , zk−1)
p(zk−1)

=
p(lk |lk−1, zk , zk−1)p(lk−1|zk , zk−1)

p(lk−1)
p(zk |zk−1), (31)

Using the fact that p(lk |zk , zk−1) = p(lk), terms from nominator and denominator
disappear and we finally get

p(xrk |x
r
k−1) = p(zk |zk−1)p(lk |lk−1, zk , zk−1). (32)
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As was mentioned before, in the update step of Algorithm 2 there might be a
need to convert particles from road to global coordinates. To calculate pθ(yk |x̃ik)
we should use the coordinate conversion function, as in (28). Modified version
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Figure 1: Junction example.

for road constrained particle filter is presented in Algorithm 3.

Algorithm 3 Road constrained particle filter
1. Initialize: Set k = 1 and initialize particles

{xr,i0 }
M
i=1 ∼ p(xr0) (33)

2. Prediction: Predict the particles by drawing M i.i.d. samples according to
( 32)

x̃r,ik ∼ p(x̃rk |x
r,i
k−1), i = 1, . . . , M (34)

3. Update: Compute the importance weights {wik}
M
i=1,

wik = w(x̃r,ik ) =
pθ(yk |Γ (x̃r,ik ))∑M
j=1 pθ(yk |Γ (x̃r,jk ))

, i = 1, . . . , M (35)

4. Resampling: For each j = 1, . . . , M draw a new particle xr,ik with replace-
ment (resample) according to

P (xr,jk = x̃r,ik ) = wik , i = 1, . . . , M (36)
5. Increment k = k + 1 while k < K and return to Step 2, otherwise terminate.

Now we focus more deeply on sampling from the distribution p(x̃rk |x
r,i
k−1) in (34),

with respect to known motion model and noise distribution. According to the
first term in the equation, p(z̃k |zik−1), we sample with respect to the on-road mo-
tion model. The second term depends on the road map, and is called junction
selection likelihood.

The particle xr,ik−1 at time k − 1 is located on a certain segment, and its location is
described by the vectors zk−1 and lk−1 (as presented in Figure 1).

The first step is to sample a new z̃k from distribution p(z̃k |zik−1). Having a new
sample z̃k = [s̃k ṽk]T , we need to calculate the distance made by particle on road,
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d = s̃k − sk−1, which is a difference between total distance s at time k and k − 1.
If the distance d is smaller or equal to the remaining distance to the junction (1)
(end of a segment (a)), particle does not cross the junction and stays on segment
(a) with probability 1, so l̃k = lk−1.

In case, when the distance d is larger than the remaining distance to the junction
(1), the particle changes road segment. As we can see on the example in Figure 1,
the particle has 2 possible paths to follow (red to segment (b) or black to segment
(c)). In this paper, the distribution pνr ( · ), determining the choice of the next road
segment, is assumed to be uniform, so particle changes its location to one of two
possible segments ((b) or (c)) with an equal probability 1

m , where m is a number
of possible segments to move onto (in this example m = 2).

In case where at one time step the particle crosses more than one junction, we
repeat the above procedure until the distance d is smaller than the remaining
distance to the end of the segment the particle is on.
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Figure 2: Multiple junction example.

5 Smoothing

As was mentioned before, to calculate smoothed state estimates we need to run
first the particle filter and store all predicted particles {x̃ik}

M
i=1 and corresponding

weights {wik}
M
i=1 for all k = 1, . . . , K and then run Algorithm 4 (Schön et al. (2011)).

In case of road constrained algorithm, the above procedure needs to be modified,
analogously to the filtering case. The main difference is in calculating the proba-
bility p(x̃jk+1|x̃

i
k), between 2 particles, as in step (2) and (3) of Algorithm 4. In the

road constrained case it follows, as defined in (32)

p(x̃r,jk+1|x̃
r,i
k ) = p(z̃jk+1|z̃

i
k)p(l̃jk+1|l̃

i
k , z̃

j
k+1, z̃

i
k). (40)

There are two main problems regarding evaluation of this probability.
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Algorithm 4 Particle smoother

1. Initialization: Set filtered terminal weights {wik} to be initialized smoothed
weights at time k = K as

wiK |K = wiK , i = 1, . . . , M (37)

2. Smoothing: Use filtered weights {wik} and sets of stored particles
{x̃ik , x̃

i
k+1}

M
i=1 to compute smoothed weights {wik|K }

M
i=1 using formulas below:

wik|K = wiK

M∑
j=1

w
j
k+1|K

p(x̃jk+1|x̃
i
k)

v
j
k

(38)

where

v
j
k =

M∑
i=1

wikp(x̃jk+1|x̃
i
k) (39)

3. While k > 0 decrease k = k − 1 and return to Step (2), otherwise terminate.

The first term of equation (40) is directly related to the one-dimensional on-road
motion model, as defined in (27). The second term is related to the road network.
In a simple case, when particles x̃r,jk+1 and x̃r,ik are located on the same segment, the
second term is equal to 1. In case when particles are located on corresponding
segments (problem analogous to the one presented in Figure 1), the probability is
equal to 1

m , where m is the number of possible segments the particle can choose.

In general case, when the on-road path between 2 particles crosses more than one
junction (as presented in Figure 2), one needs to consider all the possible trajecto-
ries between two particles. As seen in the figure, particle moving from segment
(a), through (b) to (c), can pick two possible trajectories. Thus, the second term
in (40), for trajectories between (a) and (b) is equal to 1, and between (b) and (c)
to 1

m with m = 2. That makes the junction selection probability between segment
(a) and (c) equal to 1 · 1

2 = 1
2 .

A second problem is that the probability in (40) needs to be computed for each
pair of particles in each smoothing step k, thus the complexity of one step is
equal to M2, where M is the number of particles. Because computation of the
likelihood requires finding all possible paths between two points on-road, it is
computationally demanding. This is considered as an important part to be im-
proved in future.

Having the set of particles {x̃ik}
M
i=1 and their smoothed weights {wik|K }

M
i=1, the min-

imum mean square error estimate of the target state can be computed as

x̂k|K =
M∑
i=1

wik|K x̃
i
k , (41)

and used to obtain bias estimate θ̂(n) through equation (21). Because the em
algorithm is, in general, defined in global coordinates, there is a need to convert
estimates in case when road constraints are applied. In this paper particles in
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road coordinates are converted first to global coordinates using the Γ r2g mapping,
and together with the smoothed weights are used to obtain the state estimate in
global coordinates through

x̂k|K =
M∑
i=1

wik|K Γ
r2g (x̃r,ik ). (42)

Because, in the above, we are using particles converted to global coordinates it
might happen that the estimate will not be on-road. A natural remedy is to com-
pute the particle that minimizes the mean square error,

x̂k|K = arg min
x̃
j
k

‖x̃ik −
M∑
i=1

wik|K x̃
i
k‖

2. (43)

Since each particle is constrained to be on-road, this procedure will guarantee
that also the estimate is on-road.

6 Experimental Results

The em algorithm with applied road constraints will be compared with the ver-
sion without constraints in the experiment, where a single target is moving on-
road and is being observed by a number of sensors measuring (unknown) acoustic
power emitted by the target. Evaluation will be performed on real data. In both
versions of the em algorithm, a constant velocity (cv) motion model (Gustafsson
et al., 2012) was considered with an extra state representing logarithm of acous-
tic power P log emitted by the target. The motion model in global coordinates,
defined in (22), was represented by a two-dimensional cvmodel defined as

pxk+1
p
y
k+1
vxk+1
v
y
k+1

P
log
k+1


=

 I2 T I2 02×1
02 I2 02×1

01×2 01×2 1



pxk
p
y
k
vxk
v
y
k

P
log
k


+


T 2

2 I2 02×1
T I2 02×1
01×2 1

 ηgk+1, (44)

where T = 1, pxk and pyk represent x and y position at time k respectively, vxk and

v
y
k represent x and y velocities at time k, P logk is the emitted acoustic power at

time k and ηk is a three-dimensional Gaussian process noise with zero mean and
covariance Q = diag([25 25 0.1]).

The on-road motion model is defined as
sk+1
vk+1

P
log
k+1
lk+1

 = f r




sk
vk
P
log
k
lk

 , JRN , νrk+1, η
r
k+1

 , (45)
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where 
sk+1
vk+1

P
log
k

 =

 1 T 0
0 1 0
0 0 1



prk
vrk
P
log
k

 +


T 2

2 0
T 0
0 1

 ηrk+1, (46)

and where sk and vk represent a one-dimensional distance and velocity at time k
respectively and ηrk is a two-dimensional Gaussian process noise with zero mean
and covariance Qr = diag([0.01 0.1]) and νrk is a discrete process noise with uni-
form distribution.

In this experiment, measurements are obtained from N identical acoustic sensors
(microphones). The measurement function for the n-th sensor, as defined in (6),
is

ynk = hnRSS (xk , θ
n) + νnk = log(1 − θng ) + P logk − β log(rn) + νnk , (47)

where rn =
√

((pxk − (snx − θnx ))2 + (pyk − (sny − θny ))2) is a distance from the sensor to
the target, β = 2 is the path loss exponent, the bias vector for the n-th sensor is
defined as θn = [θnx θny θng ]T , where θnx , θny and θng represent position biases in
x and y sensor position and gain error respectively, snx and sny is a sensor position,

pxk and pyk are positions of the target in global coordinates at time step k and νnk
represents a scalar Gaussian noise with zero mean and variance σ2

n = 0.22.

6.1 Scenario Description

In the considered scenario, N = 12 acoustic sensors are located as in Table 1.
A single target is moving on the road and K = 30 measurements are collected

Table 1: Sensor positions
n 1 2 3 4 5 6

snx [m] 77.0 88.6 43.3 59.9 10.0 30.6
sny [m] 7.0 22.2 10.0 16.3 10.2 16.8
n 7 8 9 10 11 12

snx [m] 23.4 9.1 46.0 37.7 78.1 65.5
sny [m] 34.9 40.0 41.4 50.3 52.3 36.7

for every n-th sensor. The measurements are related to the target positions xk
at time steps k = 1 : K with units in seconds. The scenario is presented in Fig-
ure 3. Acoustic power measurements are obtained by first taking the square of
the sound signal from each sensor and then averaging it for each T = 1 second. As
an example, the raw sound data and the acoustic power measurements generated
from it, for sensor nr 6, are presented in Figure 4.

The ground truth reference target state is obtained using gps.
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Scenario overview
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Figure 3: Target trajectory and sensor positions.
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Figure 4: Acoustic soundwave and logarithmic power measurements.

6.2 Results

In the experiment, position biases are added to the sensors by simply switching
the positions of two pairs of sensors (3–4 and 7–8, respectively). Also the prior
knowledge about biases is introduced for each n-th sensor as zero mean θnπ =
[θnx,π θny,π θng,π]T = [0 0 0]T with covariance P nπ = diag([52 52 0.12]). A
total number of Mc = 70 Monte Carlo runs of the particle filter are performed for
each case, with I = 30 number of em iterations. The number of particles in each
case is equal to M = 500. The results are described below.

The rms error based on Monte Carlo runs is presented in Figure 5. Numerical
results for selected biases are presented in Table 2. Figure 6 presents true and
predicted logarithmic power measurements for sensor 4 before and after calibra-
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Figure 5: Mean rms error based on Monte Carlo runs.

Table 2: Monte Carlo results for bias estimates in simulated scenario
Bias True em algorithm em algorithm

index bias Without constraints With constraints
θ3
x 16.67 12.64 ± 3.24 11.03 ± 2.37
θ3
y 6.25 1.48 ± 4.23 4.13 ± 0.89
θ3
g 0 0.01 ± 0.04 −0.04 ± 0.01
θ4
x -16.67 −15.3 ± 3.79 −16.42 ± 3.49
θ4
y -6.25 −3.53 ± 3.7 −6.16 ± 1.29
θ4
g 0 0.04 ± 0.04 0.02 ± 0.01
θ7
x -14.27 −10.26 ± 3.22 −11.44 ± 2.43
θ7
y 5.08 6.88 ± 6.09 4.59 ± 0.99
θ7
g 0 −0.01 ± 0.03 0.01 ± 0.01
θ8
x 14.27 16.09 ± 4.21 16.15 ± 3.4
θ8
y -5.08 −9.74 ± 5.34 −10.11 ± 2.15
θ8
g 0 −0.16 ± 0.04 −0.15 ± 0.03

tion for both unconstrained and road constrained version of the em algorithm
for one of the mc runs. Figure 7 presents filtered and smoothed estimates for
I = 30th iteration of the em algorithm (after calibration) compared to ground
truth.
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Figure 6: Predicted power measurements (obtained from smoothed state es-
timates) before and after calibration.
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Figure 7: Filtered and smoothed estimates after calibration together with the
ground truth.

7 Conclusions

In this paper, the em algorithm was presented as a general solution to calibrate
ground sensor network without special equipment, both natural and opportunis-
tic targets can be used. Application of road constraints to the particle filter pro-
vides improvement in bias estimation quality, especially in terms of the standard
deviation of the bias estimates. It provides also much better state estimates for
the target in the scenario with missed detections.
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Abstract

Calibration of ground sensor networks is a complex task in practice.
To tackle the problem, we propose an approach based on simultane-
ous tracking of targets of opportunity and sparse estimation of the
bias parameters. The evidence approximation method is used to get
a sparse estimate of the bias parameters, and the method is here ex-
tended with a novel marginalization step where a state smoother is
invoked. A simulation study shows that the non-zero bias parameters
are detected and well estimated using only one target of opportunity
passing by the network.

1 Introduction

Calibration of the ground sensor network (gsn), also known as sensor registra-
tion or bias estimation, is a crucial element for performance of the entire system.
Improper alignment of the sensors might decrease the performance of the net-
work and in fact result in degrading the quality of tracking, appearance of ghost
tracks and problems in measurement to track association.

There are many previous works dealing with bias estimation (Dhar (1993), Svi-
estins (1999), Okello and Ristic (2003), Vermaak et al. (2005)). Here we focus on
methods applicable to gsn. The different biases, here denoted bias parameters,
may include location errors, orientation errors, range measurements etc., depend-
ing on sensor type. There are two main groups of techniques for calibrating the
sensors: using reference targets, or using targets of opportunity. Both can be
performed on-line or off-line.

In this application, the reference targets could typically be one or more vehi-
cles carrying satellite navigation equipment, e.g. gps. One must make sure that
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enough measurements are generated for each sensor with the target at different
locations. Once the data has been collected, one can apply e.g. a maximum likeli-
hood (ml) method (Okello and Ristic, 2003), to estimate the bias parameters that
make observations of the target fit the reference data best.

In case no reference targets can be used, one needs to track targets of opportunity
for the purpose of bias estimation. One approach is to simultaneously estimate
the track states and biases, which can be accomplished by forming augmented
state vectors that combine target state estimates together with bias estimates
(Dhar, 1993). With a large number of targets and sensors this will hardly be
tractable due to computational requirements etc. There are however suboptimal
but very efficient techniques to decouple target state and bias estimation process,
fully feasible for on-line operation (Ignagni (1981), Sviestins (1999), Vermaak
et al. (2005)).

As the number of measurements suitable for bias estimation can be quite low, it
is desirable to find a method that uses them as effectively as possible. One such
off-line method is the expectation maximization (em) algorithm (Li et al. (2010),
Schön et al. (2011), Syldatk et al. (2012)), where the entire set of measurements
is processed iteratively to provide both state estimates and bias parameters.

This paper examines a slightly different approach to the off-line bias estimation
with targets of opportunity. Because the number of measurements is usually low,
it is useful to apply some regularization to the maximum likelihood estimation,
in order to avoid the problems with observability. In practice, only a few sensors
need calibration usually, and most of the bias parameters are zero, so one should
use this extra information.

In this paper biases are considered to be stochastic variables and a method called
Type-II Bayes (Berger, 1985), evidence approximation (MacKay, 1992) or sparse
Bayesian learning (Wipf and Rao, 2004) is applied, where each bias parameter
has its own regularization parameter, corresponding to the priors in a Bayesian
framework. Those parameters are estimated together with bias parameters. The
approach utilizes Occam’s razor (MacKay (1992), Bishop (2006)), which lets us
find a good balance between model complexity and fit to data. It also implies
sparsity through regularization and, in addition, provides us a very useful infor-
mation about how well each of the parameters is determined by the data.

Application of different regularizers for each parameter is a basic idea underlying
the Relevance Vector Machines algorithm, provided in Tipping (2001), using the
same sparse Bayesian learning framework by MacKay (1992).

Our approach to simultaneous tracking and calibration requires a novel exten-
sion to the evidence approximation method, where the target trajectories are
marginalized using state smoothers for computing the evidence function.

The method will be described in detail in Section 3 after the formal definition in
Section 2. Section 4 provides simulation results. In Section 5 final conclusions
are stated and future work is suggested.
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2 Problem Formulation

A ground target is detected by a number of sensors, resulting in a set of observa-
tions YK = {yk}Kk=1 of the target states XK = {xk}Kk=1, where yk is a single measure-
ment, or set of measurements stacked as a vector, and xk is target state at time
k = 1 . . . K . The measurements are affected by a number of bias parameters and
by a measurement noise. All the bias parameters, for all sensors, are collected in
a single vector θ.

The measurement model for each sensor is assumed to be a known, nonlinear
function h(xk , θ) of the state xk , with measurement bias vector stated as θ =
[θ1 . . . θm . . . θM ]T , and is defined as

yk = h(xk , θ) + νk , (1)

where νk is an additive noise with Normal distribution and known covariance
matrix R.

As was partially mentioned in the introduction, there are three main problems
with calibration of the sensor network. Small number of measurements causes
problems with observability, and thus the maximum likelihood methods do not
usually provide reliable results. The problem can be solved by applying some
constraints on the estimates, which in the Bayesian framework are solved by as-
signing the priors. Choosing a correct prior is also a problem by itself, since it
should utilize the sparsity feature of the bias vector. Finally, a correct calibration
cannot be performed, when the state of the ground target is unknown, which is
usually the case.

2.1 General Estimation Framework

In the estimation approach, the bias vector θ is assumed to be a stochastic vari-
able. The method consists of finding a posterior distribution of the bias parame-
ters, by using the Bayesian maximum a posteriori method

p(θ|YK , α) =
p(YK |θ, α)p(θ|α)

p(YK |α)
. (2)

The set of hyper-parameters α, determines the prior distribution for θ, given by
p(θ|α). Since those parameters are in general unknown, a method using maxi-
mization of an evidence function (also called a marginal likelihood) is applied. Ev-
idence, which is a normalizing term in (2), is obtained by integrating out the
parameter vector, as

p(YK |α) =
∫
p(YK |θ, α)p(θ|α)dθ. (3)

A general framework for the procedure of maximizing the evidence, called ev-
idence procedure, is provided for example in MacKay (1992), Tipping (2001) or
Gull and Skilling (1999).
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In this paper a general case is handled, when the likelihood p(YK |θ, α) depends
also on the state of the target XK , that is generally unknown. The set of those
target states is then integrated out from p(YK |θ, α, XK ) by making use of an es-
timated state distribution p̂(XK ), obtained from a filtering/smoothing algorithm
(Ristic et al. (2004), Mahler (2007), Gustafsson (2012)). Thus the likelihood, in-
dependent of XK , is computed using

p(YK |θ, α) =
∫
p(YK |XK , θ, α)p̂(XK )dXK . (4)

3 Sparse Bayesian Calibration Algorithm

Having previously defined the measurements in (1) and using the assumption
that measurements are independent, the likelihood for full data set can be easily
written as

p(YK |XK , θ, α) = N (Y; h(X, θ),R), (5)

where Y = [yT1 . . . y
T
K ]T , X = [xT1 . . . x

T
K ]T , h(X, θ) = [h(x1, θ)T . . . h(xk , θ)T ]T and R

is a covariance matrix with R matrices on diagonal.

In case of the sensor networks, the true value of the state xk is usually unknown,
so it is reasonable to use estimates obtained from for instance the Kalman or par-
ticle filter/smoother, using some initial value of θ0 and α0. For the Gaussian case,
a set of state estimates X̂K = {x̂k}Kk=1, together with its corresponding covariance
matrices P̂K = {P̂k}Kk=1, results in a distribution

P (XK |YK , θ0, α0) = N (X|X̂, P̂), (6)

where X̂ = [x̂T1 . . . x̂
T
K ]T and P̂ is block diagonal with P̂ T1 . . . P̂ TK on the diagonal.

By treating (6) as a distribution over the state, p̂(XK ) = P (XK |YK , θ0, α0), one can
remove the dependence on XK from (5), by applying the marginalization defined
in (4)

By linearizing the measurement function around some θ̂ and X̂, Equation (1) can
be rewritten, using a 1st order Taylor expansion, as

ȳk = Hθ(x̂k , θ̂)θ + Hx(x̂k , θ̂)(x − x̂k) + νk , (7)

where ȳk = yk − h(x̂k , θ̂) + Hθ̂(x̂k , θ̂)θ̂ and

Hθ(x̂k , θ̂) =
∂h(xk , θ)
∂θ

∣∣∣∣∣θ = θ̂, x = x̂k
, (8)

Hx(x̂k , θ̂) =
∂h(xk , θ)
∂xk

∣∣∣∣∣θ = θ̂, x = x̂k

. (9)

Thus the result of integration, where some terms got cancelled in the meantime,
is given by

p(YK |θ, α) ≈ N (Ȳ|Hθθ, R̄), (10)
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where the covariance matrix R̄ is defined as R̄ = (R + HxP̂HT
x ), and Ȳ = [ȳ1 . . . ȳK ]T ,

Hθ = [Hθ(x̂1, θ̂)T . . . Hθ(x̂K , θ̂)T ]T and HX is defined analogously.

In a Bayesian framework, to infer the values of θ, we need to apply some con-
straint on the data, which is accomplished by assigning a prior. Here we use a
zero mean Gaussian prior

p(θ|α) =
M∏
m=1

N (θm|0, αm) = N (θ|0, A−1), (11)

where α = [α1 . . . αM ]T is the hyper-parameter defining the precision, and A =
diag(α1, . . . , αM ). The problem is how to assign the hyper-parameters? In this
framework, the hyper-parameters are assumed unknown and inferred from the
data together with the set of parameters θ. Therefore, by having defined the like-
lihood and prior above, one only needs to define the prior for hyper-parameters.
Here we will consider flat prior that is non informative (Jeffreys, 1946), p(α) =
const, giving equal probability for all possible values of α. Having defined the
prior, we can now proceed to the Bayesian inference of unknown variables.

3.1 Parameter Estimation

In this step the values of θ will be inferred from the data. In a fully Bayesian
framework, the posterior over the parameter set θ should be obtained by inte-
grating out the hyper-parameters, so then

p(θ|YK ) =
∫
p(θ|YK , α)p(α|YK )dα. (12)

By assuming the posterior for α is sharply peaked around its estimate α̂, so p(α) ≈
δ(α − α̂), we can (MacKay, 1992) use the approximation

p(θ|YK ) ' p(θ|YK , α)|α=α̂ . (13)

Hereby the posterior above can be rewritten, using Bayes rule, as

p(θ|YK ) '
p(YK |θ, α)p(θ|α)

p(YK |α)

∣∣∣∣∣α = α̂
. (14)

The posterior for θ is obtained using (10) and (11), together with a simple rule
for the posterior distribution in a Gaussian case, as

p(θ|YK ) = N (θ|µ,Σ), (15)

which is also Gaussian, with mean and covariance defined by

µ = Σ(HT
θR̄−1Ȳ), (16)

Σ = (HT
θR̄−1Hθ + A)−1. (17)
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It is sometimes useful to obtain a point estimate of the bias vector, which maxi-
mizes the posterior

θ̂map = arg max
θ

p(θ|YK ), (18)

which is equal to the mean defined in (16).

3.2 Hyper-parameter Estimation

To infer the hyper-parameters, Bayes rule is applied again, so

p(α|YK ) =
p(YK |α)p(α)

p(YK )
. (19)

As was declared before, the prior p(α) is assumed to be flat, so to obtain optimal
values of hyper-parameters, we only need to consider the first term in a nomina-
tor, p(YK |α). As one can easily notice, it is the normalizing constant of Equation
(14), defined previously in (3) as an evidence. To obtain the evidence, the parame-
ter θ needs to be integrated out as in (3), so using (10) and (11), one can write

p(YK |α) =
∫
N (Ȳ|Hθθ, R̄)N (θ|0, A−1)dθ (20)

and the optimal value is then the one that maximizes the likelihood

α̂ = arg max
α

p(YK |α). (21)

Because (20) is a simple convolution of Gaussians, the evidence can be easily
computed as

p(YK |α) =
|R̄|−

1
2

(2π)
Kdy

2

|A|
1
2 |Σ|

1
2 e−Q(Ȳ), (22)

where dy is a dimension of Ȳ, and the quadratic term Q(Ȳ) is given by

Q(Ȳ) =
1
2

(ȲTR̄−1Ȳ − µTΣ−1µ). (23)

Now, to obtain the estimate of α, the approach presented in MacKay (1992) will
be used. By taking the derivative of a logarithm of the evidence (22) with respect
to αm, and equalling it to zero, we get

− 1
2
µ2
m −

1
2
Σmm +

1
2αm

= 0, (24)

where µm is the m-th element of the m vector, defined in (16), and Σmm is the m-
th diagonal element of the covariance matrix defined in (17). The equation yields
a following solution

αm =
γm
µ2
m
, (25)

where γm = 1 − αmΣmm.
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According to MacKay (1992) or Bishop (2006), the new parameter can take values
in a range of γm ∈ [0 . . . 1], and it determines how well the corresponding parame-
ter θm is determined by the data. For small standard deviation of the prior, when
αm is large, the estimates are strongly constrained by the prior. In that case Σmm
in (17) is dominated by hyper-parameter, so Σmm ≈ α−1

m , and thus γmm ≈ 0. On
the other hand, when αm takes a small value, which means the corresponding
estimate µm is well fit to the data, then γm ≈ 1.

As we can see the algorithm requires an iterative approach. We need to start
with some initial estimates of θ and α and iteratively refine the estimates. The
procedure is shown in Algorithm 1.

Algorithm 1 Sparse calibration algorithm

1. Initiate at i = 0 with θ0 and α0.
2. Use a filtering/smoothing algorithm to obtain state estimates X̂K and corre-

sponding covariances P̂K , using θ0 as a bias estimate.
3. For i = 1:

(a) Linearize the measurement function as in (7) using X̂K and θ̂i−1.
(b) Set α = α̂i−1 and using Equation (16), (17) and (18) obtain new esti-

mate of bias vector θ̂i = θ̂map = µ.
(c) Set γm = 1 − α̂i−1

m Σmm and obtain new estimate of α using (25), given
by α̂im = γm/µ

2
m

(d) If converged: (4); Otherwise: i = i + 1 and repeat (3).
4. End iterations.
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Figure 1: Scenario overview with target ground truth trajectory together
with true and biased sensor positions.
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4 Experimental Results

In the experimental scenario, NS = 10 sensors are distributed randomly on an
area of 500 × 500 meters. Sensors are gathering range measurements (in meters)
and bearing measurements (in radians). Both positions and measurements are
biased, with additive biases. Positioning biases related to the x- and y-axis are
defined as θx and θy respectively; measurement biases related to range- and
bearing-bias are defined as θr and θa respectively. Simulations are performed
in a Monte Carlo (mc) manner, with biases randomly generated in each mc run,
according to zero-mean normal distribution with standard deviations σx, σy , σr
and σa respectively. Bias vector is also assumed to be sparse, with sparsity sf , rep-
resenting a fraction of non-zero elements, ranging from 0 to 1. Measurements, as
in (1), are collected using a following vector measurement function, defined for
each sensor as

h(xk) =
[
h1(xk)
h2(xk)

]
=


√
d2
x,k + d2

y,k + θr

arctan
dy,k
dx,k

+ θa

 , (26)

dx,k = pxx,k − (psx − θx), dy,k = pxy,k − (psy − θy), (27)

and where state vector xk = [pxx,k , p
x
y,k , v

x
x,k , v

x
y,k]

T , with elements corresponding
to x- and y- position and x- and y- velocities of the target at time step k respec-
tively and psx and psy are positions of the sensor in x- and y- axis. An overview

Table 1: Parameters of the scenario.
Parameter Symbol Value

Number of measurements per sensor K 50
Number of sensors NS 10

Range measurement noise std σ ry 10 m
Angle measurement noise std σ ry 10◦

Number of mc runs MCn 250
Sparsity range sp 0 : 0.05 : 1

Number of iterations I 25
EKF initial position std σp 10 m
EKF initial velocity std σv 5 m/s
Bias: x/y position std σx / σy 10 m / 10 m
Bias: range/angle std σr / σa 10 m / 10◦

of the simulated scenario, with K = 50 of measurements, is presented in Figure
1. Parameters of the scenario are summarized in Table 1. For parameter estima-
tion, smoothed state estimates X̂K are obtained from Kalman smoother using a
standard constant velocity (cv) model.

Figure 2 presents the summary rms error (mean + 1 standard deviation) of bias
estimation results, where maximum likelihood (ml), maximum a posteriori (map)
and evidence approximation (ea) methods are compared for different bias vector
sparsities. In the case of map, the true prior, from which biases were generated,
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was used. Figure 3 presents detailed results for one Monte Carlo simulation.

4.1 Summary

As we can see in Figure 2, the proposed method provides much better results
compared to traditional maximum likelihood, and slightly, but consistently, per-
forms worse than the map method. In the simulation, map is assumed to use
the true prior distribution from which the biases were generated, including the
knowledge about the sparsity shape of the bias vector. It is important to notice,
that the more the bias vector contains zero element (sp → 0), the better the ea
and map methods perform compared to ml. It is due to the fact, that both meth-
ods utilize the feature of sparsity of the bias vector, which is implied by using the
correct prior (map) or through Occam’s razor (ea).

On the other hand, ml does not utilize this feature, and since there are no pri-
ors applied, the method tends to provide unreliable results in case, when the
estimated parameters are not well determined by the measurement data.
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Figure 2: Mean and standard deviation of the bias estimation rms Error for
different sparsities.

Figure 3 presents one Monte Carlo run estimation results for sensors 5, 6 and 7,
with corresponding bias parameters θ17 to θ28 and related γm values obtained
from the ea algorithm. In that case only parameters number 18, 21, 26 and 27
had non-zero values. As we can see, for most θm all 3 algorithms managed to



102 Paper B Simultaneous Tracking and Sparse Calibration in gsn using ea

18 20 22 24 26 28

−10

0

10

20

Bias element θm

Va
lu

e

True MAP EA ML

18 20 22 24 26 28
0

0.5

1

Parameter γm

Va
lu

e

Figure 3: Comparison of estimation methods and γ parameter.

provide quite similar results. We shall now look at the difference that appeared
between them.

One can observe that ea algorithm correctly detected most of the zero and non-
zero elements. The parameters, that were well determined by the measurements,
are indicated by the value of a corresponding gamma parameter close to unity.
One can observe this situation for θ21, where all methods give very good results,
and the parameter is well determined by the data, so γ21 ' 1. On the other hand,
for elements θ25 and θ27, theml has significantly diverged, most probably due to
the problem with observability. In that case ea algorithm performed more robust,
and has shrunk the values towards zero, what is indicated by value of γ25,27 ' 0.
The parameters that were estimated with values close to zero, unless they were
well determined by the data, were shrunk towards the prior mean value (zero),
and therefore the sparsity feature was implied. Situation like this can be observed
for example for parameters θ22,23,24.

5 Conclusions

The proposed evidence approximation (ea) method estimates the bias parame-
ters in a sensor calibration problem, jointly with the state trajectories of targets
of opportunity. As a bonus, ea estimates the prior of the bias parameters, which
can in itself serve as an indicator of how well the bias parameters are estimated.
This is a useful and practical advantage compared to the more direct maximum
likelihood (ml) approach. Further, the ea method provides a sparse bias vector
in contrast to themlmethod, which is useful in practical ground sensor network
deployments, where many sensors can be assumed bias-free.
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Abstract

The performance of ground sensor networks (gsn) relies on accurate
knowledge of sensor positions and sensor linearity parameters. Cal-
ibration of these should be done automatically after the deployment
and later on regular intervals. Preferably, only targets of opportunity
should be used to avoid manual intervention. We present a Bayesian
solution that scales well with network size and efficiently utilizes a
limited number of data to get a sparse estimate of a potentially huge
number of calibration parameters. The approach is based on itera-
tively solving two different estimation problems using the expectation
maximization (em) algorithm. First, the target trajectory and sensor
parameters are estimated for a given prior on the parameters. Second,
the prior is estimated using the evidence approximation (ea) princi-
ple to get a sparse solution. The algorithm successfully jointly esti-
mates the sparsity structure, calibration parameters and target trajec-
tory as demonstrated on both simulated and real data from a micro-
phone network with a passing vehicle.

1 Introduction

Ground sensor networks (gsn) are a versatile solution to many complex surveil-
lance problems. The network can consist of microphones, radars, seismometers,
radio transmitters/receivers etc. In all these cases, the position and linearity pa-
rameters such as offset and scale are important to know for the target tracking
and localization algorithms needed in the surveillance applications. For the radar
and sensor arrays also the orientation is crucial. This will be referred to as the
calibration problem, which is sometimes also called bias estimation or sensor reg-
istration.
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The problem of sensor calibration is widely considered in the literature (Dhar
(1993), Sviestins (1999), Okello and Ristic (2003), Vermaak et al. (2005)). There
exist multiple approaches to the problem, including on-line and off-line meth-
ods. Both types can be further divided into methods using reference targets (for
example beacons with known positions or a target with gps receiver) or targets of
opportunity (where the target position is unknown). In the simplest case, when
the reference data is available and measurements are collected by all the sensors,
one can simply apply maximum likelihood (ml) method (or maximum a poste-
riori (map) if prior information is available) in order to obtain estimates of bias
parameters.

On the other hand, when a reference target cannot be used, in order to perform
bias estimation, one needs to simultaneously estimate both target states and cal-
ibration parameters. It can be achieved for example by augmenting the target
state vector with the parameters we want to estimate and then applying a state
estimation filter (Dhar, 1993). This approach though might cause some problems,
especially in the case of a large number of targets and unknown parameters. How-
ever, there exist some suboptimal, and efficient methods to decouple those two
problems, fully feasible for online application (Ignagni (1981), Sviestins (1999),
Vermaak et al. (2005)).

Another approach is to use an expectation maximization algorithm (Dempster
et al. (1977), Li et al. (2010), Schön et al. (2011), Kung et al. (2005)), that is an
offline method designed to solve the maximum likelihood (or maximum a pos-
teriori) estimation problem in the presence of latent variables. In application to
sensor registration, the method estimates the state of the target (the latent vari-
able) and provides ml estimates of the parameter in an iterative manner, with
guaranteed convergence to (at least) local minimum.

In practical applications, the usual number of measurements is relatively low,
and thus problems with observability of bias parameters might appear. It is thus
natural to apply some regularization to the maximum likelihood estimation, that
in Bayesian framework is evaluated through priors. In real life applications it
is also common, that most of the sensors are already correctly calibrated (biases
are close to zero) and one should also incorporate this information to improve
estimation quality.

This paper considers quite a complex situation, when both prior information
and reference targets are unavailable. The bias parameters are considered to be
stochastic variables, and a method called Type-II Bayes (Berger, 1985), evidence
approximation (MacKay, 1992) or sparse Bayesian learning (Wipf and Rao, 2004) is
applied, where each bias parameter has its own regularization parameter, corre-
sponding to the application of priors in the Bayesian framework. Those regular-
ization parameters, also called hyper-parameters, are estimated together with the
parameters. Because of presence of latent variables, the em algorithm is applied
to tackle that situation. A crucial feature of the proposed algorithm is that it uti-
lizes Occam’s razor, which lets us find a good balance between model complexity
and fit to data and which implies the sparsity through regularization.
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Application of different regularizers for every parameter is a core idea underlying
the Relevance Vector Machines algorithm by Tipping (2001), that uses the same
sparse Bayesian learning framework presented in MacKay (1992).

The formal definition of the problem is presented in Section 2, together with
a detailed description of a method in Section 3. Section 4 provides simulation
results supported by real world experiment results in Section 5. Final conclusions
are stated in Section 6 together with suggestions for future work.

2 Problem Formulation

2.1 Notation and Estimation Framework

A target is detected by a number of sensors, resulting in a set of observations
YK = {yk}Kk=1 corresponding to the set of target states XK = {xk}Kk=1, where yk is a
single measurement or set of measurements stacked as a vector, and xk is a state
of the target at time instant k. Measurements are affected both by a measurement
noise and a set of (unknown) bias parameters. All the biases are collected in
a single bias parameter vector θ that is assumed to be at least partially sparse,
which means that a number of elements are equal to zero. It corresponds to a
situation, when only part of sensors within the network require calibration. One
Bayesian approach to model sparsity is via a prior variance αm for each parameter
θm.

In summary, we have the unknown target trajectory XK , bias parameters θ and
prior parameter precisions α (by precision we understand an inverse of a vari-
ance). There are now several possible approaches:

• One can solve the un-regularized problem using the Expectation Maximiza-
tion (em) algorithm, that provides the joint ml estimate of XK and θ. How-
ever, if the dimension of these two vectors is large compared to the dimen-
sion of YK , then the accuracy is deemed to degrade.

• If the sparsity structure is given, for instance parametrized with α−1
m = 0

for a set of indices m, then the em method becomes more attractive. We
will use this as a reference solution to get an upper bound on the possible
performance.

• One can perform dedicated calibration experiments where the trajectory Xk
is known, and estimate θ with a sparse method:

– Assuming a Laplacian prior with precision αm on each parameter leads
to the popular l1 optimization framework, that provides a regularized
solution to the sparse estimation problem. Here αm is a design param-
eter, which is a tricky user choice that affects the degree of regulariza-
tion.
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– Assuming a Gaussian prior with an unknown variance αm is another
approach. These variances can be estimated with the evidence approx-
imation (ea) method.

What we propose is an iterative method consisting of two steps:

• The two vectors XK and θ are estimated for a given value of α using the em
algorithm.

• The set of hyper-parameters α is estimated using the em algorithm based
on the ea principle.

2.2 Sensor and Motion Model

The measurement model for each sensor is assumed to be a known, nonlinear
function h(xk , θ) of state and bias. The measurement at time k, corresponding to
state xk is then defined as

yk = h(xk , θ) + νk , (1)

where νk is a normally distributed zero mean additive noise with a known covari-
ance matrix R = B−1, being an inverse of precision matrix B.

In this paper, for simplicity, a case where bias vector enters the measurement
function linearly will be considered. Then, the measurement function linear in θ
is defined as

yk = hx(xk) + hθ(xk)θ + νk , (2)

where hx(xk) and hθ(xk) are terms that do not depend on θ. When the function is
nonlinear, in order to transform it into a form linear in θ, one can use first order
Taylor expansion around some known θ̂, and thus get

yk = h(xk , θ̂) + Hθ
k (θ − θ̂) + νk , (3)

where

Hθ
k =

∂h(xk , θ)
∂θ

∣∣∣∣∣θ = θ̂
(4)

is a Jacobian. In general it is assumed, that the target moves according to a general
motion model, described by an equation

xk+1 = f (xk , ηk), (5)

where f (xk , ηk) is some transition function of a state xk and a process noise ηk ,
with known distribution. For the purpose of this paper, a linear Constant Velocity
(cv) model will be used, defined as

xk+1 = Fkxk + Gkηk , (6)

where Fk and Gk are known matrices, and ηk is a normally distributed noise with
zero mean and covariance matrix Q.

The task is to estimate the bias parameter vector θ in a situation where only the
measurement set YK is available and the positions of the target XK are unknown.
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Since the problem of sensor network calibration might not always be well defined,
due to limited observability or small number of measurements, the traditional
maximum likelihood methods, as was mentioned, might not be sufficient and
will provide unreliable results. The problem can be handled by applying some
constraints on the estimates, which in the Bayesian framework is solved by as-
signing the prior. Choosing the right prior is also a problem itself, since it should
utilize the sparsity of the parameter vector.

2.3 Expectation Maximization (EM) Algorithm

The ideas behind the em, as applicable to our problem, are as follows. It is a
two-step iterative method used for finding the maximum likelihood (ml) or the
maximum a posteriori (map) estimates of parameters in a situation, when the
model depends on latent (hidden and unknown) variables. In the considered
case of parameter estimation, where based on set of measurements YK one wants
to estimate θ, the latent variables are the sequence of states XK . In the first step,
called Expectation (e) step, one computes

Q(θ, θ̂) = Eθ

[
ln p(XK , YK |θ)

∣∣∣∣YK , θ̂] =
∫

ln p(XK , YK |θ)p(XK |YK , θ̂)dXK , (7)

that is a minimum variance estimate of a joint log-likelihood, using the available
data set YK and an assumption θ̂ of the true parameter vector θ. The underlying
idea is, that it should be much easier to maximize the complete data likelihood
p(XK , YK |θ), compared to direct maximization of p(YK |θ).

The second step is Maximization (m), where one calculates a new estimate of the
parameter vector

θ̂∗ = arg max
θ

Q(θ, θ̂) (8)

for the maximum likelihood case, and

θ̂∗ = arg max
θ

(
Q(θ, θ̂) + ln p(θ)

)
(9)

for the case of maximum a posteriori, where p(θ) is a prior over the bias parame-
ter vector.

This estimate is then used as an input for the new iteration. As a result, the more
iterations, the better approximation of the ml (or the map) estimates. It is also
shown in the literature that the em algorithm has a guaranteed convergence to at
least a local minimum (Dempster et al. (1977), Bishop (2006)).

In order to obtain maximum a posteriori estimates, the prior needs to be assigned.
Since it was assumed that the hyper-parameters of the prior are unknown, an ev-
idence approximation method can be applied, according to the description pro-
vided in next section.
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2.4 Evidence Approximation (EA)

General framework for the procedure of maximizing an evidence function – the
likelihood of a data given set of hyper-patameters, called evidence procedure, can
be found in MacKay (1992), Tipping (2001) or Gull and Skilling (1999).

In the general estimation framework the parameter vector is assumed to be a
stochastic variable. The method consists of two subsequent levels of inference.
In the first level one uses a Bayes’ rule to find a posterior distribution for the bias
parameters, given by

p(θ|YK , α) =
p(YK |θ, α)p(θ|α)

p(YK |α)
, (10)

where the prior over the parameter vector p(θ|α) is governed by a set of hyper-
parameters α, that are usually unknown and must also be inferred from the data.
In a fully Bayesian framework though, in order to obtain estimates of θ, one shall
integrate out the hyper-parameters in the following way

p(θ|YK ) =
∫
p(θ|YK , α)p(α|YK )dα, (11)

where p(α|YK ) is a posterior for the hyper-parameters obtained based on the set
of measurements YK . Since it is usually problematic, one can make hare a simpli-
fication by assuming, that the posterior for hyper-parameters is sharply peaked
around its estimate α̂, so p(α|YN ) ≈ δ(α − α̂), and then use the approximation

p(θ|YK ) ' p(θ|YK , α)
∣∣∣∣α = α̂

=
p(YK |θ, α̂)p(θ|α̂)

p(YK |α̂)
, (12)

Thus the posterior for the parameter vector in (11) is assumed to be the same as
in (10), but with fixed hyper-parameters α = α̂.

In the second level of inference, set of unknown hyper-parameters is estimated.
Using Bayes’ rule again one can write

p(α|YK ) =
p(YK |α)p(α)

p(YK )
. (13)

Assuming that the prior for the hyper-parameters is flat, p(α) = const, in order to
obtain new estimates of α one then only needs to maximize p(YK |α). The function
is called an evidence. It is important to notice that it appears as a normalizing
constant in (10), and is obtained by integrating out the parameter vector, as

p(YK |α) =
∫
p(YK |θ, α)p(θ|α)dθ. (14)

Having the evidence function, one can finally obtain point estimates of hyper-
parameters using direct maximization, as

α̂ = arg max
α

p(YK |α). (15)
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2.5 Two Latent Variables

This paper handles the case when both the state of the target XN and bias vector
θ are unknown. This situation therefore complicates the basic definition of the
evidence procedure presented earlier, because one needs to make an extra integra-
tion of unknown state in both levels of inference. In the first step, the posterior
for the parameters in (11) takes the form

p(θ|YK ) =
∫
p(XK , θ|YK )dXK . (16)

Analogously, a similar situation appears in the second step. The integration in
(14), takes the following form

p(YK |α) =
∫
p(XK , YK |α)dXK =

∫∫
p(XK , YK , θ|α)dXKdθ. (17)

One of the natural ways to handle this problem, due to presence of latent vari-
ables, is to use the em algorithm. Next chapter presents the problem of applica-
tion of the expectation maximization to the evidence procedure, where the evi-
dence function is maximized in an iterative manner.

3 Sparse Calibration Algorithm

In order to infer the values of θ in a Bayesian framework, and to apply some
constraints on the data, one needs to assign a prior. In this paper the following,
zero mean Gaussian prior will be used, defined by

p(θ|α) = N
(
θ|0, A−1

)
, (18)

where A = diag(α1 . . . αM ) is a prior precision matrix and αm is the m-th hyper-
parameter.

As was mentioned before, there appears to be a problem how to assign the hyper-
parameters to the prior. In the framework presented here they are assumed un-
known and inferred from the data together with set of bias parameters, under the
assumption that the prior over the hyper-parameters is constant (or non informa-
tive), so p(α) = const.

Having defined all the necessary components and previously defined the prob-
lem in Section 2, we can proceed to the Bayesian inference of unknown variables
in presence of latent variables XK using expectation maximization procedure ap-
plied to the evidence procedure.

3.1 Application of the EM to the Problem

In order to provide a proper derivation of the algorithm it is necessary to start
with the second level of inference. In this step the hyper-parameters of the prior
for θ will be inferred from the data by maximizing the evidence function, accord-
ing to the scheme presented in Section 2.4. The second level of inference requires
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integrating out the parameter variable, as in (14). In presence of the latent vari-
able XN one get the following form of the evidence function (as in (17)) to be
maximized

p(YK |α) =
∫∫

p(XK , YK , θ|α)dXKdθ. (19)

We can see here that maximization of the evidence can be solved iteratively by us-
ing the expectation maximization algorithm and treating both XK and θ as latent
variables. Thus having some initial estimate for the hyper-parameter α̂, we can
proceed iteratively with both expectation and maximization steps.

Expectation step for the hyper-parameters: In this step, according to the
scheme presented in Section 2.3, the expected value of a log joint-likelihood will
be computed with respect to the posterior for both latent variables. The resulting
Q(α, α̂) function is then given by

Q(α, α̂) = E
[
ln p(XK , YK , θ|α)

∣∣∣∣YK , α̂]
=

∫∫
ln p(XK , YK , θ|α)p(XK , θ|YK , α̂)dXKdθ. (20)

Decomposing the joint log likelihood one gets

ln p(XK , YK , θ|α) = ln p(XK , YK |θ, α) + ln p(θ|α). (21)

Under the assumption that the initial state distribution p(x1) is known, one can
continue the decomposition as

ln p(XK , YK , θ|α) =
K∑
k=1

ln p(yk |xk , θ, α) + ln p(θ|α) + const. (22)

Here one can immediately make an observation that the likelihood p(yk |xk , θ, α)
does not depend on α, so we can put all elements that do not depend on it as a
constant (const), resulting in the following expression depending on the hyper-
parameters

ln p(XK , YK , θ|α) = −1
2

ln |A| − 1
2
θTAθ + const. (23)

Using the above log likelihood, the Q(α, α̂) function in (20), after some simple
rearranging, can be stated as

Q(α, α̂) = −1
2

∫
(ln |A| + 1

2
θTAθ)︸                ︷︷                ︸

1

∫
p(XK , θ|YK , α̂)dXK︸                      ︷︷                      ︸

2

dθ + const. (24)

Since 1 does not depend on XK , one only needs integrate out set of target states
from the joint posterior p(XK , θ|YK , α̂). As one should immediately notice, it in
fact directly corresponds to the first level of inference presented in latter part of
Section 2.4, where one uses the assumption, that posterior for α is sharply peaked
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around the hyper-parameter estimate. Then one can use the approximation as in
(12), so 2 can be identified as

p(θ|YK ) ≈ p(θ|YK , α̂) =
∫
p(XK , θ|YK , α̂)dXK , (25)

and theQ(α, α̂) function can be rewritten in a much simpler form of the following
expectation

Q(α, α̂) = −1
2

∫
(ln |A| + θTAθ)p(θ|YK , α̂)dθ + const. (26)

The problem to be solved at this stage is how to compute the posterior distribu-
tion of parameter vector p(θ|YK , α̂), given set of measurements YK , in presence
of the set of latent variables XK while having the set of hyper-parameters α = α̂
fixed. This fits again in a natural way into the expectation maximization proce-
dure.

Using some initial value of θ, one can now continue with two consecutive steps of
the algorithm – expectation step and maximization step, according to the scheme
presented in Section 2.3.

Expectation step for the parameters: In this step one computes the expec-
tation of a joint log-likelihood with respect to the posterior for latent variables,
defined as

Qmap(θ, θ̂) = Q(θ, θ̂) + ln p(θ|α̂), (27)

where

Q(θ, θ̂) = E
[
ln p(XK , YK |θ, α̂)

∣∣∣∣YK , θ̂, α̂]
=

∫
ln p(XK , YK |θ, α̂)p(XK |YK , θ̂, α̂)dXK (28)

and ln p(θ|α̂) is a log of the prior for θ. A posterior for XK , given by p(XK |YK , θ̂, α̂),
is usually obtained from a smoothing algorithm (Rauch-Tung-Striebel for linear
case or particle smoother for the nonlinear case etc.). Rewriting the joint log-
likelihood into

ln p(XK , YK |θ, α̂) = ln p(YK |XK , θ, α̂) + ln p(XK |θ, α̂), (29)

and assuming again that initial target state p(x1) is known, the above can be
rewritten again, keeping the terms that do not depend on θ as a constant, as

ln p(XK , YK |θ, α̂) =
K∑
k=1

ln p(yk |xk , θ, α̂) + const. (30)

Using (1) it can be further rewritten as

ln p(XK , YK |θ, α̂) = −1
2

K∑
k=1

(
hT (xk , θ)Bh(xk , θ) − 2yTk Bh(xk , θ)

)
+ const. (31)
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Now, in order to take the expectation, as in (28), the measurement function will
be linearized around θ̂ and the smoothed state estimate x̂k|K = E{xk |YK , θ̂, α̂}, that
is obtained from Extended Kalman Smoother using Rauch-Tung-Striebel equa-
tions. Taking the expectation of joint log-likelihood, keeping again only the terms
depending on θ, and after some cancelations of terms linear in xk − x̂k|K (as their
expected value vanishes as a direct result of linearization around smoothed state
estimate), one can rewrite (28) as

Q(θ, θ̂) = −1
2

K∑
k=1

(
−2(yk − h(x̂k|K , θ̂) + Hθ

k θ̂)T BHθ
k θ + θT (Hθ

k )Bθ
)

+ const. (32)

Making use of the prior definition in (18), and keeping again only terms depen-
dent on the parameter vector, the expectation of joint log-likelihood takes finally
the form

Qmap(θ, θ̂) = Q(θ, θ̂) − 1
2
θT Âθ + const, (33)

where Â = diag(α̂1 . . . α̂M ) is a diagonal matrix with estimates of hyper-parameters
located on a diagonal.

Maximization step for the parameters: In this step one maximizes the
Qmap(θ, θ̂) function w.r.t. θ, as in (9). By using the property of symmetry of
measurement precision matrix BT = B, and solving the equation

∂
∂θ

Qmap(θ, θ̂) = 0, (34)

that yields the solution of the form

θ̂∗ = Σ−1
θ

 K∑
k=1

(Hθ
k )T B

(
yk − h(x̂k|K , θ̂) + Hθ

k θ̂,
) (35)

where Σθ is a corresponding estimate covariance matrix, defined as

Σθ =

 K∑
k=1

(Hθ
k )T BHθ

k + A


−1

. (36)

Having obtained the estimate of θ, one can use it as a a starting point for the new
iteration of the em algorithm. At this step it is important to notice, that both the
estimate and its covariance matrix form a Gaussian posterior for θ, with mean
µθ = θ̂∗ and covariance matrix Σθ . From (25) we can then write

p(θ|YK ) ' p(θ|YK , α̂) = N (θ|µθ ,Σθ) . (37)

Having estimated the posterior for parameter vector, which turned out to be
equivalent to the first step of evidence procedure, one can now return to the
second step, where the set of hyper-parameters is being finally inferred from the
data.
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Maximization step for the hyper-parameters: Using the result from first
level of inference for the posterior p(θ|YK , α̂), having a Gaussian form given in
(37) and a property of matrix trace Tr(AB) = Tr(BA), the final form of the expec-
tation from (26) can be rewritten as

Q(α, α̂) = −1
2

ln |A| − 1
2

Tr(A(Σθ + µθµ
T
θ )) + const. (38)

In the maximization step the expected value of log joint-likelihood is maximized
with respect to each i-th element of α. Solving the equation

∂Q(α, α̂)
∂αm

= 0 (39)

by also using the property of a trace, ∂
∂Aij

Tr(AB) = Bji , gives the final result

α̂∗i =
1

[Σθ + µθµ
T
θ ]ii

=
1

[Σθ]ii + [µθ]2
i

=
1

[Σθ]ii + θ̂2
i

, (40)

where [ · ]ii denotes ith diagonal element, and [ · ]i denotes ith row/element.

Having computed new value of α̂, the iterative procedure is repeated until algo-
rithm converges or assumed number of iterations was performed.

3.2 The Algorithm

The complete algorithm derived in a previous subSection is presented in Algo-
rithm 1. After taking a deeper look, one can notice that it can be considered as
a type of ’double-looped’ em algorithm. The basic principle is that given an ini-
tial value of hyper-parameter α̂ one computes expectation Q(α, α̂) of the log of
joint-likelihood – this step is here named E1. The expectation for the parameters
(here named E2) is computed during steps from 2a) to 2e), using again the em al-
gorithm in the inner loop (steps a)–d)). The results obtained are used to compute
Q(α, α̂) in e). It is then maximized in the maximization step (respectively named
M2) in f ). Having obtained a new estimate of the hyper-parameters, the outer
loop is iterated again, until convergence.

The traditional approach to the parameter estimation using expectation maxi-
mization comes directly from the method definition, stating that em is an iter-
ative method to obtain a maximum likelihood estimates of the parameters in a
presence of latent variables. The main task is to maximize the Q(θ, θ̂) function.
One can also extend the method, in case when the prior distribution over the pa-
rameters is known, so the em algorithm will compute the maximum a posteriori,
by maximizing the Qmap(θ, θ̂).

The algorithm presented in this paper extends the standard approach to the em
method, by also inferring the parameters of the prior. Having some initial val-
ues of the hyper-parameters α̂, in each iteration their new values are inferred
according to (40). This simple modification has an advantage, that during the re-
estimation of hyper-parameters the Occam’s razor is employed, which in result
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Algorithm 1 Sparse calibration algorithm using em

1. Initialize the algorithm iterations at n = 0 with some arbitrary initial values θ̂(n) =
θ0 and α̂(n) = α0.

2. For n = 1 . . . N :
(a) Initialize algorithm with α̂ = α̂(n−1)

First level of inference:

(b) Initialize em algorithm at j = 0 with initial values θ̂(j) = θ̂(n−1)

(c) For j = 1 . . . J :
Expectation (E1) step:

• Assign θ̂ = θ̂(j−1)

• Obtain set of state estimates {x̂k|K } for k = 1 : K using Extended Kalman
Filter and Smoothing algorithm

• Obtain Qmap(θ, θ̂) function according to the (32)
Maximization (M1) step:

• Obtain new estimate of θ as in (35)

• Assign new estimate, so thus θ̂(j) = θ̂∗

(d) If (j == J): assign θ̂(n) = θ̂(J) and go to d),
otherwise: increment j = j + 1 and go to b).

Second level of inference:

(e) Expectation (E2) step:

• Assign α̂ = α̂(n−1)

• Compute Q(α, α̂) as in (38)
(f) Maximization (M2) step:

• Obtain new estimate of α as in (40)

• Assign new estimate, so thus α̂(n) = α̂∗

3. If (n == N ) or converged: end iterations,
otherwise: increment n = n + 1 and continue.

exploits the sparsity feature of parameter vector. Next Section describes in detail
how the Occam’s razor is utilized and further in Section 4 all three methods are
compared, both on simulated and real world scenario.

3.3 Interpretation of the Occam’s Razor

As it was previously mentioned, the important feature of maximizing the evi-
dence is that it implies an Occam’s razor and allows us to find a compromise
between model complexity (in our case the value of α representing directly a
range of values that θ can take) and a best fit of θ to the data. Now the basics
underlying the concept will be explained; an extended description can be found
in MacKay (1992) or Bishop (2006).
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Initialize: x̂0, θ̂0 and α̂0

Assign: θ̂j=0 = θ̂n−1

(E1) Estimate set of states: {x̂k|K }

(E1) Compute QMAP(θ, θ̂j−1)

(M1) Estimate parameters: θ̂j

Assign: θ̂n = θ̂J

(E2) Compute Q(α, α̂n−1)

(M2) Estimate hyper-parameters: α̂n

Final estimates: θ̂ = θ̂N and α̂ = α̂N

INITIALIZATION FOR n = 0

INNER LOOP FOR j = 1. . . J

OUTER LOOP FOR n = 1. . . N

(a) Extended em algorithm using evidence
approximation.

Initialize: x̂0, θ̂0

(E) Estimate set of states: {x̂k|K }

(E) Compute Q(θ, θ̂n−1) for ML
(or QMAP(θ, θ̂n−1) for MAP)

(M) Estimate parameters: θ̂n

Final estimate: θ̂ = θ̂N

INITIALIZATION FOR n = 0

EM LOOP FOR n = 1. . . N

(b) Traditional em algorithm for
ml/map estimates.

Figure 1: Comparison of the traditional approach to em for ml (or map)
estimates with the extended approach presented in the paper.

Consider a simple, one dimensional example, where θ is a scalar. Assuming for
simplicity that the prior over this parameter is uniformly distributed on some
interval ∆θprior, and by applying Laplace approximation to the evidence in (14)
under an assumption, that the posterior is peaked around its most probable value
θ̂map, which holds in most cases, we get

p(YK |α) ' p(YK |θ̂map, α) × (∆θ̂map/∆θprior). (41)

By identifying certain terms of the equation, we can write

Evidence ' Best fit likelihood ×Occam’s factor. (42)

It shows, that the expression for evidence is equal to the product of the best fit
likelihood p(YK |θ̂map, α) and the Occam’s factor ∆θ̂map/∆θprior, which is repre-
sented by the ratio of the volumes of accessible values of θ for the posterior and
prior. The Occam’s factor is a penalty term measuring the complexity of the
model.
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The wider the ∆θprior is the variety of values the parameter can take is much
larger, which makes model more complex. On the other hand, for the models
finely tuned to the data, the value of ∆θ̂map is much smaller, compared to the
width of the prior, so it will imply larger penalty. Maximizing the evidence func-
tion lets us find values that provide an optimal trade-off between minimizing
the misfit to the data and a model complexity measure, since the Occam’s razor
prefers its balanced value.

4 Simulation Results

To verify performance of the algorithm, two simulated scenarios were considered,
where, Ns sensors, are randomly distributed over an area of 500 × 500 meters.
Sensors are simple radar sensors, gathering range (in meter) and bearing measure-
ments (in radians) corresponding to a single target. Bias parameters affect both
position of the sensors and measurements. Additive position biases, correspond-
ing to x- and y- axis are defined as θx and θy respectively; additive measurement
biases, corresponding to range and bearing measurements, are defined as θr and
θa respectively.

Simulations are performed in a Monte Carlo (mc) manner, where biases are ran-
domly generated in each run, according to a zero-mean normal distribution with
standard deviations σx, σy , σr and σa corresponding respectively to bias param-
eters. Bias vector is also assumed to be sparse, where sf represents the sparsity
factor - a fraction of non-zero elements and ranging in value from 0 to 1.

Table 1: Parameters for both simulated scenarios
Scenario: 1 2

Parameter Symbol Value Value
Number of measurements/sensor K 100 25

Number of sensors Ns 10 m
Range measurement noise std σ ry 10 m
Angle measurement noise std σ ay 10◦

Number of mc runs Nmc 100
Sparsity range sp 0 : 0.1 : 1

Number of inner/outer loop iterations Iin/Iout 1/50
Initial position/velocity std σp/σv 2.5m / 1m/s

Bias: x/y position std σx/σy 10m / 10m
Bias: range/angle std σr/σa 10m / 10◦

For the first scenario target moves with a sinusoidal trajectory, with a relatively
high number of measurements, which should provide good observability of the
parameters. In the second scenario, trajectory is much simpler, which should
result in problems with observability of the bias parameters. Detailed description
of both scenarios is presented in Table 1 together with an overview in Figure 2.

Measurement function (corresponding to the definition in (1)), used to gather the
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Figure 2: General overview of the two simulated scenarios presenting
ground truth (gt) and true and biased positions of the sensors.

measurements, is defined for each radar sensor as

h(xk , θ) =
[
h1(xk , θ)
h2(xk , θ)

]
=


√
d2
x,k + d2

y,k + θr

arctan
dy,k
dx,k

+ θa

 , (43)

where

dx,k = pxx,k − (psx − θx), dy,k = pxy,k − (psy − θy), (44)

and where the target state vector xk = [pxx,k , p
x
y,k , v

x
x,k , v

x
y,k]

T , with elements cor-
responding to x- and y-position and x- and y-velocity of the target at time step
k respectively and psx and psy are positions of the sensor in x- and y-axis respec-
tively.

Motion model (corresponding to (5)), used in order to obtain the set of state es-
timates {xk|K } for time steps k = 1 . . . K , is a standard, two dimensional Constant
Velocity (cv) model, defined as

xk+1 = Fxk + Gηk , (45)

where ηk is a zero-mean normally distributed noise with a known 2×2 covariance
matrix Q and

F =
[
I2×2 T I2×2
02×2 I2×2

]
, G =

[
T 2

2 I2×2
T I2×2

]
. (46)

Each scenario was evaluated for all three algorithms mentioned before: for the
standard em algorithm computing maximum likelihood estimate (em-ml; no
prior considered), for the version of the em algorithm computing the map esti-
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mate (em-map; true parameters of the distribution used to generate the biases
were used as parameters of the prior) and for the newly proposed algorithm com-
puting the map estimate (em-ea), where hyper-prior parameters were computed
iteratively during each iteration.

Results of mc runs are presented in Figure 3a for Scenario 1 and in Figure 3b
for Scenario 2. As one can see, the proposed method performs much better com-
pared to the em method computing only the ml estimate. It comes naturally
from the fact, that while computing the map estimate extra information is avail-
able in a form of the prior distribution. Additionally, the prior parameters are
re-estimated in each iteration, as the second step of inference. Re-estimation al-
lows to utilize the feature of the parameter vector sparsity through the Occam’s
razor, as was described in Section 3.3. One can thus observe, that the more sparse
the parameter vector is, the better the method performs compared to the basic
version of the em algorithm. Application of the prior also helps to handle the
problems of poor observability, as can be observed for Scenario 2. For that case
computing theml estimate does not provide reliable results at all, since the com-
putations diverge just after few em iterations. In opposite, the following situation
does not occur for the proposed algorithm – it still provides reliable results.

As for the reference, both methods presented above are compared with the expec-
tation maximization algorithm version using true prior for the parameter vector.
Term ’true’ comes from the fact, that the prior used to obtain map estimate is
the same as the one used to initially generate biases in the scenario. As should
be expected, the method performance is the best among all three algorithms. It
comes directly from the fact, that em-map has a full initial information about
the zero/non-zero parameters, which is incorporated in prior distribution. Anal-
ogous situation holds for the em using evidence approximation, but in that case,
that information is obtained during the second level of inference process. It is
also visible, that the more sparse bias vector, the smaller rms estimation error.

Figure 4 presents a result of one simulation for Scenario 1, comparing all three
methods by presenting true and estimated values of a rather sparse (sf ' 0.4) bias
vector (upper plot) together with true and estimated standard deviations of the
bias vector prior (bottom plot). As one can see, the proposed method evaluates
the sparsity feature by detecting correctly parameters with zero/non-zero values.
Method performance is thus very similar to the em version computing the map
estimate (with the prior containing full information about sparsity). On the other
hand, simple em algorithm assigned non-zero values to the almost all bias vector
elements (since it does not evaluate the sparsity feature), finally causing much
larger estimation error.

5 Real Data Experiment

To further verify performance of the method, all three algorithms were tested
on real world scenario, presented in Figure 5, where Ns = 9 acoustic sensors
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(a) Results for Scenario 1.
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(b) Results for Scenario 2.

Figure 3: Monte Carlo results for both simulated scenarios (mean and one
standard deviation).

(microphones) were observing one moving target.

Each sensor collects an acoustic signal, where the amplitude is measured (in
Volts). rms of the measured signal, over selected period, yrms, is then converted
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Figure 4: Estimation results for one Monte Carlo simulation of Scenario 1.
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Figure 5: Real scenario overview with target trajectory and sensor positions.

into sound pressure measurements prms, measured in Pascals, using a conversion
factor specific to each sensor. The sound pressure p decays inversely proportion-
ally to the distance to the source r, according to

p ∝ r−1. (47)

In order to connect the position of the target with measures signal, one needs to
introduce two quantities: sound pressure level (spl) and sound power level (swl).
The first one (also known as sound level) is a logarithmic measure of an effective
sound pressure, measured by the sensor, relative to a reference value pref = 20µP a.
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Figure 6: Sound wave and computed spl for one of the sensors.

It is defined as

LP = 20 log10

(
prms
pref

)
. (48)

Sound pressure level is measured in a unit called dBspl, that is not to be confused
with dB, since it is not recognizable SI unit. Using the reference pressure, a sound
pressure of 1P a corresponds to 94dBspl of sound level. Second measure, the
sound power level (also known as an acoustic power level), is also a logarithmic
measure. It is measured relative to a reference sound power (P0 = 10−12W , the
reference sound power in the air) and computed as

LW = 10 log10

(
P
P0

)
. (49)

swl unit is dBSWL, and is also not recognizable as a SI unit.

Opposite to the sound pressure, sound power is not distance dependent, since it
strictly characterizes the sound source. It represents the total power produced
by the source in all dimensions, while the sound pressure is a measurement at a
point near the source. The relation between log measures (spl and swl), for a
free field source, is given by

LP = LW + 10 log10

( S0

4πr2

)
, (50)

where S0 = 1m2. Recorded sound wave and computed sound pressure level are
presented in Figure 6.

Having defined this relation, one can introduce a sound pressure level measure-
ment function (corresponding to (1) and (48)), defined for each acoustic sensor
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as

h(xk , θ) = (1 − θG)Lwk + 10 log10(4π) − 10 log10(r2
k ), (51)

where we make use of an augmented state vector

xk = [pxx,k , p
x
y,k , v

x
x,k , v

x
y,k , L

w
k ]T , (52)

with Lwk being the swl emitted by a target at time k. Having previously defined
dx,k and dy,k in (44), the

r2
k = d2

x,k + d2
y,k (53)

is a squared distance to the target at time k. For acoustic sensors 3 different
biases are distinguished, θx, θy , θG, corresponding to x-/y- additive position bias
and microphone gain miscalibration.

To describe the target motion, again cv model is used, as in (45), but in this
case, in order to handle extra emitted power variable, model matrices had to be
augmented, as

F = blkdiag(F, 1), G = blkdiag(G, 1). (54)

Since the scenario was pre-calibrated using very accurate differential gps, in or-
der to check performance of the algorithm one had to manually add random
biases to certain sensors. Analogously to simulated scenarios, parameters are pre-
sented in Table 2. For sensor 1 the θy was fixed as 15m. In order to provide
observability for the em with ml, parameters for three sensor (3, 6 and 7 corre-
sponding to bias elements {θm}m={7−9,16−21}) had to be fixed a priori to zero.

Table 2: Parameters for real world scenario
Parameter Symbol Value

Number of measurements/sensor K 81
Sampling rate FS 48 kHz

Number of sensors/fixed sensors Ns/Nf 9/3
Measurement noise std σy 2 dBSPL

Number of mc runs Nmc 50
Sparsity range sp 1

Number of inner/outer loop iterations Iin/Iout 4/25
Initial position/velocity std σp/σv 1m / 1m/s

Initial emitted power mean/std Lw/σw 102.5/1 dBSPL

Bias: x/y/gain std σx/σy/σG 7.5m/7.5m/0.05
Bias: gain std σg 0.05

Results for 50 Monte Carlo runs are presented in Table 3. Convergence result for
fixed bias of Sensor 1 is presented in Figure 8, followed by one sample mc run
estimation result presented in Figure 7.
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Figure 7: Single mc run for the real world scenario, where three bias vector
elements {θm}m={7−9,16−21}, were manually fixed.
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Figure 8: Convergence of the y position bias θy for Sensor 1.

6 Conclusions

In this paper a novel method for simultaneous tracking and calibration in sensor
networks, utilizing the feature of sparsity of estimated parameter vector, was pre-
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Table 3: rms error for the real world scenario
Bias Prior em-ml em-map em-ea

Position [m] 7.50 7.510 ± 4.486 5.276 ± 2.934 6.004 ± 3.125
Gain 0.05 0.009 ± 0.002 0.008 ± 0.001 0.008 ± 0.002

sented. New approach to the expectation maximization algorithm using evidence
approximation, providing improved results, was compared with traditional ap-
proach to em computing ml/map estimate. It was shown that method provides
reliable results using only one target and limited number of measurements, and
also in most cases correctly detects zero/non-zero bias parameters.
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