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Abstract— A UAV navigation system relying on GPS is
vulnerable to signal failure, making a drift free backup system
necessary. We introduce a vision based geo-referencing system
that uses pre-existing maps to reduce the long term drift. The
system classifies an image according to its environmental con-
tent and thereafter matches it to an environmentally classified
map over the operational area. This map matching provides a
measurement of the absolute location of the UAV, that can easily
be incorporated into a sensor fusion framework. Experiments
show that the geo-referencing system reduces the long term
drift in UAV navigation, enhancing the ability of the UAV to
navigate accurately over large areas without the use of GPS.

I. INTRODUCTION

Navigation of commercial UAVs is today depending on
Global Navigation Satellite Systems, e.g. GPS. However, to
solely rely on GPS is associated with a risk. When operating
close to obstacles, reflections can make the GPS signal
unreliable and it is also easy to jam the GPS making it
vulnerable to malicious attacks. The navigation system thus
requires an additional position estimator, allowing the UAV
to keep operating even after GPS failure.

A sensory setup using an inertial measurement unit (IMU)
together with vision from an on-board camera has been
shown to enable accurate pose estimates through the process
of visual odometry (VO) fused with an IMU [9]. However,
without any absolute position reference the estimated posi-
tion of the UAV will always suffer from a drift. The drift
problem can be addressed using Simultaneous Localization
And Mapping (SLAM) [1, 3] which relies on revisiting
familiar areas to obtain so called loop closures. This means
that the UAV needs to map its operational environment while
operating in closed loops to minimize drift. This is of course
a major drawback with SLAM for applications in which it
is not natural to operate in closed loops.

We propose to use existing, preclassified maps of the
operational environment for absolute position referencing,
see Fig. 1. Using existing maps as reference instead of
creating a new map online results in more accurate navigation
and lets the UAV exploit what we already know. In this work
we explore a vision based approach where images from the
on-board camera are matched with the map, requiring no
additional sensors apart from those used in VO. A similar
idea was proposed in [2] where Normalized Cross Correla-
tion (NCC) is used to correlate the on-board image with the
reference map. We shall come back to this later. Also [8]
address the problem, where reference image matching using
the Hausdorff measure was explored. That work is mainly
focused on the image processing properties and it is not
incorporated into a probabilistic sensor fusion framework.

Fig. 1. Map over the operational environment obtained from Google
EarthTM (left) and a manually classified reference map with grass, asphalt
and houses as prespecified classes (right).

The idea behind geo-referencing is to provide a measure-
ment equation, relating the on-board image It to the absolute
position of the UAV,

y(It) = h(xt) + et, (1)

where y(It) is some measurement derived from the image,
xt denotes the state and et denotes the measurement noise.
h(xt) is a measurement model available as a look-up table
based on the reference map. It is clear that It will depend
on the full pose of the vehicle in 6 degrees of freedom and
in the general case this should be the case for h(xt) as well.
However, it is not feasible to use a 6D look-up table, which
means that some approximations and/or simplifications are
needed.

Since the reference map is available as a 2D image as
shown in Fig. 1, we seek a measurement model h which
only depends on the pixel coordinates in the map, [u, v].
The pose is related to these coordinates due to the fact
that for a given pose we can project the on-board image
onto the reference map, and obtain the coordinates [u, v]
corresponding to the centre of the projected image It. By
doing so we enforce our measurement model, which now
takes the form h(u(xt), v(xt)), to yield the same output for
all vehicle poses resulting in the same pixel coordinates.
Clearly, this must also be the case for the measurement y(It),
which means that the on-board image must be matched with
the reference map in a way that only depends on [u, v].

There are basically two ways to achieve this. The first
is to allow the measurement to depend on the vehicle pose
as well, i.e. y(It, xt). The problem with this approach is
that we do not know the true pose, and when computing
the measurement online we have to use an estimate. This
approach is investigated in [2], where It is rotated and scaled
using the current pose estimate to match the reference map.
NCC is thereafter used to perform the matching in 2D.



The problem is that this method can result in instability
if the pose estimate starts to drift, as shown in [2]. The
second alternative is to make the matching invariant to
rotation and/or scale. This is in itself not an approximation
and does not suffer from instability issues. The price for
using invariant matching is instead that some information is
discarded and the geo-referencing becomes less informative.

In our proposed approach, the matching is made invariant
to rotation and the scale is taken from a point estimate. The
reason for this is that the measurement is believed to vary
smoothly with respect to the scale, and the matching will
thus be less sensitive to approximation errors in scale than
orientation. Consider for instance the case where the UAV
is flying along a road. Even a small error in rotation can
then lead to a poor match when the on-board images are
compared with the map. A small error in scale will not affect
the matching as much. In our experiments we have small
attitude angles and the scale will thus only depend on the
altitude zt. The idea can however easily be extended to the
case where also point estimates of the attitude angles are
used to compute the measurement.

II. GEO-REFERENCING

Our geo-referencing framework uses environmental clas-
sification and rotation invariant template matching. The
main motivation for using environmental classification and
classified maps instead of aerial photos and point feature
matching, is to gain robustness in the geo-referencing in the
sense that it is insensitive to for instance daylight and even
seasonal variations. Additional motives for performing the
classification could be to assist in decision making, e.g. a
UAV searching for a landing site must be able to distinguish
between houses, forest, flat ground etc.

The basic procedure is as follows. It is first segmented and
classified into houses, roads, grass etc. The classifier provides
class probabilities for all segments. To describe the content
of It in a rotation invariant way a class histogram y(It) is
computed from a circular region in the image. The histogram
represents the proportions of the different classes in the
circular region, which will be unaffected by any rotation
of the image. A noise distribution for et, representing the
uncertainty in the classification, is also derived. A flow chart
of the procedure is provided in Fig. 2.
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Fig. 2. Flow chart of the process of creating the measurement y(It).

To enhance the template matching performance, the image
is divided into N circular regions instead of just one (see
Fig. 3), each for which a class histogram is computed. The
same procedure applies to the reference map, for which the
N histograms are precomputed offline at each pixel. The
radii of the regions in It depend on the altitude estimate ẑt

so that their scales match the regions in the reference map.

We now have the measurement equations

yn(It, ẑt) ≈ yn(It, zt) = hn(u(xt), v(xt)) + en,t, (2)

for n = 1, . . . , N , where yn and hn are the class histograms
for the n:th circular regions in It and in the reference map
at position [u, v], respectively. At this point one could find it
strange that we have assumed additive noise et in a model
dealing with class histograms. However, as we shall see in
Sec. II-B this choice is well motivated. We shall also see
that the main challenge in this approach is to find a proper
distribution for et which reflects the uncertainties induced by
the classification procedure.

A. Environmental Classification
The environmental classification of an image is initiated

by the segmentation of the image into uniform regions called
superpixels, using an off-the-shelf graph-based image seg-
mentation algorithm [4]. We then seek the class probabilities
for each superpixel

pi(Ck|di) = P (“superpixel i” = Ck), (3)

for a set of prespecified classes Ck, k = 1, . . . , K, where
di is a descriptor of superpixel i. The classes are chosen
with respect to the reference map, so that classes present
in the map also become “available” to the classifier. This
also means that we only consider classes that are believed to
be more or less stationary, such as houses and roads. Using
objects that are believed to be non-stationary, e.g. cars, will
not work since these objects will most likely not be present
in the reference map. The classes used in this work are grass,
asphalt and house.

Each descriptor di is here taken as a 39 dimensional vector
representing a superpixel. The color information contained
in di is the RGB mean and variance (3x2 dim) and a
histogram representation of the RGB content (3x8 dim) in
the superpixel. Texture is incorporated using Gabor filtering
with two scales and two directions. The mean and variance
of each Gabor filtering is included in the descriptor (2x2x2
dim) and finally also the size of the superpixel (1 dim).

For classification, a neural network with 20 hidden units
is trained to classify a descriptor di as one of the K classes.
The network is trained with 594 manually labeled superpixels
from 50 frames, not used in the validation or experiment data
sets. When classifying a new descriptor, the output from the
neural network is

Lk
i ∈ [0, 1], k = 1, . . . , K, (4)

where Lk
i = 1 for some k implies a very certain classifica-

tion. To be able to interpret the output as probabilities the
Lk

i :s are normalized to sum to one, yielding

pk
i , pi(Ck|di) = Lk

i /
∑K

l=1L
l
i. (5)

Our classifier was validated using 166 superpixels, which
resulted in a classification accuracy of 95%. In Fig. 3 the
segmentation and classification of an image can be studied,
where the class assigned to each superpixel is the one with
the highest probability pk

i . It is important to emphasize that
neither the choice of descriptor nor classifier is central to
the geo-referencing system presented here. The framework



Fig. 3. Image from on-board camera (left), extracted superpixels (middle-left), superpixels classified as grass, asphalt or house (middle-right) and three
circular regions used for computing the class histograms (right).

can be used with any other probabilistic classifier without
modification, see for example [5, 6].

B. Probabilistic Template Matching
We now turn to the problem of finding a class histogram

y(It, ẑt) and a noise distribution for et reflecting the un-
certainty in the classification. To do this we associate a
stochastic variable Xi,t to each superpixel representing its
class, such that Xi,t takes on class Ck with probability pk

i .
Here pi =

(
p1

i . . . pK
i

)T
are the class probabilities given

by the classifier. The classes are coded using a 1-of-K coding
scheme, i.e. Ck is a binary vector, where the k:th element
equals one and all other elements equal zero,

Ck =
[
0 . . . 0 1 0 . . . 0

]︸ ︷︷ ︸
K elements with k:th element = 1

T . (6)

Let C be the set of prespecified classes used in the
reference map, in our case C = {grass, asphalt, house}.
Obviously we need to be able to deal with the fact that the
classifier can encounter objects unknown to it, e.g. due to
occlusion or model imperfections. Let us define S(i) to be
the true “class” of superpixel i, in an abstract sense where
we consider all thinkable classes. We can then only rely on
our classifier in the case S(i) ∈ C . The underlying class in
the reference map, of the area captured by superpixel i, is
modelled as another stochastic variable X̃i,t according to

X̃i,t =

{
Xi,t if S(i) ∈ C

X0
i otherwise

(7)

where X0
i is a default1 value for X̃i,t. Hence, if the image

from the on-board camera for instance is occluded by some
object unknown to the classifier, a default value is used
instead of the value derived from the image. We will of
course never know whether this is the case or not, but we
can estimate the level of certainty in the classification

ai , P (S(i) ∈ C ). (8)

How this is done is described in Sec. II-C. By the law of
total probability we can write

P (X̃i,t = Ck) = P (S(i) ∈ C )P (Xi,t = Ck)

+ P (S(i) /∈ C )P (X0
i = Ck)

⇒ X̃i,t = aiXi,t + (1− ai)X0
i .

(9)

1X0
i is indexed with i to indicate that we have one instance of X0 for

each superpixel i, but all of them are independent and identically distributed
(i.i.d.).

We can easily derive the expected value of Xi,t

E[Xi,t] =
K∑

k=1

Ckpk
i = pi (10)

and its covariance

Σi , Cov(Xi,t) =


Σ

11
i · · · Σ

1K
i

...
. . .

...
Σ

K1
i · · · Σ

KK
i

 (11)

where

Σkl
i = E

[
(Xk

i,t − pk
i )(X l

i,t − pl
i)
]

= E[Xk
i,tX

l
i,t]− pk

i p
l
i

=
/

P (X
k
i,t = 1) = p

k
i , P (X

k
i,tX

l
i,t = 1) =

{
0 if k 6= l

p
k
i if k = l

/
=

{
−pk

i p
l
i if k 6= l

pk
i − (pk

i )2 if k = l.
(12)

The default variable X0
i is assumed to be normally dis-

tributed with a mean (p0) corresponding to the average class
proportions in the reference map, and a large covariance
(ΣX0 ) to reflect the fact that when X0

i is used it is nothing
but a blind guess.

Once we have obtained the variables for each superpixel,
we can calculate a probabilistic histogram for each circular
region. To keep the notation simple, assume that we are
only dealing with one circular region and remember that
the following procedure applies to all of them. Let µi be
the proportion of superpixel i in the circular region. The
histogram will then become

Y =
∑

i

µiX̃i,t =
∑

i

(µiaiXi,t + µi(1− ai)X0
i ) (13)

with expected value

E[Y ] =
∑

i

(µiaipi + µi(1− ai)p0) (14)

and covariance

Cov(Y ) =
/
Xi,t independent of X0

j and X0
i i.i.d. ∀i

/
= Cov

(∑
i

µiaiXi,t

)
+
∑

i

(µi(1− ai))2ΣX0

=
∑

i

(µiai)2Σi + 2
∑
i<j

µiµjaiajCov(Xi,t, Xj,t)

+
∑

i

(µi(1− ai))2ΣX0 . (15)



In (15), all terms are known except Cov(Xi,t, Xj,t). All
these cross covariances are in our current implementation
assumed to be zero. In one sense this choice seems to be
well motivated, due to the fact that all superpixels consist
of uniform parts of the image with distinct borders between
them. One could therefore assume that the classes of dif-
ferent superpixels should be uncorrelated. However, since
the coarseness of the segmentation algorithm is controlled
via user set parameters it is clear that this actually cannot
be the case. One uniform region could very well be split
into two superpixels if the algorithm was set to work with a
finer segmentation, and these superpixels are then clearly
not uncorrelated. In future work on this topic we intend
to model the cross correlation using information about how
strong the evidence is for a border between two superpixels.
This information is already available from the segmentation
algorithm [4].

It is intractable to derive the true distribution of Y ,
but since it is a sum of several stochastic variables we
approximate it with a normal distribution for which we know
the 1st and 2nd order statistics. To aquire the measurement
equation from (2), Y is divided into a measurement which
is the expected class histogram derived from It, y(It, ẑt) =
E[Y ], and a noise representing the uncertainty in the clas-
sification et ∼ N(0, R), R , Cov(Y ). This yields the
sought measurement equation y(It, ẑt) = h(xt) + et, where
h(xt) is the precomputed class histogram from the look-
up table. We can now, for instance, obtain the measurement
likelihood as p(yt|xt) = pe(yt−h(xt)). However, due to the
special structure in the stochastic histogram (||Y || ≡ 1), the
probability density function (PDF) will be constrained to a
(K − 1)-dimensional hyperplane as shown in Fig. 4. This
also means that R will be singular. To handle this we can
make a coordinate change to coordinates that are local to the
hyperplane, e.g. by utilizing a singular value decomposition
of R. Given that h(xt) lies in the same hyperplane (which
always will be the case since it is a histogram) we can
compute the PDF as

pe(yt−h(xt)) =
(2π)−(K−1)/2

λ1 . . . λK−1
e(−

1
2 (yt−h(xt))T R†(yt−h(xt)))

(16)
where, λk, k = 1, 2, . . . ,K − 1, are the K − 1 non-zero
eigenvalues of R and † is the Moore-Penrose pseudo-inverse.
How the likelihood is computed from the singular normal
distribution is illustrated in Fig. 4 for K = 3.

Once the individual likelihoods from all circular regions
are obtained, the total likelihood for the measurement is
given as their product. The algorithm is summarized in
Alg. 1.

C. Classification Reliability

To obtain a robust geo-referencing system we need to deal
with the fact that the classification can fail totally from time
to time. This will for instance happen if the image becomes
occluded or if the classifier encounters some unknown object.
Recall from (8) that we have defined mixing coefficients ai

that in some sense can be interpreted as probabilities that
the classification is reliable. To estimate these coefficients,
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Fig. 4. A class histogram from three classes will be a point on the unit
simplex in R3. Y is a stochastic variable in the same plane as the simplex,
with mean and covariance illustrated by the dot and ellipse, respectively.
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by p(yt|xt) = pe(yt − h(xt)).

Algorithm 1 Likelihood Computation
1) Segment the on-board image It into superpixels.
2) For each superpixel i = 1, . . . , Mt:

a) Extract a descriptor di according to Sec. II-A.
b) Feed di to the classifier to obtain the unnormal-

ized class probabilities, Lk
i .

c) Compute ai from (8) according to Sec. II-C.
d) Normalize Li to obtain pi.

3) For each circular region in the image:
a) Compute the 1st and 2nd order statistics of Y

from (14) and (15) using (12).
b) Compute p(yt|xt) = pe(yt − h(xt)) from (16)

where h(xt) is taken from a look-up table.
4) Multiply the likelihoods from all circular regions to

obtain the total likelihood.

we make use of the unnormalized class probabilities Lk
i from

(4). A good classification is typically characterized by

Lk
i ≈

{
1 if k = k̃

0 if k 6= k̃
(17)

for some class k̃ ∈ {1, . . . , K}. We therefore define ai to be
a linear interpolation of Li in a K-dimensional hypercube,
where the corners along the axes are assigned the value 1 and
all other corners are assigned 0. For example, with K = 2 we
define a(0, 0) = 0, a(0, 1) = 1, a(1, 0) = 1, a(1, 1) = 0 and
interpolate to get ai = a(L1

i , L
2
i ). This method assigns a high

value to ai if one of the Lk
i :s is close to 1 and the remaining

Lk
i :s are close to 0, in accordance with the objective (17).

D. Performance Analysis

Using the reference map shown in Fig. 1 and the classi-
fication result from Fig. 3, the resulting likelihood over the
map according to Alg. 1 is illustrated in Fig. 5. We see that
the likelihood is high in regions where we have both asphalt
and houses in the reference map, since this is the case for the
classified image. Along the roads, where the reference map



consists of asphalt and grass but no houses, the likelihood is
lower but still significantly more than zero. This is desired,
since the houses in the classified image very well could be
incorrectly classified. Finally, in regions where the reference
map solely consists of grass, the matching is very poor and
the likelihood is close to zero.
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Fig. 5. Computed likelihood over the reference map.

III. NAVIGATION FRAMEWORK

To test the geo-referencing it is implemented in a VO
framework previously studied by Törnqvist et al. in [9]. The
framework is briefly presented here, to show how it can be
fused with the proposed geo-referencing, but for all details
we refer to the original paper. In this application example,
the vehicle state consists of position xp,t, velocity xv,t, ac-
celeration xa,t, a quaternion xq,t representing the orientation
of the UAV and its angular velocity xω,t. The state vector
is also augmented with bias states for acceleration ba,t and
angular velocity bω,t to account for sensor imperfections.

The navigation problem has a linear and Gaussian sub-
structure which is exploited by using the marginalized par-
ticle filter (MPF) framework [7]. Hence, the state vector is
divided into linear states xl

t and nonlinear states xn
t ,

xl
t =

(
xT

v,t xT
a,t bTω,t bTa,t xT

ω,t

)T
,

xn
t =

(
xT

p,t xT
q,t

)T
.

(18)

VO is incorporated into the estimation problem by tracking
a set of landmarks mt = {mj,t}Jt

j=1 in consecutive frames.
The landmark positions in an absolute coordinate system are
also part of the linear state vector. The dynamic model of
the system is

xn
t+1 = fn(xn

t ) +An(xn
t )xl

t +Gn(xn
t )wn

t

xl
t+1 = Al(xn

t )xl
t +Gl(xn

t )wl
t

mj,t+1 = mj,t, j = 1, . . . , Jt

(19)

where wn
t and wl

t are assumed white and Gaussian with zero
means.

Landmarks are initiated from distinct Harris corners in the
on-board images and tracked between frames using NCC.

This gives rise to a measurement, available at 4 Hz (the
image frequency)

yVO,t = hVO(xn
t ) +HVO(xn

t )mt + eVO,t. (20)

The vehicle is also equipped with an IMU and a barometric
sensor, working at 20 Hz, yielding a second measurement

yIMU,t = hIMU(xn
t ) +HIMU(xn

t )xl
t + eIMU,t. (21)

The measurement noises eVO,t and eIMU,t are assumed white
and Gaussian with zero means.

Finally, we have a third measurement from the geo-
referencing according to (2). This measurement enters the
filtering scheme in the computation of importance weights
used for particle resampling. For Np particles, the impor-
tance weights γ(i)

t , i = 1, . . . , Np, are proportional to the
measurement likelihood

γ
(i)
t ∝ p(yVO,t, yIMU,t, yt|xn,(i)

1:t )

= p(yt|xn,(i)
t )p(yVO,t, yIMU,t|xn,(i)

1:t )
(22)

where the second factor is derived in [9] and the first factor
is given by Alg. 1.

IV. EXPERIMENTAL RESULTS

This section presents experimental results for UAV navi-
gation using the MPF approach presented in Sec. III. Data
used in the experiments was collected during a 400 m
test flight in southern Sweden, using an unmanned Yamaha
RMAX helicopter. Fig. 6 shows a map over the area with the
UAVs true flight trajectory (a Kalman filtered GPS signal)
illustrated with circles.

The horizontal position from the VO solution from [9] is
plotted as a dashed line. We can see that the estimate is fairly
accurate, but as expected it suffers from a drift. In the same
plot, also the solution using both VO and geo-referencing is
shown as a solid line. The estimated trajectory in this case
is very close to the ground truth, and it seems as if the drift
has been removed.

In Fig. 7 the error in horizontal position is shown. The
error has been divided into two components. The first is
the error orthogonal to the road over which the UAV is
flying and the second is the error along the direction of the
road. The orthogonal error is much smaller when the geo-
referencing is used and the drift is completely removed. The
error parallel to the road on the other hand has not been
reduced significantly by the geo-referencing, and the drift is
still present.

The reason for this is that the geo-referencing is much less
informative in the direction parallel to the road. If the UAV
is flying along a road with grass on both sides it is obvious
that it will not be able to know exactly how far it has flown.
Compare with a human driving along a road. We usually have
a very accurate estimate of our orthogonal position, namely
that we are on the road, but we do not know exactly how far
we have driven. However, as soon as we encounter a distinct
landmark, such as a crossing or a house, this information
is inferred to allow for an accurate estimate of our position
along the road as well. It is desired that this should be the
case also for the geo-referencing system, but from Fig. 7 we



 

 

Ground truth
VO
Geo−ref. + VO

Fig. 6. True trajectory illustrated with circles and the estimated trajectories with (solid line) and without (dashed line) geo-referencing.

see that it is not. Our experiments indicate that there are two
major reasons for why the geo-referencing fails in this sense.

The first is that the matching procedure has been made
rotation invariant to cope with instability issues. As pointed
out i Sec. I, this means that some information is discarded.
Take for instance the case when the UAV encounters a
crossing. Since the geo-referencing uses class histograms
from circular regions this will not be seen as a distinct
crossing by the system, but merely as if the proportion of
road increases. This is a drawback with the proposed system,
and further investigation of the tradeoff between stability and
estimation accuracy is required.

The second reason for the lost accuracy is the treatment of
classification uncertainty, as described in Sec. II-C. Due to
the possibility of misclassification the system will never fully
rely on what is seen in the image, which also is a tradeoff
between accuracy and robustness. Here the performance
could be increased by improving the classification and/or the
outlier rejection process. This is something that we intend
to do in future work, and we will then hopefully be able
to deduce which one of these two reasons that is most
responsible for the lost estimation accuracy.

V. CONCLUSIONS

A geo-referencing system for absolute UAV positioning
has been developed. The position reference is expressed as a
standard measurement equation, making it easy to incorpo-
rate into any sensor fusion framework. The system makes
use of environmental classification and rotation invariant
template matching, making it robust to variations in the
operational environment as well as errors in the estimated
orientation of the vehicle. Any probabilistic classifier can
be used together with the proposed geo-referencing system.
The measurement model is available as a 2D look-up table
with additive noise. The noise distribution is derived from
the classification result, reflecting the uncertainty in the
classification.

The system is shown to significantly improve the estima-
tion accuracy in directions where the measurement model
is rich on information. However, in directions where the
measurement model is low on information the system fails to
remove the drift in the position estimate. Further research is
needed to be able to improve the performance in this sense,
while still maintaining a high level of robustness.
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