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The aim – Part 4 2(22)

The aim in part 4 is to show how EM together with SMC and MCMC
together with SMC can be used to solve challenging nonlinear

system identification problems.

In other words, we will here make use of most of the building blocks
introduced throughout the course in order to show how they can be

combined to solve nonlinear system identification problems.
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Outline 3(22)

1. Computing ML estimates using EM and PS.
a) Derive the algorithm
b) Example - parametric Wiener model

2. Computing Bayesian estimates using particle MCMC (PMCMC)
a) Particle Metropolis Hastings (PMH)
b) Example - semiparametric Wiener model
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ML problem formulation 4(22)

Task: Compute the ML estimate of the parameters θ in the SSM

xt+1 | xt ∼ fθ(xt+1 | xt, ut),
yt | xt ∼ hθ(yt | xt, ut),

x1 ∼ µθ(x1),

The ML estimate is obtained by solving the following optimisation
problem,

θ̂
ML

= arg max
θ

Lθ(y1:N),

where the log-likelihood function is given by

Lθ(y1:N) = log pθ(y1:N) =
N

∑
t=1

log pθ(yt | y1:t−1)
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EM revisited 5(22)

The expectation maximisation (EM) algorithm computes ML
estimates of unknown parameters in probabilistic models involving
latent variables.

Algorithm 1 Expectation Maximization (EM)

1. Initialise: Set i = 1 and choose an initial θ1.
2. While not converged do:

(a) Expectation (E) step: Compute

Q(θ, θi) = Eθi [log pθ(Z, Y) | Y] =
∫

log pθ(Z, Y)pθi(Z | Y)dZ

(b) Maximization (M) step: Compute θi+1 = arg max
θ∈Θ

Q(θ, θi)

(c) i← i + 1
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EM for nonlinear system identification 6(22)

The key property rendering EM an appealing approach for
computing maximum likelihood estimates in nonlinear SSM’s is that
the intermediate quantity Q(θ, θi) and its derivatives can be
approximated arbitrarily well using particle smoothers.

EM provides a strategy for breaking down the problem into two
manageable subproblems

1. A nonlinear state smoothing problem

2. A nonlinear optimisation problem

each of which can be handled using readily available algorithms.
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Approximation of the Q-function 7(22)

The intermediate quantity Q(θ, θi) is approximated according to
(using the particle smoother (FFBSi))

Q̂(θ, θi) = Î1(θ, θi) + Î2(θ, θi) + Î3(θ, θi),

where

Î1(θ, θi) =
1
N

N

∑
i=1

log µθ(xi
1),

Î2(θ, θi) =
1
N

N

∑
i=1

T−1

∑
t=1

log fθ(xi
t+1 | xi

t),

Î3(θ, θi) =
1
N

N

∑
i=1

T

∑
t=1

log hθ(yt | xi
t).
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Maximisation (M) step 8(22)

Use a numerical nonlinear optimisation algorithm, e.g., BFGS. The
gradient is computed according to

∇θQ(θ, θi) = ∇θI1(θ, θi) +∇θI2(θ, θi) +∇θI3(θ, θi),

and based on Q̂(θ, θi) it is straightforward to approximate these
gradients according to,

∇θI1(θ, θi) ≈ 1
N

N

∑
i=1
∇θ log µθ(xi

1),

∇θI2(θ, θi) ≈ 1
N

N

∑
i=1

T−1

∑
t=1
∇θ log fθ(xi

t+1 | xi
t),

∇θI3(θ, θi) ≈ 1
N

N

∑
i=1

T

∑
t=1
∇θ log hθ(yt | xi

t).
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EM for nonlinear system identification 9(22)

Algorithm 2 EM for nonlinear system identification

1. Initialise: Set i = 1 and choose an initial θ1.
2. While not converged do:

(a) Expectation (E) step: Run a PF and a FFBSi PS and compute

Q̂(θ, θi) = Î1(θ, θi) + Î2(θ, θi) + Î3(θ, θi)

(b) Maximization (M) step: Compute θi+1 = arg max
θ∈Θ

Q(θ, θi)

using an off-the-shelf numerical optimisation algorithm.

(c) i← i + 1
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A Specific Example – The Wiener Problem 10(22)

u(t) x0(t)

w(t) e(t)

G(q, θ)

Hw(q, θ) He(q, θ)

f(·, η)
x(t) y(t)

Figure: The general Wiener problem.

wt

et

L(ϑ) f(·, η)
ytxt

Figure: The blind Wiener problem.

Typical restrictions imposed are:

1. The nonlinearity f in invertible.

2. The measurement noise e is absent.

3. Hw(q, θ) = 1 (white process noise) or Hw(q, θ) = 0 (no
process noise).

Using EM + PS we do not have to impose any of these assumptions.
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Example – 2th order system + 2 non-invertible NL 11(22)

L

f1(zt, η)

f2(zt, η)

Σ

Σ

wt

zt

et,1

et,2

yt,1

yt,2

Figure: Block diagram of a blind Wiener model with two outputs.
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Example – 2th order system + 2 non-invertible NL 12(22)

The linear system (L) is given by

xt+1 =

(
1 −0.9
1 0

)
xt +

(
1
0

)
ut,

zt =
(
1 0.3

)
xt.

Complex poles implies a resonant system. The nonlinearities are a
saturation and a dead zone, respectively,

f1(zt, η) =





η1 : zt < η1

zt : η1 ≤ zt ≤ η2

η2 : zt > η2

f2(zt, η) =





zt − η3 : zt < η3

0 : η3 ≤ zt ≤ η4

zt − η4 : zt < η4
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Example – 2th order system + 2 non-invertible NL 13(22)

The measurements are given by

yt =

(
y1,t
y2,t

)
=

(
f1(zt, η)
f2(zt, η)

)
+ et, et ∼ N

(
0,
(

r1 0
0 r2

))
,

The task is to learn this model based on T = 1000 measurements of
the output (“blind” case), y1:1000.

The input is chosen as ut ∼ N (0, 1). Initial values for the measurement
variance are r̂1 = r̂2 = 0.1. The initial values for η̂ were chosen as

η̂i =
η?i
10 , to reflect that they are unknown. The LGSS model is initialised via

a subspace algorithm based on the measurements {y1,1, · · · , y1,T} from
the dead zone nonlinearity.

Employ the EM alg. with N = 100 particles. The algorithm was terminated
after just 100 iterations. Plots below are based on 100 realisations of data.
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Example – 2th order system + 2 non-invertible NL 14(22)
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Figure: Bode plot of estimated mean (thick black), 95% confidence intervals
(gray) and the true system (red).
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Example – 2th order system + 2 non-invertible NL 15(22)
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Figure: Estimated mean (thick black),
95% confidence intervals (gray) and
the true static nonlinearities (red).
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Figure: Estimated mean (thick black),
95% confidence intervals (gray) and
the true static nonlinearities (red).
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Particle Markov chain Monte
Carlo (PMCMC)
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PMCMC background and aim 17(22)

PMCMC is a family of methods providing powerful solutions for joint
state and parameter inference in SSM’s.

The aim in PMCMC is to compute p(θ, x1:T | y1:T) when the model is
given by

xt+1 | xt ∼ fθ(xt+1 | xt),
yt | xt ∼ hθ(yt | xt).

The fundamental idea is to make use of a sequential Monte Carlo
(SMC) sampler to construct a proposal for an MCMC sampler.

We will focus on the particle Metropolis Hastings (PMH) sampler in
this course.
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SMC again 18(22)

Algorithm 3 Sequential Monte Carlo (SMC)

1. Initialise: Sample xi
1 ∼ Q1(x1) and set wi

1 = W1(xi
1). Set t = 1.

2. For t = 2 : T do:

(a) Sample from the proposal kernel

Mt(it, xt) =
wit

t−1

∑N
l=1 wl

t−1

Rt(xt | xit
t−1)

(b) Weighting: wm
t+1 = Wt(xm

t+1, x̃imt
t−1).

Note that this is exactly the same algorithm as before, but we have
merged the resampling step and the proposal step into on step and
introduced imt to denote the index of the ancestor of particle ximt

t−1.
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PB-BSi 19(22)

We can also derive a Particle Gibbs (PG) sampler with backward
simulation (PG-BSi). This is in fact what we used for the blind Wiener
example mentioned in the introduction of Part 1.
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References for PMCMC 20(22)

General references for PMCMC:
Christophe Andrieu, Arnaud Doucet and Roman Holenstein. Particle Markov chain Monte Carlo methods. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 72(3):269-342, June 2010.

Fredrik Lindsten and Thomas B. Schön. On the use of backward simulation in the particle Gibbs sampler.
Proceedings of the 37th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Kyoto,
Japan, March 2012.

Using PMCMC for nonlinear system identification:
Fredrik Lindsten, Thomas B. Schön and Michael I. Jordan, A semiparametric Bayesian approach to Wiener
system identification. Proceedings of the 16th IFAC Symposium on System Identification (SYSID), Brussels,
Belgium, July, 2012.
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The aim of this course 21(22)

The aim of this course has been to provide an introduction to the
theory and application of (new) computational methods for inference

in dynamical systems.

The key computational methods we refere to are,

Sequential Monte Carlo (SMC) methods (particle filters and particle
smoothers) for nonlinear state inference problems.

Expectation maximisation (EM) and Markov chain Monte Carlo
(MCMC) methods for nonlinear system identification.
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Great opportunities for research!! 22(22)

Much interesting research remains to be done in solving nonlinear
estimation problems using SMC and/or MCMC methods!!

We are organising an invited session for SYSID on this topic and
many of the leading researchers in the area have accepted the
invitation. Drop by if you are interested!

Thank you for listening!!
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