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The aim – Part 2 2(60)

The aim in Part 2 is to introduce expectation maximisation (EM) and
Markov chain Monte Carlo (MCMC).

This will be done by showing how simple linear system identification
problems can be solved using these methods.

In Part 4 we will then show how EM and MCMC can be used to solve more
challenging nonlinear system identification problems.

In other words, we present the methods in this part and hint (there is still
much more that remain to be discovered here) at their real potential for

nonlinear system identification developed in Part 4.
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Outline 3(60)

1. Maximum likelihood modelling
2. Expectation maximisation (EM)

a) Introduction and derivation
b) Identifying LGSS models using EM

3. Bayesian modelling

4. The Monte Carlo idea
5. Markov chain Monte Carlo (MCMC)

a) Identifying LGSS models using the Gibbs sampler
b) The Metropolis Hastings sampler
c) The Gibbs sampler
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Maximum Likelihood (ML) modeling 4(60)

Maximum likelihood provides a systematic way of computing point
estimates of the unknown parameters θ in a given model, by
exploiting the information present in the measurements {yt}T

t=1 and
the corresponding inputs {ut}T

t=1 (if present).

Computing ML estimates of the parameters in an SSM amounts to:

1. Model the obtained measurements y1, . . . , yT as a realisation
from the stochastic variables Y1, . . . , YT.

2. Assume yt | xt ∼ hθ(yt | xt, ut) and
xt | xt−1 ∼ fθ(xt | xt−1, ut).

3. Assume that the stochastic variables Y1, . . . , YT are
conditionally iid.

Thomas Schön
Part 2 - EM and Monte Carlo methods explained via linear system identification

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET



Maximum likelihood – goal 5(60)

The goal in maximum likelihood is to find the θ that best describes
the distribution from which the data comes from.

Alternatively this can be interpreted as finding the parameter θ that
makes the available measurements as likely as possible.
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Maximum likelihood – the likelihood function 6(60)

Definition ((log-)likelihood function)

The likelihood function Lθ(y1:T) is the pdf of the measurements Y1:T,
with the values for the obtained measurements y1:T inserted,

Lθ(y1:T) , pθ(Y1:T = y1:T)

and

`θ(y1:T) = log Lθ(y1:T)

is referred to as the log-likelihood.
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Latent variables – example 7(60)

A latent variable is a variable that is not directly observed. Other
common names are hidden variables, unobserved variables or
missing data.

The latent variables in an SSM

xt+1 ∼ fθ(xt+1 | xt),
yt ∼ hθ(yt | xt),

are given by the unknown states, i.e., Z = x1:T.
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Expectation Maximization (EM) – strategy and idea 8(60)

The strategy underlying the EM algorithm is to separate the original
ML problem into two linked problems, each of which is hopefully
easier to solve than the original problem.

This separation is accomplished by exploiting the structure inherent
in the probabilistic model.

The key idea is to consider the joint log-likelihood function of both
the observed variables Y , y1:T and the latent variables Z,

`θ(Z, Y) = log pθ(Z, Y).
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Expectation Maximization (EM) – the algorithm 9(60)

Algorithm 1 Expectation Maximization (EM)

1. Initialise: Set i = 1 and choose an initial θ1.
2. While not converged do:

(a) Expectation (E) step: Compute

Q(θ, θi) = Eθi [log pθ(Z, Y) | Y] =
∫

log pθ(Z, Y)pθi(Z | Y)dZ

(b) Maximization (M) step: Compute

θi+1 = arg max
θ∈Θ

Q(θ, θi)

(c) i← i + 1
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EM example – LGSS learning 10(60)

Consider the following scalar LGSS model

xt+1 = θxt + vt,

yt =
1
2

xt + et,

(
vt
et

)
∼ N

((
0
0

)
,
(

0.1 0
0 0.1

))
.

For simplicity, let the initial state be fully known, x1 = 0. Finally, the
true parameter value for θ is given by θ? = 0.9.

The learning problem is now to determine the parameter θ on the
basis of the observations Y = {y1, . . . , yT} and the above model,
using the EM algorithm.

The latent variables Z are given by the states

Z = X , {x1, . . . , xT+1}.
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EM example – LGSS learning 11(60)

The expectation (E) step:

Q(θ, θi) , Eθi [log pθ(X, Y) | Y] =
∫

log pθ(X, Y)pθi(X | Y)dX.

Let us start investigating pθ(X, Y).

pθ(X, Y) = pθ(xT+1, XT, yT, YT−1)

= pθ(xT+1, yT | XT, YT−1)pθ(XT, YT−1),

According to the Markov property we have

pθ(xT+1, yT | XT, YT−1) = pθ(xT+1, yT | xT),

resulting in

pθ(X, Y) = pθ(xT+1, yT | xT)pθ(XT, YT−1).
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EM example – LGSS learning 12(60)

Repeated use of the above ideas straightforwardly yields

pθ(X, Y) = pθ(x1)
T

∏
t=1

pθ(xt+1, yt | xt).

According to the model, we have

pθ

((
xt+1
yt

)
| xt

)
= N

((
xt+1
yt

)
;
(

θ
1/2

)
xt,
(

0.1 0
0 0.1

))
.
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EM example – LGSS learning 13(60)

The resulting Q-function is

Q(θ, θi) ∝ −Eθi

[
T

∑
t=1

x2
t | Y

]
θ2 + 2 Eθi

[
T−1

∑
t=1

xtxt+1 | Y

]
θ

= −ϕiθ2 + 2ψiθ,

where we have defined

ϕi ,
T

∑
t=1

Eθi

[
x2

t | Y
]

, ψi ,
T−1

∑
t=1

Eθi [xtxt+1 | Y] .

There exists explicit expressions (linear state smoothing problem) for
these expected values (see the lecture notes for details).
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EM example – LGSS learning 14(60)

The maximization (M) step:

θi+1 = arg max
θ

Q(θ, θi).

Hence, the M step simply amounts to solving the following quadratic
problem,

θi+1 = arg max
θ

− ϕiθ2 + 2ψiθ,

which results in

θi+1 =
ψi

ϕi .
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EM example – LGSS learning 15(60)

Algorithm 2 EM for LGSS

1. Initialise: Set i = 1 and initialise θ1 = 0.1 and θ0 = 0.6.
2. While |`θi(Y)− `θi−1(Y)| ≥ 10−6 do:

(a) Expectation (E) step: Compute

ϕi =
T

∑
t=1

Eθi

[
x2

t | Y
]

, ψi =
T

∑
t=1

Eθi [xtxt+1 | Y] .

(b) Maximization (M) step: Find the next iterate according to

θi+1 =
ψi

ϕi .

(c) i← i + 1
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EM example – LGSS learning 16(60)

• Different number of samples T used.

• Monte Carlo studies, each using 1000 realisations of data.

• Initialize the parameter at θ1 = 0.1.

T 100 200 500 1000 2000 5000 10000
θ̂ 0.8716 0.8852 0.8952 0.8978 0.8988 0.8996 0.8998

No surprise, since ML is asymptotically efficient.
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EM example – LGSS learning 17(60)
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(a) Iteration 1
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(b) Iteration 2
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EM example – LGSS learning 18(60)
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(c) Iteration 3
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(d) Iteration 11
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EM – fully parameterised LGSS model 19(60)

Consider a fully parameterised LGSS model
(

xt+1
yt

)

︸ ︷︷ ︸
ξt

=

(
A B
C D

)

︸ ︷︷ ︸
Γ

(
xt
ut

)

︸ ︷︷ ︸
zt

+

(
vt
et

)
,
(

vt
et

)
∼ N

((
0
0

)
,
(

Q S
ST R

)

︸ ︷︷ ︸
Π

)
,

or more compactly, ξt | xt ∼ N (ξt | Γzt, Π).

The initial state x1 distributed according to N (x1 | µ, P1). The
parameters to be identified are (using set notation)

θ = {Γ, µ, Π, P1} .

Follow exactly the same strategy used in previous example (see
lecture notes for details).
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Bayesian modeling 20(60)

The goal in Bayesian modeling is to compute the posterior
p(θ, x1:T︸ ︷︷ ︸

,η

| y1:T) = p(η | y1:T) (or one of its marginals).

Bayesian modeling amounts to

1. Find an expression for the likelihood p(y1:T | η).

2. Assign priors p(η) to all unknown stochastic variables η present
in the model.

3. Determine the posterior distribution p(η | y1:T).
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Posterior predictive distribution 21(60)

In many applications we are not directly interested in the values of
the parameters θ. Instead we are interested (for example) in being
able to make predictions.

The posterior predictive distribution p(yT+1 | y1:T) is found by
marginalising p(yT+1, ηp | y1:T) w.r.t. ηp , {η, xT+1} = {θ, x1:T+1},

p(yT+1 | y1:T) =
∫

p(yT+1, ηp | y1:T)dηp

=
∫

h(yT+1 | xT+1, θ)p(ηp | y1:T)dηp,

where

p(ηp | y1:T) = f (xT+1 | xT, θ)p(η | y1:T).
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A first Bayesian model 22(60)

Let us consider the following scalar LGSS model

xt+1 = θ1xt + 0.5ut + vt, vt ∼ N (0, θ2),
yt = 0.5xt + et, et ∼ N (0, 0.1).

The input sequence generated as ut ∼ N (0, 0.1) is assumed
known.

(Unrealistic) assumption: the states x1:T+1 are available.

Task: Find the posterior distribution for the unknown parameters in
the above LGSS model,

p(θ1, θ2 | D) = p(θ | D),

where D = {y1:T, x1:T+1}.
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Bayesian modeling (again) 23(60)

Recall that Bayesian modeling amounts to,

1. Find an expression for the likelihood p(D | θ).

2. Assign priors p(θ) to all unknown stochastic variables θ present
in the model.

3. Determine the posterior distribution p(θ | D).

The aim is to write the likelihood p(D | θ) in such a way that we can
easily assign a prior to θ that has the same functional form (w.r.t. θ)
as the likelihood.
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Likelihood computations, continued (I/II) 24(60)

p(D | θ) ∝ · · · ∝ θ2
− T−1

2 exp
(
− ϕ

2θ2

)
1√
θ2

exp
(
− σ

2θ2

(
θ1

2 − 2
γ

σ
θ1

))

where we have defined

σ ,
T

∑
t=1

x2
t ,

γ ,
T

∑
t=1

(xt+1xt − 0.5xtut) ,

ϕ ,
T

∑
t=1

(
x2

t+1 + 0.25u2
t − xt+1ut

)
.

Question: guided by this, how do we chose the prior p(θ) to have
the same functional form as p(D | θ)?
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Likelihood computations, continued (II/II) 25(60)

Completing the squares results in

p(D | θ) ∝
1√

θ2/σ
exp

(
− 1

2θ2/σ

(
θ1 −

γ

σ

)2
)

︸ ︷︷ ︸
∝N (θ1| γσ , 1

σ θ2)

× θ2
− T−1

2 exp
(
− 1

θ2

(
ϕ

2
− γ2

2σ

))

︸ ︷︷ ︸
∝IG

(
θ2| T−3

2 , ϕ
2−

γ2
2σ

)

∝ N
(

θ1 |
γ

σ
,

1
σ

θ2

)
IG
(

θ2 |
T− 3

2
,

ϕ

2
− γ2

2σ

)
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Reminder – the inverse Gamma distribution 26(60)

The inverse gamma distribution is defined on the positive real line
and it is characterised by the so called shape parameter a and the
scale parameter b,

x ∼ IG(a, b), a > 0, b > 0.

The pdf is given by

IG (x | a, b) =
ba

Γ(a)
x−(a+1) exp

(
− b

x

)
, x > 0,

where Γ(a) is the gamma function, i.e., Γ(a) =
∫ ∞

0 ta−1e−tdt.
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Assign prior and compute posterior 27(60)

Our strategy dictates that we should choose the prior such that it has
the same functional form as the likelihood p(D | θ), i.e., normal
inverse gamma,

p(θ1, θ2) = p(θ1 | θ2)p(θ2) = N (θ1 | m, cθ2) IG (θ2 | a, b)
= NIG (θ1, θ2 | m, c, a, b) ,

Compute the posterior

p(θ | D) ∝ p(D | θ)p(θ)

∝ NIG
(

θ1, θ2 | m̃, c̃, ã, b̃
)
NIG (θ1, θ2 | m, c, a, b)

∝ NIG (θ1, θ2 | m?, c?, a?, b?)

(see the lecture notes for details)
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Conjugate priors 28(60)

The posterior distribution p(η | D) and the prior distribution p(η) are
said to be conjugate distributions if they are both distributed
according to the same distribution.

The prior is then referred to as the conjugate prior for the present
likelihood p(D | η).

Put in slightly different words, if the posterior distribution and the prior
distribution have the same functional form, the prior is said to be the
conjugate prior for the underlying likelihood.
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Monte Carlo methods
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Motivation – MCMC 30(60)

In solving inference problems we are sooner or later typically faced
with various integration problems, which tend to live in high
dimensional spaces.

This hols for both Maximum likelihood and Bayesian approaches.

To be concrete, we have the following three classes

1. Expectation

2. Normalisation

3. Marginalisation
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MCMC motivation 1 – expectation 31(60)

An expected value often provides an interesting (and interpretable)
point estimate.

Computing an expectation amounts to solving the following integral

E [g(z)] =
∫

Z
g(z)p(z | y1:T)dz,

for some function g : Z → Rng .

Examples: Computing a point estimate of the state (z = xt and
g(xt) = xt). Computing the conditional mean estimate of the
parameters θ in a dynamic system given the measurements
(z = θ, g(θ) = θ)
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MCMC motivation 2 – Normalisation 32(60)

Computing the marginal likelihood p(y1:T) (i.e., the normalization
factor) has to be done if the posterior distribution is needed.

The corresponding integral is

p(y1:T) =
∫

Z
p(y1:T | z)p(z)dz.

Examples: Used in empirical Bayes (type 2 maximum likelihood,
evidence approximation) for finding an initial parameter guess.
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MCMC motivation 3 – Marginalisation 33(60)

If we are interested in the properties of a stochastic variable z1 and
have access to the pdf p(z1, z2 | y1:T), then we can marginalize out
the variable z2, resulting in p(z1 | y1:T).

p(z1 | y1:T) =
∫

Z2

p(z1, z2 | y1:T)dz2

Examples: We have algorithms targeting p(θ, x1:T | y1:T), but often
we are only interested in p(θ, x1:T | y1:T). As another example (in
using the EM algorithm for nonlinear ML identification) we need the
two-step smoothing densities p(xt:t+1 | y1:T), whereas several
smoothing algorithms provides the entire joint smoothing density
p(x1:T | y1:T).
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Approximation methods 34(60)

Many of the models we are currently interested in do not allow for
closed form expressions. We are forced to approximations. Broadly
speaking there are two classes,

1. Deterministic analytical approximations: Either approximate
the model or restrict the solution to belong to an analytically
tractable form. Examples, variational Bayes (VB), expectation
propagation (EP).

2. Stochastic approximations: Keep the model and
approximate the solution without imposing any restrictions other
than the computational resources available.

Analytical approximations of the model and/or the solution have
been/are very common.
In this course we work with stochastic approximations.
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Monte Carlo methods 35(60)

Monte Carlo methods provides computational solutions, where the
obtained accuracy is only limited by our computational resources.

Monte Carlo methods respects the model and the general solution.
The approximation does not impose any restricting assumptions on
the model or the solution.

Thomas Schön
Part 2 - EM and Monte Carlo methods explained via linear system identification

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET

The Monte Carlo idea 36(60)

The integral

I(g(z)) , Eπ(z) [g(z)] =
∫

Z
g(z)π(z)dz.

is approximated by

ÎM(g(z)) =
1
M

M

∑
i=1

g(zi).

The strong law of large numbers tells us that

ÎM(g(z)) a.s.−→ I(g(z)), M→ ∞,

and the central limit theorem state that
√

M
(

ÎM(g(z))− I(g(z))
)

σg

d−→ N (0, 1) , M→ ∞.
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The Monte Carlo idea – illustration 37(60)

π(z) = 0.3N (z | 2, 2) + 0.7N (z | 9, 19)

5000 samples 50000 samples

Obvious problem: In general we are not able to directly sample
from the density we are interested in.
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Background: representing an LGSS model (I/II) 38(60)

An LGSS model is defined by

xt+1 = Axt + But + vt,
yt = Cxt + Dut + et,

where



x1
vt
et


 ∼ N






µ
0
0


 ,




P1 0 0
0 Q S
0 ST R




 .

which equivalently can be written as
(

xt+1
yt

)
| xt ∼ N

((
xt+1
yt

)
|
(

A B
C D

)(
xt
ut

)
,
(

Q S
ST R

))

x1 ∼ N (x1 | µ, P1)

Thomas Schön
Part 2 - EM and Monte Carlo methods explained via linear system identification

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET

Background: representing an LGSS model (II/II) 39(60)

Introducing the following notation

ξt ,
(

xt+1
yt

)
, zt ,

(
xt
ut

)
, Γ ,

(
A B
C D

)
, Π ,

(
Q S
ST R

)

allows us to write the LGSS model more compactly,

ξt | xt ∼ N (ξt | Γzt, Π) ,
x1 ∼ N (x1 | µ, P1) .

ξt = Γzt + wt, wt ∼ N (0, Π) ,
x1 ∼ N (x1 | µ, P1) .

The parameters are defined as (using set notation)

θ = {Γ, Π, µ, P1}.
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Problem formulation and solution idea 40(60)

Task: Identify the LGSS model by computing p(θ | Y) where
θ = {Γ, Π} and Y , y1:T (for simplicity, we assume that the initial
state is known)

Let us consider the following extended task, where we are trying to
compute p(θ, X | Y), with X , x1:T+1. Note that p(θ | Y) is a
marginal of p(θ, X | Y).

Solution idea: Obtain samples θk, Xk from the posterior pdf by
iterating the following two steps

1. Given θk, generate a sample from the state trajectory

Xk ∼ p(X | Y, θk).

2. Then, given Xk generate a sample θk+1

θk+1 ∼ p(θ | Xk, Y).
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Definition – Matrix Normal random matrix 41(60)

The matrix valued normal distribution is a generalisation of the vector
valued normal distribution.

Definition (Matrix normal distribution)

The random matrix X ∈ Rd×m has a matrix normal distribution with
mean matrix M ∈ Rd×m and covariance matrix Λ−1 ⊗ Σ, where
Λ−1 � 0 ∈ Rm×m and Σ � 0 ∈ Rd×d if

Vec (X) ∼ N
(

X | Vec (M) , Λ−1 ⊗ Σ
)

.

The pdf is given by

MN (X | M, Λ, Σ) =
|Λ|d/2

(2π)dm/2 |Σ|m/2 exp
(
−1

2
Tr
(
(X−M)TΣ−1(X−M)Λ

))
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Sampling the parameters 42(60)

The first step of the Bayesian principle is done and the likelihood is

p(D | Γ, Π) =MN (Ξ | ΓZ, I, Π)

The second step is to decide on a suitable prior. We will be pragmatic
and make use of a conjugate prior, the matrix normal inverse
Wishart (MNIW ) prior (the generalisation of the NIG prior).

It is a hierarchical prior that makes use of the fact that
p(Γ, Π) = p(Γ | Π)p(Π) and places anMN prior on Γ
conditioned on Π and an IW prior on Π.

(See lecture notes for detailed derivations of theMNIW posterior
distribution.)
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LGSS example (I/II) 43(60)

1. Given θk, generate a sample from the state trajectory

Xk ∼ p(X | Y, θk).

2. Then, given Xk generate a sample θk+1

θk+1 ∼ p(θ | Xk, Y)

Let us now try this solution using T = 3000 samples from

xt+1 =




0.37 0.89 0.52 0.56
1 0 0 0
0 1 0 0
0 0 1 0


 xt + wt, wt ∼ N (0, 0.05I4) ,

yt =
(
1 0.1 −0.49 0.01

)
xt + et, et ∼ N (0, 0.01) .
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LGSS example (II/II) 44(60)

Initialize using a subspace algorithm. Run the loop 10000 times.
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LGSS identification – Gibbs sampler 45(60)

So far, only pragmatic, but it seems to work! This results in many
questions, for example,

1. Was this just luck?

2. Does it always work?

3. Can we prove that it will always work?

It is a so called Gibbs sampler that provably converge to the target
distribution!!

This can be used to answer some otherwise challenging questions,
for more details see (and its references)
Adrian Wills, Thomas B. Schön, Fredrik Lindsten and Brett Ninness, Estimation of Linear Systems using a Gibbs Sampler.
Proceedings of the 16th IFAC Symposium on System Identification (SYSID), Brussels, Belgium, July 2012.
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Example – AR(1) 46(60)

Consider the following LGSS model (an autoregressive (AR) model
of order 1, i.e., an AR(1) model),

xt+1 = axt + vt, vt ∼ N (0, q),

x1 ∼ µ1 = N
(

x1 | x1, p1

)
,

where |a| < 1.

This can equivalently be defined as a Markov chain {xt}t≥1 with
initial distribution

µ1 = N
(

x1 | x1, p1

)
,

and transition kernel

K(xt+1 | xt) = N
(

xt+1 | axt, q
)

.
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Example – AR(1) 47(60)

What happens when t→ ∞?

Everything is Gaussian and only linear transformations are involved,
which implies that everything remains Gaussian.

Mean value:

E
[
xt+1

]
= E

[
axt + vt] = a E

[
xt] = · · · = atx1,

Variance:

pt+1 , Var
[
xt+1

]
= E

[(
xt+1 − E

[
xt+1

])2
]
= · · · = a2pt + q.
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Example – AR(1) 48(60)

When t→ ∞ we have to solve

p̄ = a2p̄ + q,

which straightforwardly results in

p̄ =
q

1− a2 .

We have now showed that the Markov chain converge to the
following stationary distribution

πs(x) = N
(

x | 0,
q

1− a2

)
.

as t→ ∞.
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What’s the point with the AR(1) example? (I/II) 49(60)

Task: How do we generate samples from the stationary distribution

πs(x) = N
(

x | 0, q
1−a2

)
? Put in other words, the target distribution

π(x) is given by the stationary distribution πs(x), i.e.,
π(x) = πs(x).

Two solutions for this problem:
1. Simulate sufficiently many samples from the Markov chain and discard the

initial samples. The remaining samples will then be approximately distributed
according to the target distribution (we just proved that xt is distributed
according to π(x) for a large enough t).

2. We proved that the stationary distribution is Gaussian. Generate samples
directly from this distribution.

Clearly a somewhat contrived example (obviously solution 2 is
preferred), but solution 1 is a simple illustration of the strategy
underlying all MCMC methods.

Thomas Schön
Part 2 - EM and Monte Carlo methods explained via linear system identification

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET

What’s the point with the AR(1) example? (II/II) 50(60)

In the example, the Markov chain was fully specified and it was
possible to explicitly compute the stationary distribution.

We are of course interested in the reverse situation, where we want
to generate samples from a (typically rather complicated) target
distribution π(z).

The task is now to find a transition kernel such that the resulting
Markov chain has the target distribution π(z) as its stationary
distribution.

This can be done in many different ways and constructive
strategies for doing this are provided by the Gibbs sampler and the
Metropolis Hastings sampler.
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AR(1) example again (I/II) 51(60)

One realisation from xt+1 = axt + vt using a = 0.8, vt ∼ N (0, 1).
The process is initialised in x0 = −40.
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AR(1) example again (II/II) 52(60)
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100 000 samples

The true stationary distribution is showed in black and the empirical
histogram obtained by simulating the Markov chain xt+1 = axt + vt

is plotted in gray.

The initial 1000 samples are discarded (burn-in).
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Metropolis Hastings (MH) sampler 53(60)

The Metropolis Hastings (MH) sampler provides a constructive way
of producing a Markov chain that can be used to obtain samples
approximately distributed according to the target distribution.

More pragmatically speaking, the MH sampler generates samples
{zm}M

m=1 which can for example be used to approximately compute
integrals.
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Metropolis Hastings (MH) sampler – intuition 54(60)

The basic idea underlying the Metropolis Hastings sampler is
surprisingly simple.

Starting from an initial state of the Markov chain z1, a new candidate
sample z∗ is generated using a proposal distribution
z∗ ∼ q(z | z1).

This proposed sample z∗ is then accepted with a certain probability,
the so called acceptance probability

a(z∗, zm) = min
(

1,
π(z∗)q(zm | z∗)
π(zm)q(z∗ | zm)

)
.

If the sample is accepted, the new state of the Markov chain is set to
the proposed sample z2 = z∗, otherwise it is simply set to the
previous value, z2 = z1.
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Metropolis Hastings (MH) sampler – algorithm 55(60)

Algorithm 3 Metropolis Hastings (MH) sampler

1. Initialise: Set the initial state of the Markov chain z1.
2. For m = 1 to M, iterate:

a. Sample z∗ ∼ q(z | zm).

b. Sample u ∼ U [0, 1].
c. Compute the acceptance probability

a(z∗, zm) = min (1, α(z∗, zm)) , where α(z∗, zm) =
π(z∗)q(zm | z∗)
π(zm)q(z∗ | zm)

d. Set the next state zm+1 of the Markov chain according to

zm+1 =

{
z∗ u ≤ a(z∗, zm)

zm otherwise
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Metropolis Hastings (MH) sampler 56(60)

Note that the MH sampler only requires two things,

1. It requires the definition of a proposal distribution q(· | ·) that
can be used to generate candidate samples.

2. It must be possible to point-wise evaluate the target distribution
up to a possibly unknown normalization factor.

Point-wise evaluation of the target density π(θ) for a specific θ = θ̄

π(θ̄) = p(θ̄ | y1:T) =
p(y1:T | θ̄)p(θ̄)

p(y1:T)
.
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Example – MH sampler for LGSS identification 57(60)

Consider the following LGSS model

xt+1 = θxt + 0.5ut + vt, vt ∼ N (0, 0.1),
yt = 0.5xt + et, et ∼ N (0, 0.1),

p(θ) = U [−1, 1],

where the input sequence ut ∼ N (0, 0.1) is assumed to be known.

Task: set up an MH sampler targeting p(θ | y1:T). In other words,
simulate a Markov chain with p(θ | y1:T) as its stationary distribution.

The first task it to decide on a proposal distribution, let us use a so
called random walk proposal,

θ∗ = θm + vm, vm ∼ N (0, Q),

or put in other words, q(θ∗ | θm) = N (θ∗ | θm, Q).
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Example – MH sampler for LGSS identification 58(60)

The second task is to find an expression for the acceptance
probability, which boils down to computing

α(θ∗, θm) =
π(θ∗)q(θm | θ∗)
π(θm)q(θ∗ | θm)

=
π(θ∗)
π(θm)

=
p(θ∗ | y1:T)

p(θm | y1:T)
,

The resulting expression for the acceptance probability is

α(θ∗, θm) =
p(y1:T | θ∗)p(θ∗)
p(y1:T | θm)p(θm)

=
p(θ∗)
p(θm)

T

∏
t=1

p(yt | y1:t−1, θ∗)
p(yt | y1:t−1, θm)

,

where the required one step prediction densities are
straightforwardly provided by the KF according to

p(yt | y1:t−1, θ̄) = N
(

yt | 0.5x̂t|t−1(θ̄), 0.52Pt|t−1(θ̄) + 0.1
)

,

where θ̄ is used as a placeholder for θ∗ or θm, respectively.
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Gibbs sampler 59(60)

The Gibbs sampler is a particularly popular special case of the
Metropolis Hastings sampler, applicable when the conditional
distributions

πl(zl | z−l)

are tractable and easy to sample from. Here, z−l denotes all the
elements in z, but the lth one.
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Gibbs sampler 60(60)

Algorithm 4 Gibbs sampler (GS)

1. Initialise: Set the initial state z1 =
(
z1

1, z1
2, . . . , z1

K
)
.

2. For m = 1 to M, iterate:

1. Draw zm+1
1 ∼ p(z1 | zm

2 , . . . , zm
K )

2. Draw zm+1
2 ∼ p(z2 | zm+1

1 , zm
3 , . . . , zm

K )

...

K. Draw zm+1
K ∼ p(zK | zm+1

1 , . . . , zm
K )

See the lecture note for properties of the MH and the Gibbs
samplers.

Thomas Schön
Part 2 - EM and Monte Carlo methods explained via linear system identification

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET


