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1 Implementation Details — Cholesky updates of the Matrix K

The Cholesky decomposition of a positive-definite matrix K is a decomposition into a lower trian-
gular matrix L, according to K = LLT, where we refere to L as the Cholesky factor of K. Consider
a symmetric positive-definite matrix K with Cholesky factor L, both with block entries according

to
K1 Ko Ki3 Ly O 0
K = X K22 Kgg L= L21 L22 0 s (1)
X x  Kss L3 L3z Lgg

where K75 is a column vector, K52 is a scalar and K53 is a row vector. We construct the matrix K
by replacing one row and one column in K. The task is now to make use of this decomposition in

order to find the Cholesky factor M of the matrix K ,

~ Ky f:ﬁz K3 _ . My O 0
K= x Ky Ky K=MM", M= My My 0 |. (2)
X x  Kas M3z, Mz Mss

without having to explicitly compute yet another Cholesky decomposition. Put in slightly different
words we want to express the block entries of the Cholesky factor M in terms of the block entries
in L that we already have available to us in (T).

From (I)) we have

Ly Ly, Ly Ly, Ly Ly,
K=LL" = X Loy LY, + Ly LY, Loy L3, + Ly LY, (3)
X X L31L;’r1 + L32Lz))r2 + L33L;)r3

allowing us to identify the following relationships
Ky = L L]}, (4a)
Koy = Loy L{;, (4b)
K31 = Ly1 L]}, (4c)
Ky = L1 Ly, + Loy L, (4d)
K3y = La1 L) + L3z LY, (4e)
Ks3 = L3 L) + L3s L, + L3z L. (4f)

From (@a) and (2)) we have

My = Ly;. (5a)



By similar identifications of terms we have

My = f~(21Lf1T7 (5b)
M3, = L3y, (5¢)
M2, = Koy — My My, (5d)
1 /-~
Mgy = Vs (K32 - M31M2Tl> ) (5e)
22
M3 M3y = K33 — May M3, — My My, (59)

Using back-substitution it is straightforward to find the factors M5, and M3, by exploiting the fact
that the L;; matrix is lower triangular. The term My, is scalar and found simply via a square
root operation and the term M3, is given by (3€). However, computing M35 by a direct Cholesky
decomposition is too expensive and again it comes down to exploiting the structure inherent in the
problem. Let us start by inserting (@) into (51), resulting in

Ms3 My = LagLas + Lai Ly, + LagLay — Mgy Mg, — Mo MJ, (6a)
= LasLiy + Lo L3y — M3z M3, (6b)

where the last equality follows (5¢). Since L3pL1, and MsoMJ, are both rank one, we can now
compute M33 by one rank-one update and one rank-one downdate of L33. See [1]] for an overview

of rank-one update/downdate methods. This concludes our work in finding the decomposition K =
MMT,

2 The CPF-AS Algorithm

The basic idea underlying PMCMC is to use SMC to construct a Markov kernel leaving the exact
joint smoothing distribution invariant. Hence, we seek a family of ergodic Markov kernels on X7+,

{Myg : 6 € O}, 7

such that, for each 6, Mg (xo.7 | Xo.7) leaves p(xo.7 | €, yo.r) invariant. In PGAS, these kernels
are constructed using a procedure referred to as a conditional particle filter with ancestor sampling
(CPF-AS). This procedure is particularly suitable for non-Markovian latent variable models [2], as
it relies only on a forward recursion.

CPF-AS is similar to a standard SMC sampler, but with the important difference that one particle
at each time step is specified a priori. Let these particles be denoted Xo.7 = {Xo, ..., X7}. More
precisely, we condition on the event that X; is contained in the collection of particles {x:},

generated at time ¢. To accomplish this, we sample according to xi ~ p(x; | 0, xg?t_l) only for
i=1,..., N — 1. The Nth particle is then set deterministically: x¥ = X;. The CPF-AS is given
in Algorithm I}

The conditioning on a pre-specified collection of particles implies an invariance property of the
CPF-AS, which is key to its applicability in an MCMC sampler.

Proposition 1. Let the support of the target density be a subset of the support of the proposal density.
Then, for any 0 and any N > 2, the procedure

(i) Run Algorithm|l|conditionally on Xo.;
(ii) Sample X{y. with P(X{.q = Xb.7) = Wi,

defines an irreducible and aperiodic Markov kernel Mév on XT, with invariant distribution p(Xo.7 |
0, y0:T)~

Proof. The invariance property follows by the construction of the CPF-AS in [2], and the fact that
the law of X{.; is independent of permutations of the particle indices. This allows us to always
place the conditioned particles at the Nth position. Irreducibility and aperiodicity follows from [3}
Theorem 5]. L]



Algorithm 1 CPF-AS, conditioned on Xg.1
1. Initialize:

(a) Draw x}) ~ p(xq | 0,y0) fori =1, ..., N — 1.

(b) Setx = %o.

(c) Fori=1,..., N,setw} o p(yo | 0,x%), where the weights are normalized to sum to 1.
2.Fort=1, ..., Tdo:

(a) Draw a! with P(al = j) =w]_ fori=1,..., N — 1.
(b) Draw x! ~ p(x; | O,XE?Fl) fori=1,..., N —1.

(c) Draw al with P(a) = j) «c w!_,p(Xp.r | 0,%].,_,).
(d) Set Xév = it.

(e) Fori=1,..., N,setw! o p(y; | 0,x!), where the weights are normalized to sum to 1.

Consequently, if Xo.r ~ p(xo.r | 0,yo.1) and we sample X;.,- according to the procedure given
in Proposition |1} then, for any number of particles N, it holds that X(.;- ~ p(xo.r | €,yo.7). For
N =1 we get, by construction, X{,.,, = Xo.r, i.e. the trajectories are perfectly correlated (this is
why we need N > 2 to get an irreducible kernel). On the other hand, as N — oo, the conditioning
will have a negligible effect on the CPF-AS. Hence, X/, will be effectively independent of X¢.7
and (with an infinite number of particles) distributed according to the exact smoothing distribution.
The number of particles N will thus affect the mixing of the Markov kernel Mév . The invariance
property of the kernel holds for any [V, but the larger we take IV, the smaller the correlation will be
between X{,.;- and Xo.7. However, it has been experienced in practice that the correlation drops off
very quickly as NV increases [2}[4], and for many models a moderate N is enough to obtain a rapidly
mixing kernel.

3 An Additional plot for the Nonlinear System Benchmark

In Figure[I] we show the values of the hyper-parameters that are learnt during the experiment.
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Figure 1: Hyper-parameter samples.
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