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Abstract

State-space models are successfully used in many areas of science, engineering
and economics to model time series and dynamical systems. We present a fully
Bayesian approach to inference and learning in nonlinear nonparametric state-
space models. We place a Gaussian process prior over the transition dynamics,
resulting in a flexible model able to capture complex dynamical phenomena. How-
ever, to enable efficient inference, we marginalize over the dynamics of the model
and instead infer directly the joint smoothing distribution through the use of spe-
cially tailored Particle Markov Chain Monte Carlo samplers. Once an approxi-
mation of the smoothing distribution is computed, the state transition predictive
distribution can be formulated analytically. We make use of sparse Gaussian pro-
cess models to greatly reduce the computational complexity of the approach.

1 Introduction

State-space models (SSMs) constitute a popular and general class of models in the context of time
series and dynamical systems. Their main feature is the presence of a latent variable, the state
xt ∈ X , Rnx , which condenses all aspects of the system that can have an impact on its future.
A discrete-time SSM with nonlinear dynamics can be represented as

xt+1 = f(xt,ut) + vt, (1a)
yt = g(xt,ut) + et, (1b)

where ut denotes a known external input, yt denotes the measurements, vt and et denote i.i.d. noises
acting on the dynamics and the measurements, respectively. The function f encodes the dynamics
and g describes the relationship between the observation and the unobserved states.

We are primarily concerned with the problem of learning general nonlinear SSMs. The aim is to
find a model that can adaptively increase its complexity when more data is available. To this effect,
we employ a Bayesian nonparametric model for the dynamics (1a). This provides a flexible model
that is not constrained by any limiting assumptions caused by postulating a particular functional
form. More specifically, we place a Gaussian process (GP) prior [1] over the unknown function f .
The resulting model is a generalization of the standard parametric SSM. The functional form of
the observation model g is assumed to be known, possibly parameterized by a finite dimensional
parameter. This is often a natural assumption, for instance in engineering applications where g
corresponds to a sensor model – we typically know what the sensors are measuring, at least up to
some unknown parameters. Furthermore, using too flexible models for both f and g can result in
problems of non-identifiability.

We adopt a fully Bayesian approach whereby we find a posterior distribution over all the latent
entities of interest, namely the state transition function f , the hidden state trajectory x0:T ,
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{x0, . . . ,xT } and any hyper-parameter θ of the model. This is in contrast with existing ap-
proaches for using GPs to model SSMs, which tend to model the GP using a finite set of target
points, in effect making the model parametric [2]. Inferring the distribution over the state trajectory
p(x0:T | y0:T ,u0:T ) is an important problem in itself known as smoothing. We use a tailored par-
ticle Markov Chain Monte Carlo (PMCMC) algorithm [3] to efficiently sample from the smoothing
distribution whilst marginalizing over the state transition function. This contrasts with conventional
approaches to smoothing which require a fixed model of the transition dynamics. Once we have ob-
tained an approximation of the smoothing distribution, with the dynamics of the model marginalized
out, learning the function f is straightforward since its posterior is available in closed form given the
state trajectory. Our only approximation is that of the sampling algorithm. We report very good mix-
ing enabled by the use of recently developed PMCMC samplers [4] and the exact marginalization of
the transition dynamics.

There is by now a rich literature on GP-based SSMs. For instance, Deisenroth et al. [5, 6] presented
refined approximation methods for filtering and smoothing for already learned GP dynamics and
measurement functions. In fact, the method proposed in this paper provides a vital component
needed for these inference methods, namely that of learning the GP model in the first place. Turner
et al. [2] applied the EM algorithm to obtain a maximum likelihood estimate of parametric models
which had the form of GPs where both inputs and outputs were parameters to be optimized. This
type of approach can be traced back to [7] where Ghahramani and Roweis applied EM to learn
models based on radial basis functions. Wang et al. [8] learn an SSM with GPs by maximizing the
posterior of a particular form of Gaussian Process Latent Variable Model (GP-LVM). They apply
the learning in cases where the dimension of the observation vector is much higher than that of the
latent state in what becomes a form of dynamic dimensionality reduction. This procedure would
have the risk of overfitting in the common situation where the measurements are less numerous or
informative and there is significant uncertainty in the smoothing distribution.

2 Gaussian Process State-Space Model

We describe the generative probabilistic model of the Gaussian process SSM (GP-SSM) represented
in Figure 1b by

f(xt) ∼ GP
(
mθx(xt), kθx(xt,x

′
t)
)
, (2a)

xt+1 | ft ∼ N (xt+1 | ft,Q), (2b)
yt | xt ∼ p(yt | xt,θy), (2c)

and x0 ∼ p(x0), where we avoid notational clutter by omitting the conditioning on the known inputs
ut. In addition, we put a prior p(θ) over the various hyper-parameters θ = {θx,θy,Q}. Also, note
that the measurement model (2c) and the prior on x0 can take any form since we do not rely on their
properties for efficient inference.

The GP is fully described by its mean function and its covariance function. An interesting property
of the GP-SSM is that any a priori insight into the dynamics of the system readily can be encoded
in the mean function. This is useful, since it is often possible to capture the main properties of
the dynamics, e.g. by using a simple parametric model or a model based on first principles. Such

y0 y1 y2 y∗

f0 f1 f2 f∗

x0 x1 x2 x∗

(a) Standard GP regression

y0 y1 y2 y∗

f0 f1 f2 f∗

x0 x1 x2 x∗

(b) GP-SSM

Figure 1: Graphical models for standard GP regression and the GP-SSM model. The thick horizontal
bars represent sets of fully connected nodes.
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simple models may be insufficient on their own, but useful together with the GP-SSM, as the GP
is flexible enough to model complex departures from the mean function. If no specific prior model
is available, the linear mean function m(xt) = xt is a good generic choice. Interestingly, the prior
information encoded in this model will normally be more vague than the prior information encoded
in parametric models. The measurement model (2c) implicitly contains the observation function g
and the distribution of the i.i.d. measurement noise et.

3 Inference over States and Hyper-parameters

Direct learning of the function f in (2a) from input/output data {u0:T−1,y0:T } is challenging since
the states x0:T are not observed. Most (if not all) previous approaches attack this problem by revert-
ing to a parametric representation of f which is learned alongside the states. We address this problem
in a fundamentally different way by marginalizing out f , allowing us to respect the non-parametric
nature of the model. A challenge with this approach is that marginalization of f will introduce
dependencies across time for the state variables, i.e. the Markovian structure of the state-process is
lost. However, recently developed inference methods, combining sequential Monte Carlo (SMC)
and Markov chain Monte Carlo (MCMC) allow us to tackle this problem. We discuss marginaliza-
tion of f in Section 3.1 and present the inference algorithms Sections 3.2 and 3.3.

3.1 Marginalizing out the State Transition Function

Targeting the joint posterior distribution of the hyper-parameters, the latent states and the latent func-
tion f is problematic due to the strong dependencies between x0:T and f . We therefore marginalize
the dynamical function from the model, and instead target the distribution p(θ,x0:T | y1:T ) (recall
that conditioning on u0:T−1 is implicit). In the MCMC literature, this is referred to as collapsing
[9]. Hence, we first need to find an expression the marginal prior p(θ,x0:T ) = p(x0:T | θ)p(θ). Fo-
cusing on p(x0:T | θ) we note that, although this distribution is not Gaussian, it can be represented
as a product of Gaussians. Omitting the dependence on θ in the notation we obtain

p(x1:T | θ,x0) =

T∏
t=1

p(xt | θ,x0:t−1) =

T∏
t=1

N
(
xt | µt(x0:t−1),Σt(x0:t−1)

)
, (3a)

with

µt(x0:t−1) = mt−1 + Kt−1,0:t−2K̃
−1
0:t−2 (x1:t−1 −m0:t−2), (3b)

Σt(x0:t−1) = K̃t−1 −Kt−1,0:t−2K̃
−1
0:t−2K

>
t−1,0:t−2 (3c)

for t ≥ 2 and µ1(x0) = m0, Σ1(x0) = K̃0. Equation (3) follows from the fact that, once
conditioned on x0:t−1, a one-step prediction for the state variable is a standard GP prediction. Here,
we have defined the mean vector m0:t−1 ,

[
m(x0)

> . . . m(xt−1)
>]> and the (nxt) × (nxt)

positive definite matrix K0:t−1 with block entries [K0:t−1]i,j = k(xi−1,xj−1). We use two sets of
indices, as in Kt−1,0:t−2, to refer to the off-diagonal blocks of K0:t−1. We also define K̃0:t−1 =
K0:t−1 + It ⊗Q. We can also express (3a) more succinctly as,

p(x1:t | θ,x0) = |(2π)nxtK̃0:t−1|−
1
2 exp(−1

2
(x1:t −m0:t−1)

>K̃−10:t−1(x1:t −m0:t−1)). (4)

This expression looks very much like a multivariate Gaussian density function. However, we em-
phasize that this is not the case since both m0:t−1 and K̃0:t−1 depend (nonlinearly) on the argument
x1:t. In fact, (4) will typically be very far from Gaussian.

3.2 Sequential Monte Carlo

With the prior (4) in place, we now turn to posterior inference and we start by considering the joint
smoothing distribution p(x0:T | θ,y0:T ). The sequential nature of the proposed model suggests
the use of SMC. Though most well known for filtering in Markovian SSMs – see [10, 11] for an
introduction – SMC is applicable also for non-Markovian latent variable models. We seek to ap-
proximate the sequence of distributions p(x0:t | θ,y0:t), for t = 0, . . . , T . Let {xi

0:t−1,w
i
t−1}Ni=1

3
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be a collection of weighted particles approximating p(x0:t−1 | θ,y0:t−1) by the empirical distribu-
tion, p̂(x0:t−1 | θ,y0:t−1) ,

∑N
i=1 wi

t−1δxi
0:t−1

(x0:t−1). Here, δz(x) is a point-mass located at
z. To propagate this sample to time t, we introduce the auxiliary variables {ai

t}Ni=1, referred to as
ancestor indices. The variable ai

t is the index of the ancestor particle at time t − 1, of particle xi
t.

Hence, xi
t is generated by first sampling ai

t with P(ai
t = j) = wj

t−1. Then, xi
t is generated as,

xi
t ∼ p(xt | θ,x

ai
t

0:t−1,y0:t), (5)

for i = 1, . . . , N . The particle trajectories are then augmented according to xi
0:t = {xai

t
0:t−1,x

i
t}.

Sampling from the one-step predictive density is a simple (and sensible) choice, but we may also
consider other proposal distributions. In the above formulation the resampling step is implicit and
corresponds to sampling the ancestor indices (cf. the auxiliary particle filter, [12]). Finally, the
particles are weighted according to the measurement model, wi

t ∝ p(yt | θ,xi
t) for i = 1, . . . , N ,

where the weights are normalized to sum to 1.

3.3 Particle Markov Chain Monte Carlo

There are two shortcomings of SMC: (i) it does not handle inference over hyper-parameters; (ii)
despite the fact that the sampler targets the joint smoothing distribution, it does in general not pro-
vide an accurate approximation of the full joint distribution due to path degeneracy. That is, the
successive resampling steps cause the particle diversity to be very low for time points t far from the
final time instant T .

To address these issues, we propose to use a particle Markov chain Monte Carlo (PMCMC, [3])
sampler. PMCMC relies on SMC to generate samples of the highly correlated state trajectory within
an MCMC sampler. We employ a specific PMCMC sampler referred to as particle Gibbs with
ancestor sampling (PGAS, [4]), given in Algorithm 1. PGAS uses Gibbs-like steps for the state
trajectory x0:T and the hyper-parameters θ, respectively. That is, we sample first x0:T given θ,
then θ given x0:T , etc. However, the full conditionals are not explicitly available. Instead, we draw
samples from specially tailored Markov kernels, leaving these conditionals invariant. We address
these steps in the subsequent sections.

Algorithm 1 Particle Gibbs with ancestor sampling (PGAS)

1. Set θ[0] and x1:T [0] arbitrarily.
2. For ` ≥ 1 do

(a) Draw θ[`] conditionally on x0:T [`− 1] and y0:T as discussed in Section 3.3.2.
(b) Run CPF-AS targeting p(x0:T | θ[`],y0:T ), conditionally on x0:T [`− 1].
(c) Sample k with P(k = i) = wi

T and set x1:T [`] = xk
1:T .

3. end

3.3.1 Sampling the State Trajectories

To sample the state trajectory, PGAS makes use of an SMC-like procedure referred to as a con-
ditional particle filter with ancestor sampling (CPF-AS). This approach is particularly suitable for
non-Markovian latent variable models, as it relies only on a forward recursion (see [4]). The differ-
ence between a standard particle filter (PF) and the CPF-AS is that, for the latter, one particle at each
time step is specified a priori. Let these particles be denoted x̃0:T = {x̃0, . . . , x̃T }. We then sam-
ple according to (5) only for i = 1, . . . , N − 1. The N th particle is set deterministically: xN

t = x̃t.
To be able to construct the N th particle trajectory, xN

t has to be associated with an ancestor particle
at time t− 1. This is done by sampling a value for the corresponding ancestor index aN

t . Following
[4], the ancestor sampling probabilities are computed as

w̃i
t−1|T ∝ wi

t−1
p({xi

0:t−1, x̃t:T },y0:T )

p(xi
0:t−1,y0:t−1)

∝ wi
t−1

p({xi
0:t−1, x̃t:T })
p(xi

0:t−1)
= wi

t−1p(x̃t:T | xi
0:t−1). (6)

where the ratio is between the unnormalized target densities up to time T and up to time t − 1,
respectively. The second proportionality follows from the mutual conditional independence of the
observations, given the states. Here, {xi

0:t−1, x̃t:T } refers to a path in XT+1 formed by concatenating

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

the two partial trajectories. The above expression can be computed by using the prior over state
trajectories given by (4). The ancestor sampling weights {w̃i

t−1|T }
N
i=1 are then normalized to sum

to 1 and the ancestor index aN
t is sampled with P(aN

t = j) = wj
t−1|t.

The conditioning on a prespecified collection of particles implies an invariance property in CPF-AS,
which is key to our development. More precisely, given x̃0:T let x̃′0:T be generated as follows:

1. Run CPF-AS from time t = 0 to time t = T , conditionally on x̃0:T .
2. Set x̃′0:T to one of the resulting particle trajectories according to P(x̃′0:T = xi

0:T ) = wi
T .

For any N ≥ 2, this procedure defines an ergodic Markov kernel MN
θ (x̃′0:T | x̃0:T ) on XT+1,

leaving the exact smoothing distribution p(x0:T | θ,y0:T ) invariant [4]. Note that this invariance
holds for any N ≥ 2, i.e. the number of particles that are used only affect the mixing rate of the
kernel MN

θ . However, it has been experienced in practice that the autocorrelation drops sharply as
N increases [4, 13], and for many models a moderateN is enough to obtain a rapidly mixing kernel.

3.3.2 Sampling the Hyper-parameters

Next, we consider sampling the hyper-parameters given a state trajectory and sequence of observa-
tions, i.e. from p(θ | x0:T ,y0:T ). In the following, we consider the common situation where there
are distinct hyper-parameters for the likelihood p(y0:T | x0:T ,θy) and for the prior over trajectories
p(x0:T | θx). If the prior over the hyper-parameters factorizes between those two groups we obtain
p(θ | x0:T ,y0:T ) ∝ p(θy | x0:T ,y0:T ) p(θx | x0:T ). We can thus proceed to sample the two
groups of hyper-parameters independently. Sampling θy will be straightforward in most cases, in
particular if conjugate priors for the likelihood are used. Sampling θx will, nevertheless, be harder
since the covariance function hyper-parameters enter the expression in a non-trivial way. However,
we note that once the state trajectory is fixed, we are left with a problem analogous to Gaussian
process regression where x0:T−1 are the inputs, x1:T are the outputs and Q is the likelihood co-
variance matrix. Given that the latent dynamics can be marginalized out analytically, sampling the
hyper-parameters with slice sampling is straightforward [14].

4 A Sparse GP-SSM Construction and Implementation Details

A naive implementation of the CPF-AS algorithm will give rise toO(T 4) computational complexity,
since at each time step t = 1, . . . , T , a matrix of size T × T needs to be factorized. However, it is
possible to update and reuse the factors from the previous time step, bringing the total computational
complexity down to the familiar O(T 3). Furthermore, by introducing a sparse GP model, we can
reduce the complexity to O(M2T ) where M � T . In Section 4.1 we introduce the sparse GP
model and in Section 4.2 we provide insight into the efficient implementation of both the vanilla GP
and the sparse GP.

4.1 FIC Prior over the State Trajectory

An important alternative to GP-SSM is given by exchanging the vanilla GP prior over f for a sparse
counterpart. We do not consider the resulting model to be an approximation to GP-SSM, it is still a
GP-SSM, but with a different prior over functions. As a result we expect it to sometimes outperform
its non-sparse version in the same way as it happens with their regression siblings [15].

Most sparse GP methods can be formulated in terms of a set of so called inducing variables [16].
These variables live in the space of the latent function and have a set I of corresponding inducing
inputs. The assumption is that, conditionally on the inducing variables, the latent function values are
mutually independent. Although the inducing variables are marginalized analytically – this is key for
the model to remain nonparametric – the inducing inputs have to be chosen in such a way that they,
informally speaking, cover the same region of the input space covered by the data. Crucially, in order
to achieve computational gains, the number M of inducing variables is selected to be smaller than
the original number of data points. In the following, we will use the fully independent conditional
(FIC) sparse GP prior as defined in [16] due to its very good empirical performance [15].

As shown in [16], the FIC prior can be obtained by replacing the covariance function k(·, ·) by,

kFIC(xi,xj) = s(xi,xj) + δij
(
k(xi,xj)− s(xi,xj)

)
, (7)

5
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where s(xi,xj) , k(xi, I)k(I, I)−1k(I,xj), δij is Kronecker’s delta and we use the convention
whereby when k takes a set as one of its arguments it generates a matrix of covariances. Using the
Woodbury matrix identity, we can express the one-step predictive density as in (3), with

µFIC
t (x0:t−1) = mt−1 + Kt−1,IPKI,0:t−2Λ

−1
0:t−2 (x1:t−1 −m0:t−2), (8)

ΣFIC
t (x0:t−1) = K̃t−1 − St−1 + Kt−1,IPKI,t−1, (9)

where P , (KI,I + KI,0:t−2Λ
−1
0:t−2K0:t−2,I)

−1, Λ0:t−2 , diag[K̃0:t−2 − S0:t−2] and SA,B ,
KA,IK

−1
I,IKI,B. Despite its apparent cumbersomeness, the computational complexity of comput-

ing the above mean and covariance is O(M2t), as opposed to O(t3) for (3). The same idea can be
used to express (4) in a form which allows for efficient computation. Here diag refers to a block
diagonalization if Q is not diagonal.

We do not address the problem of choosing the inducing inputs, but note that one option is to use
greedy methods (e.g. [17]). The fast forward selection algorithm is appealing due to its very low
computational complexity [17]. Moreover, its potential drawback of interference between hyper-
parameter learning and active set selection is not an issue in our case since hyper-parameters will be
fixed for a given run of the particle filter.

4.2 Implementation Details

As pointed out above, it is crucial to reuse computations across time to attain theO(T 3) orO(M2T )
computational complexity for the vanilla GP and the FIC prior, respectively. We start by discussing
the vanilla GP and then briefly comment on the implementation aspects of FIC.

There are two costly operations of the CPF-AS algorithm: (i) sampling from the prior (5), requiring
the computation of (3b) and (3c) and (ii) evaluating the ancestor sampling probabilities according
to (6). Both of these operations can be carried out efficiently by keeping track of a Cholesky fac-
torization of the matrix K̃({xi

0:t−1, x̃t:T−1}) = Li
tL

i>
t , for each particle i = 1, . . . , N . Here,

K̃({xi
0:t−1, x̃t:T−1}) is a matrix defined analogously to K̃0:T−1, but where the covariance function

is evaluated for the concatenated state trajectory {xi
0:t−1, x̃t:T−1}. From Li

t, it is possible to identify
sub-matrices corresponding to the Cholesky factors for the covariance matrix Σt(x

i
0:t−1) as well as

for the matrices needed to efficiently evaluate the ancestor sampling probabilities (6).

It remains to find an efficient update of the Cholesky factor to obtain Li
t+1. As we move from time

t to t + 1 in the algorithm, x̃t will be replaced by xi
t in the concatenated trajectory. Hence, the

matrix K̃({xi
0:t, x̃t+1:T−1}) can be obtained from K̃({xi

0:t−1, x̃t:T−1}) by replacing nx rows and
columns, corresponding to a rank 2nx update. It follows that we can compute Li

t+1 by making nx
successive rank one updates and downdates on Li

t (see the supplementary material). In summary,
all the operations at a specific time step can be done in O(T 2) computations, leading to a total
computational complexity of O(T 3).

For the FIC prior, a naive implementation will give rise to O(M2T 2) computational complexity.
This can be reduced to O(M2T ) by keeping track of a factorization for the matrix P. However, to
reach the O(M2T ) cost all intermediate operations scaling with T has to be avoided, requiring us
to reuse not only the matrix factorizations, but also intermediate matrix-vector multiplications.

5 Learning the Dynamics

Algorithm 1 gives us a tool to compute p(x0:T ,θ | y1:T ). We now discuss how this can be used to
find an explicit model for f . The goal of learning the state transition dynamics is equivalent to that
of obtaining a predictive distribution over f∗ = f(x∗), evaluated at an arbitrary test point x∗,

p(f∗ | x∗,y1:T ) =

∫
p(f∗ | x∗,x0:T ,θ) p(x0:T ,θ | y1:T ) dx0:T dθ. (10)

Using a sample-based approximation of p(x0:T ,θ | y1:T ), this integral can be approximated by

p(f∗ | x∗,y1:T ) ≈
1

L

L∑
`=1

p(f∗ | x∗,x0:T [`],θ[`]) =
1

L

L∑
`=1

N (f∗ | µ`(x∗),Σ`(x∗)), (11)

6
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where L is the number of samples and µ`(x∗) and Σ`(x∗) follow the expressions for the predictive
distribution in standard GP regression if x0:T−1[`] are treated as inputs, x1:T [`] are treated as outputs
and Q is the likelihood covariance matrix. This mixture of Gaussians is an expressive representation
of the predictive density which can, for instance, correctly take into account multimodality arising
from ambiguity in the measurements. Although factorized covariance matrices can be pre-computed,
the overall computational cost will increase linearly with L.The computational cost can be reduced
by thinning the Markov chain using e.g. random sub-sampling or kernel herding [18].

In some situations it could be useful to obtain an approximation from the mixture of Gaussians
consisting in a single GP representation. This is the case in applications such as control or real time
filtering where the cost of evaluating the mixture of Gaussians can be prohibitive. In those cases
one could opt for a pragmatic approach and learn the mapping x∗ 7→ f∗ from a cloud of points
{x0:T [`], f0:T [`]}L`=1 using sparse GP regression. The latent function values f0:T [`] can be easily
sampled from the normally distributed p(f0:T [`] | x0:T [`],θ[`]).

6 Experiments

6.1 Learning a Nonlinear System Benchmark

Consider a system with dynamics given by xt+1 = axt + bxt/(1 + x2t ) + cut + vt, vt ∼ N (0, q)
and observations given by yt = dx2t + et, et ∼ N (0, r), with parameters (a, b, c, d, q, r) =
(0.5, 25, 8, 0.05, 10, 1) and a known input ut = cos(1.2(t + 1)). One of the difficulties of this
system is that the smoothing density p(x0:T | y0:T ) is multimodal since no information about the
sign of xt is available in the observations. The system is simulated for T = 200 time steps, using
log-normal priors for the hyper-parameters, and the PGAS sampler is then run for 50 iterations using
N = 20 particles. To illustrate the capability of the GP-SSM to make use of a parametric model as
baseline, we use a mean function with the same parametric form as the true system, but parameters
(a, b, c) = (0.3, 7.5, 0). This function, denoted model B, is manifestly different to the actual state
transition (green vs. black surfaces in Figure 2), also demonstrating the flexibility of the GP-SSM.

Figure 2 (left) shows the samples of x0:T (red). It is apparent that the distribution covers two al-
ternative state trajectories at particular times. In fact, it is always the case that the alternative paths
cover the two states of opposite signs that could have led to the same observation (cyan). The hyper-
parameters exhibit a good mixing, as is shown in the supplementary material. In Figure 2 (right)
we plot samples from the smoothing distribution, where each circle corresponds to (xt,ut,E[ft]).
Although the parametric model used in the mean function of the GP (green) is clearly not represen-
tative of the true dynamics (black), the samples from the smoothing distribution accurately portray
the underlying system. The smoothness prior embodied by the GP allows for accurate sampling
from the smoothing distribution even when the parametric model of the dynamics fails to capture
important features.

To measure the predictive capability of the learned transition dynamics, we generate a new dataset
consisting of 10 000 time steps and present the RMSE between the predicted value of f(xt,ut)
and the actual one. We compare the results from GP-SSM with the predictions obtained from two
parametric models (one with the true model structure and one linear model) and two known models
(the ground truth model and model B). We also report results for the sparse GP-SSM using an
FIC prior with 40 inducing points. Table 1 summarizes the results, averaged over 10 independent
training and test datasets. We also report the RMSE from the joint smoothing sample to the ground
truth trajectory.

Table 1: RMSE to ground truth values over 10 independent runs.

RMSE prediction of
f∗|x∗

t ,u
∗
t , data

smoothing
x0:T |data

Ground truth model (known parameters) – 2.7± 0.5
GP-SSM (proposed, model B mean function) 1.7± 0.2 3.2± 0.5
Sparse GP-SSM (proposed, model B mean function) 1.8± 0.2 2.7± 0.4
Model B (fixed parameters) 7.1± 0.0 13.6± 1.1
Ground truth model, learned parameters 0.5± 0.2 3.0± 0.4
Linear model, learned parameters 5.5± 0.1 6.0± 0.5
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6.2 Learning a Cart and Pole System

We apply our approach to learn a model of a cart and pole system used in reinforcement learning.
The system consists of a cart, with a free-spinning pendulum, rolling on a horizontal track. An
external force is applied to the cart. The system’s dynamics can be described by four states and a
set of nonlinear ordinary differential equations [19]. We learn a GP-SSM based on 100 observations
of the state corrupted with Gaussian noise. Although the training set only explores a small region
of the 4-dimensional state space, we can learn a model of the dynamics which can produce one step
ahead predictions such the ones in Figure 3. We obtain a predictive distribution in the form of a
mixture of Gaussians from which we display the first and second moments. Crucially, the learned
model reports different amounts of uncertainty in different regions of the state-space. For instance,
note the narrower error-bars on some states between t = 320 and t = 350. This is due to the model
being more confident in its predictions in areas that are closer to the training data.

7 Conclusions and future work

We have shown an efficient way to perform fully Bayesian inference and learning in GP-SSM. An
important contribution is that our approach retains the full non-parametric expressivity of the model.
This was made possible by marginalizing out the state transition function, which resulted in a non-
trivial inference problem which was solved using a tailored PGAS sampler. Consequently, we learn
a model of the state transition which is able to report its own uncertainty and whose flexibility
is not constrained by the choice of a parametric model. There are many things that can still be
explored in this flexible class of models. One interesting avenue for future work is the design
of deterministic inference algorithms such as variational Bayes. Furthermore, particle Metropolis
Hastings and hybrid Monte Carlo methods offer alternatives to the proposed PMCMC algorithm
worth to be explored. When it comes to learning the hyper-parameters, empirical Bayes can provide
an interesting alternative to the fully Bayesian approach considered here.
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