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Abstract: Particle filters (PFs) have shown to be very potent tools for state estimation in
nonlinear and/or non-Gaussian state-space models. For certain models, containing a condition-
ally tractable substructure (typically conditionally linear Gaussian or with finite support), it is
possible to exploit this structure in order to obtain more accurate estimates. This has become
known as Rao-Blackwellised particle filtering (RBPF). However, since the RBPF is typically
more computationally demanding than the standard PF per particle, it is not always beneficial
to resort to Rao-Blackwellisation. For the same computational effort, a standard PF with an
increased number of particles, which would also increase the accuracy, could be used instead.
In this paper, we have analysed the asymptotic variance of the RBPF and provide an explicit
expression for the obtained variance reduction. This expression could be used to make an efficient
discrimination of when to apply Rao-Blackwellisation, and when not to.

Keywords: Particle filtering, Monte-Carlo methods, Rao-Blackwellised particle filter,
Marginalised particle filter, Rao-Blackwellisation, Variance reduction.

1. INTRODUCTION AND RELATED WORK

Many important problems in various fields of science are
related to state estimation in general state-space models,
based on noisy observations. If a prior distribution is
assumed for the initial state, the optimal filter is given
by the Bayesian filtering recursions. In a few special
cases, basically for linear Gaussian state-space (LGSS)
models and finite state-space (FSS) models, the optimal
filtering problem is analytically tractable. However, many
interesting problems do not exhibit such nice properties,
but are both nonlinear and/or non-Gaussian. In these
cases, the optimal filter needs to be approximated in
some way. Sequential Monte Carlo methods, or particle
filters (PFs), have shown to be very powerful tools when
addressing such intractable models. Since the introduction
of the PF by Gordon et al. (1993), we have experienced
a vast amount of research in the area. For instance, many
improvements and extensions have been introduced to
increase the accuracy of the filter, see e.g. Doucet and
Johansen (2011) for an overview of recent developments.

One natural idea is to exploit any tractable substructure
in the model, see e.g. Doucet et al. (2000b); Schön et al.
(2005). More precisely, if the model, conditioned on one
partition of the state, behaves like e.g. an LGSS or an
FSS it is sufficient to employ particles for the intractable
part and make use of the analytic tractability for the
remaining part. Inspired by the Rao-Blackwell theorem,
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this has become known as the Rao-Blackwellised particle
filter (RBPF).

The motivation for the RBPF is to improve the accuracy
of the filter, i.e. any estimator derived from the RBPF
will intuitively have lower variance than the corresponding
estimator derived from the standard PF. Informally, the
reason for this is that in the RBPF, the particles are
spread in a lower dimensional space, yielding a denser
particle representation of the underlying distribution. The
improved accuracy is also something that is experienced
by practitioners. However, it can be argued that it is
still not beneficial to resort to Rao-Blackwellisation in
all cases. The reason is that the RBPF is typically more
computationally expensive per iteration, compared to the
standard PF (e.g. for an RBPF targeting a conditional
LGSS model, each particle is equipped with a Kalman
filter, all which needs to be updated at each iteration).
Hence, for a fixed computational effort, we can choose to
either use Rao-Blackwellisation or to run a standard PF,
but instead increase the number of particles. Both these
alternatives will reduce the variance of the estimators.
Hence, it is important to understand and to be able to
quantify how large variance reduction we can expect from
the RBPF, in order to make suitable design choices for any
given problem.

In this paper we shall study the asymptotic (in the number
of particles) variances for the RBPF and the standard
PF (we shall throughout the paper use the abbreviation
SPF when referring to the non-Rao-Blackwellised PF). We
provide an explicit expression for the difference between
the variance of an estimator derived from the SPF and
the variance of the corresponding estimator derived from



the RBPF. Doucet et al. (2000b) motivates the RBPF by
concluding that the weight variance will be lower than for
the SPF, but they do not consider the variances of any
estimators. This is done by Chopin (2004), who, under
certain assumptions, concludes that the variance of an
estimator based on the SPF always is at least as high
as for the RBPF. However, no explicit expression for
the difference is given, and the test functions considered
are restricted to one partition of the state-space. Doucet
et al. (2000a) also analyse the RBPF and the reduction
of asymptotic variance. However, they only consider an
importance sampling setting and neglect the important
resampling step. Karlsson et al. (2005) studies the problem
empirically, by running simulations on a specific example.
Here, they have also analysed the number of computations
per iteration in the RBPF and SPF, respectively.

The rest of this paper is organised as follows. In Section 2
we present the PF framework and define the SPF and
the RBPF. We thereafter introduce the natural estimators
that can be derived from the two filters, and discuss their
asymptotic properties in Section 3. The main result is
given in Section 4, where we provide an explicit expression
for the difference in asymptotic variance for the two
estimators. In Section 5 this expression is studied for a
special case and in Section 6 we discuss how it can be
used in the design of a PF. Finally, in Section 7 we draw
conclusions.

2. BACKGROUND

2.1 Notation

All random variables are defined on a common probability
space (Ω,F , P ). For a measurable space (X,X ), we denote
by F(X) the set of all X -measurable functions from X
to R. For a measure µ on X and f ∈ F(X), satisfying∫
|f | dµ < ∞, we denote by µ(f) the integral

∫
f dµ. For

p ≥ 1, Lp(X, µ) denotes the set of functions f ∈ F(X) such
that

∫
|f |p dµ <∞.

Let (X,X ) and (Y,Y) be two measurable spaces. A kernel
V from X to Y is a map V : (X,Y)→ R+, such that (i) for
each x ∈ X, the map A 7→ V (x,A) is a measure on Y (ii)
for each A ∈ Y, the map x 7→ V (x,A) is X -measurable.
A kernel is called a transition kernel if V (x,Y) = 1 for
any x ∈ X. We shall sometimes write V (A | x) instead of
V (x,A). With f : X × Y 7→ R, f(x, ·) ∈ L1(Y, V (x, ·)) we
let V (f) denote the function V (f)[x] =

∫
f(x, y)V (x, dy).

For two measures µ and ν, we say that ν is absolutely
continuous with respect to µ (written ν � µ) if µ(A) =
0⇒ ν(A) = 0. ByN (m,σ2) we denote the Gaussian distri-
bution with mean m and variance σ2. Finally, convergence
in distribution and convergence in probability are denoted

by
D−→ and

P−→, respectively.

2.2 Particle filtering

Let {Xt, t ∈ N} be a discrete-time Markov process on the
state-space (X,X ) (typically some power of the real line
with the corresponding Borel σ-algebra). The process is
hidden, but observed through the measurement sequence
{Yt, t ∈ N} defined on (Y,Y). For a given sequence of

measurements Y1:t , {Y1, . . . , Yt} (a similar notation shall
be used for other sequences as well), the joint smoothing
distribution is defined as

φt(A) , P(X1:t ∈ A | Y1:t), A ∈ X t. (1)

In particle filtering, we seek to approximate this distribu-

tion by a weighted particle system {xN,i1:t , w
N,i
t }Ni=1. Ob-

serve that this is a triangular array of random variables
and, though cumbersome, it is important to keep the
dependence on N in the notation. There are many different
ways to generate such a particle system (see e.g. Doucet
and Johansen (2011) for an overview), but common to
most are the concepts of sequential importance sampling
and resampling. Importance sampling is used to propagate
a weighted sample, targeting the smoothing distribution at
time t−1, into a weighted sample targeting the smoothing
distribution at time t. This is done by sampling new
particles from a proposal kernel (a transition kernel from
Xt−1 to Xt),

Rt−1(x̃1:t−1, dx1:t). (2)

The proposal kernel is chosen such that φt � πt, where
we have defined the probability measure on X t,

πt(dx1:t) ,
∫
Xt−1

φt−1(dx̃1:t−1)Rt−1(x̃1:t−1, dx1:t). (3)

Besides from the absolute continuity condition, we shall
not assume any restrictions on the choice of proposal
kernel. For instance, it can depend on the measurement
sequence, but we shall not make such dependence explicit.
The distribution πt can be seen as the “proposed smooth-
ing distribution” at time t under the proposal kernel Rt−1.

To compensate for the fact that we sample from the wrong
distribution, the samples are weighted. For this purpose we
introduce the weight function

Wt−1(x1:t) ,
dφt
dπt

(x1:t). (4)

A well known problem in particle filtering is weight de-
pletion, see e.g. Doucet et al. (2000b); Doucet and Jo-
hansen (2011). To remedy this the particle system can
be resampled, i.e. particles with high weights are dupli-
cated and particles with low weights are discarded. As
previously mentioned, there are many options available
to the user when designing a particle filter, e.g. in the
choice of resampling scheme, if the number of particles
shall be fixed or varying and when the resampling shall be
performed. In this paper, the results will be given for the
particle filter presented in Algorithm 1 below. Briefly, we
consider arbitrary proposal kernels (2) (under the absolute
continuity assumption) and multinomial resampling which
is performed at each iteration of the algorithm. However,
results similar to those presented in Section 4 could be
obtained for other types of PFs as well, such as the aux-
iliary PF (Pitt and Shephard, 1999) and PFs with more
sophisticated resampling schemes.

As previously mentioned, the PF presented in this section,
i.e. which targets the “full” joint smoothing distribution
(1), will throughout the remainder of this paper be denoted
the standard particle filter (SPF).



Algorithm 1 Particle filter

Input: A weighted sample {xN,i1:t−1, w
N,i
t−1}Ni=1 targeting

φt−1.

Resampling: Sample N indices from a discrete distribu-
tion, i.e. for i = 1, . . . , N ,

P
(
IN,i = j

∣∣∣ {xN,k1:t−1, w
N,k
t−1}Nk=1

)
= wN,jt−1/

∑N
l=1w

N,l
t−1.

Set x̃N,i1:t−1 = xN,I
N,i

1:t−1 , i = 1, . . . , N . The equally weighted

sample {x̃N,i1:t−1, 1}Ni=1 targets φt−1.

Importance sampling: Choose a proposal kernel accord-
ing to (2). Sample new particles according to

xN,i1:t ∼ Rt−1(x̃N,i1:t−1, dx1:t), i = 1, . . . , N.

Compute the weights, using the weight function (4),

wN,it = Wt−1(xN,i1:t ).

Output: A weighted sample {xN,i1:t , w
N,i
t }Ni=1 targeting φt.

2.3 Rao-Blackwellised particle filter

The idea underlying the Rao-Blackwellised particle filter
is to exploit any tractable substructure in the targeted
Markov process, if such a structure is present. In doing so,
one can hope to obtain better particle approximations for a
fixed number of particles. Hence, assume that each Xt can
be partitioned according toXt = {Ξt, Zt} and X = Xξ×Xz.
Furthermore, assume that φt factorises according to

φt(dx1:t) = φmt (dξ1:t)φ
c
t(dz1:t | ξ1:t), (5)

where {ξt, zt} identifies to xt. Here, φmt is the marginal
smoothing distribution of Ξ1:t and φct is the conditional
smoothing distribution of Z1:t given Ξ1:t = ξ1:t. The
conditional distribution is assumed to be analytically
tractable, typically Gaussian or with finite support.

Remark 1. More precisely, φct is a kernel from Xtξ to Xtz.

For each fixed ξ1:t, φ
c
t(· | ξ1:t) is a measure on Xtz, and

it can hence be viewed as a conditional distribution. In
the notation introduced in (5), the meaning is that φt is
the product of the measure φmt and the kernel φct . In the
remainder of this paper we shall make frequent use of a
Fubini like theorem for such products, see e.g. Uglanov
(1991).

Instead of running the SPF targeting the “full” joint
smoothing distribution (1), we have the option to target
the marginal distribution φmt with a PF and then make
use of an analytical expression for φct . Hence, we choose a

proposal kernel Rmt−1(ξ̃1:t−1, dξ1:t) (from Xt−1ξ to Xtξ) such

that φmt � πmt and define a weight function Wm
t−1(ξ1:t)

analogously to (4). The measure πmt is defined analogously
to (3).

A weighted particle system {ξN,i1:t , ω
N,i
t }Ni=1, targeting

φmt , can then be generated in the same manner as in

Algorithm 1. We simply replace {xN,i· , wN,i· }Ni=1 with

{ξN,i· , ωN,i· }Ni=1 and φ·, R·, W· with φm· , Rm· , Wm
· , respec-

tively (again, superscript m for marginal). This will be
referred to as the Rao-Blackwellised particle filter (RBPF).

Remark 2. The most common way to present the RBPF
is for conditional LGSS models. In this case, the condi-
tional distribution φct is Gaussian, which means that it
can be computed using the Kalman filter recursions. Con-

sequently, the Kalman filter updates are often shown as
intrinsic steps in the presentation of the RBPF algorithm,
see e.g. Schön et al. (2005). In this paper, we adopt a more
general view and simply see the RBPF as a regular PF,
targeting the marginal distribution φmt . We then assume
that the conditional distribution φct is available by some
means (for the conditional LGSS case, this would of course
be by the Kalman filter), but it is not important for our
results what those means are.

3. PROBLEM FORMULATION

The SPF and the RBPF can both be used to estimate
expectations under the joint smoothing distribution. As-
sume that we, for some function f ∈ L1(Xt, φt), seek
the expectation φt(f). For the SPF we use the natural
estimator,

f̂NSPF ,
N∑
i=1

wN,it∑N
j=1 w

N,j
t

f(xN,i1:t ). (6)

For the RBPF we use the fact that φt(f) = φmt (φct(f)),
and define the estimator,

f̂NRBPF ,
N∑
i=1

ωN,it∑N
j=1 ω

N,j
t

φct

(
f({ξN,i1:t , ·})

∣∣∣ ξN,i1:t

)
. (7)

The question then arise, how much better is (7) compared
to (6)?

One analysis of this question, sometimes seen in the liter-
ature, is to simply consider a decomposition of variance,

Var(f)︸ ︷︷ ︸
SPF

= Var(E[f | Ξ1:t])︸ ︷︷ ︸
RBPF

+ E[Var(f | Ξ1:t)]︸ ︷︷ ︸
≥0

. (8)

Here, the last term is claimed to be the variance reduction
obtained in the RBPF. The decomposition is of course
valid, the problem is that it does not answer our question.
What we have in (8) is simply an expression for the
variance of the test function f , it does not apply to the
estimators (6) and (7).

Remark 3. It is not hard to see why the “simplified” anal-
ysis (8) has been considered. If the PF would produce
independent and identically distributed (i.i.d.) samples
from the target distribution (which it does not), then the
analysis would be correct. More precisely, for i.i.d. sam-
ples, the central limit theorem states that the asymptotic
variance of an estimator of a test function f , coincides with
the variance of the test function itself (up to a factor 1/N).
However, as we have already pointed out, the PF does not
produce i.i.d. samples. This is due to the resampling step,
in which a dependence between the particles is introduced.
At the end of Section 6, one of the inadequacies of (8) will
be pointed out.

Hence, we are interested in the asymptotic variance of (6)
and (7), respectively. To analyse this we shall borrow the
concept of asymptotic normality from Douc and Moulines
(2008).

Definition 1. (Asymptotic normality) Let (X,X ) be a
measurable space, A and W subsets of F(X), µ a probability
measure and γ a finite measure on X . Let σ be a real
nonnegative function on A and {aN}∞N=1 a nondecreasing
real sequence diverging to infinity.



A weighted sample {χN,i, υN,i}Ni=1 is said to be asymptot-
ically normal for (µ,A,W, σ, γ, {aN}) if

aNΩ−1N

N∑
i=1

υN,i
(
f(χN,i)− µ(f)

) D−→ N (0, σ2(f)), (9a)

a2NΩ−2N

N∑
i=1

(υN,i)2g(χN,i)
P−→ γ(g), (9b)

aNΩ−1N max
1≤i≤N

υN,i
P−→ 0, (9c)

as N → ∞, for any f ∈ A and any g ∈ W, where

ΩN =
∑N
j=1 υ

N,j .

In the following two theorems (slight modifications of what
has previously been given by Douc and Moulines (2008))
we claim asymptotic normality for the weighted particle
systems generated by the SPF and the RBPF, respectively.

Theorem 1. (Asymptotic normality of the SPF) Assume

that the initial particle system {xN,i1 , wN,i1 }Ni=1 is asymp-

totically normal for (φ1,A1,W1, σ1, φ1, {
√
N}). Define re-

cursively the sets

At , {f ∈ L2(Xt, φt) : Rt−1(·,Wt−1f) ∈ At−1,

Rt−1(·,W 2
t−1f

2) ∈Wt−1},
Wt , {f ∈ L1(Xt, φt) : Rt−1(·,W 2

t−1|f |) ∈Wt−1}.
Assume that, for any t ≥ 1, Rt(·,W 2

t ) ∈ Wt. Then, for

any t ≥ 1, the weighted particle system {xN,i1:t , w
N,i
t }Ni=1

generated by the SPF is asymptotically normal for
(φt,At,Wt, σt, φt, {

√
N}). The asymptotic variance is, for

f ∈ At, given by

σ2
t (f) = σ2

t−1
(
Rt−1(·,Wt−1f̄)

)
+ φt−1

[
Rt−1

(
·, (Wt−1f̄)2

)]
, (10)

f̄ = f − φt(f).

Proof. See Appendix A.

Theorem 2. (Asymptotic normality of the RBPF) Un-
der analogous conditions and definitions as in Theo-

rem 1, for any t ≥ 1 the particle system {ξN,i1:t , ω
N,i
t }Ni=1

generated by the RBPF is asymptotically normal for
(φmt ,A

m
t ,W

m
t , τt, φ

m
t , {
√
N}). The asymptotic variance is,

for g ∈ Amt , given by

τ2t (g) = τ2t−1
(
Rmt−1(·,Wm

t−1ḡ)
)

+ φmt−1
[
Rmt−1

(
·, (Wm

t−1ḡ)2
)]
, (11)

ḡ = g − φmt (g).

Proof. See Appendix A.

Recall from Remark 2 that the SPF and the RBPF are
really just two particle filters, targeting different distri-
butions, hence the similarity between the two theorems
above. Actually, we could have given one, more general,
theorem applicable to both filters. The reason for why we
have chosen to present them separately is for clarity and
to introduce all the required notation.

As previously pointed out, the RBPF will intuitively
produce better estimates than the SPF, i.e. we expect
τ2t (φct(f)) ≤ σ2

t (f). Let us therefore define the variance
difference

∆t(f) , σ2
t (f)− τ2t (φct(f)). (12)

The problem that we are concerned with in this paper is
to find an explicit expression for this quantity. This will
be provided in the next section.

4. THE MAIN RESULT

To analyse the variance difference (12) we shall need the
following assumption (similar to what is used by Chopin
(2004)).

Assumption 1. For each ξ̃1:t−1 ∈ Xt−1ξ , the two measures∫
Xt−1
z

φct−1(dz̃1:t−1 | ξ̃1:t−1)Rt−1({ξ̃1:t−1, z̃1:t−1}, dx1:t)

(13a)

and

at(ξ1:t)R
m
t−1(ξ̃1:t−1, dξ1:t)π

c
t (dz1:t | ξ1:t) (13b)

agree on X t, for some positive function at : Xtξ → R
and some transition kernel πct from Xtξ to Xtz, for which

φct(· | ξ1:t)� πct (· | ξ1:t).

The basic meaning of this assumption is to create a
connection between the proposal kernels Rt−1 and Rmt−1. It
is natural that we need some kind of connection. Otherwise
the asymptotic variance expressions (10) and (11) would
be completely decoupled, and it would not be possible to
draw any conclusions from a comparison. Still, as we shall
see in the next section, Assumption 1 is fairly weak.

We are now ready to state the main result of this paper.

Theorem 3. Under Assumption 1, and using the defini-
tions from Theorem 1 and Theorem 2, for any f ∈ Ãt,

∆t(f) = ∆t−1(Rt−1(·,Wt−1f̄))

+ φmt−1

[
Rmt−1

(
·,
(

1−at
at

)
(Wm

t−1ψ̄)2 + atVarπc
t
(Wt−1f̄)

)]
,

(14)

where

ψ̄ = φct(f)− φt(f), (15a)

Ãt , {f ∈ F(Xt) : φct(f) ∈ Amt } ∩ At. (15b)

Proof. See Appendix A.

5. RELATIONSHIP BETWEEN THE PROPOSALS
KERNELS

To understand the results given in the previous section,
we shall have a closer look at the relationship between the
proposal kernels imposed by Assumption 1. We shall do
this for a certain family of proposal kernels. More precisely,
assume that the kernels can be written

Rt−1(x̃1:t−1, dx1:t) = rt−1(dxt | x1:t−1)δx̃1:t−1(dx1:t−1),

(16a)

Rmt−1(ξ̃1:t−1, dξ1:t) = rmt−1(dξt | ξ1:t−1)δξ̃1:t−1
(dξ1:t−1).

(16b)

Informally, this means that when a trajectory (xN,i1:t or

ξN,i1:t ) is sampled at time t, we keep the “old” trajectory
up to time t − 1 and simply append a sample from time
t. This is the case for most PFs (when targeting the joint
smoothing distribution), but not all, see e.g. the resample-
move algorithm by Gilks and Berzuini (2001).



Furthermore, let rt−1 be factorised as

rt−1(dxt | x1:t−1)

=qct−1(dzt | ξ1:t, z1:t−1)qmt−1(dξt | ξ1:t−1, z1:t−1). (16c)

Assume that qmt−1 � rmt−1 and define the kernel

νt(dz1:t | ξ1:t) ,
dqmt−1(· | ξ1:t−1, z1:t−1)

drmt−1(· | ξ1:t−1)
(ξt)

×φct−1(dz1:t−1 | ξ1:t−1)qct−1(dzt | ξ1:t, z1:t−1). (17)

It can now be verified that the choice

at(ξ1:t) =

∫
Xt
z

νt(dz1:t | ξ1:t), (18)

πct (dz1:t | ξ1:t) =
νt(dz1:t | ξ1:t)

at(ξ1:t)
, (19)

satisfies Assumption 1, given that φct(· | ξ1:t)� πct (· | ξ1:t).
Hence, the function at takes the role of a normalisation
of the kernel νt to obtain a transition kernel πct . One
interesting fact is that, from (14), we cannot guarantee
that ∆t(f) is nonnegative for arbitrary functions at. At
first this might seem counterintuitive, since it would mean
that the variance is higher for the RBPF than for the SPF.
The explanation lies in that Assumption 1, relating the
proposal kernels in the two filters, is fairly weak. In other
words, we have not assumed that the proposal kernels
are “equally good”. For instance, say that the optimal
proposal kernel is used in the SPF, whereas the RBPF
uses a poor kernel. It is then no longer clear that the RBPF
will outperform the SPF. In the next section we shall see
that if both filters use their respective bootstrap proposal
kernel, a case when the term “equally good” makes sense,
then ∆t(f) will indeed be nonnegative. However, for other
proposal kernels, it is not clear that there is an analogue
between the SPF and the RBPF in the same sense.

5.1 Example: Bootstrap kernels

Let Q(dxt | xt−1) be the Markov transition kernel of the
process X. In the bootstrap SPF we choose the proposal
kernel according to (16a) with

rt−1(dxt | x1:t−1) = Q(dxt | xt−1), (20)

where, for A ∈ X ,

Q(A | Xt−1) = P(Xt ∈ A | Xt−1)

= P(Xt ∈ A | X1:t−1, Y1:t−1). (21)

The second equality follows from the Markov property of
the process. In the RBPF, the analogue of the bootstrap
proposal kernel is to use (16b) with

rmt−1(A | Ξ1:t−1) = P(Ξt ∈ A | Ξ1:t−1, Y1:t−1), (22)

for A ∈ Xξ.
It can be verified that these choices fulfill Assumption 1
with

at ≡ 1, (23)

and

πct (A | Ξ1:t) = P(Z1:t ∈ A | Ξ1:t, Y1:t−1), (24)

for A ∈ X tz . Hence, πct is indeed the predictive distribution
of Z1:t conditioned on Ξ1:t and based on the measurements
up to time t− 1. In this case we can also write πt(dx1:t) =
πmt (dξ1:t)π

c
t (dz1:t | ξ1:t), which highlights the connection

between the predictive distributions in the two filters. In

this case, due to (23), the variance difference (14) can be
simplified to

∆t(f) = ∆t−1(Rt−1(·,Wt−1f̄))

+ φmt−1
[
Rmt−1

(
·,Varπc

t
(Wt−1f̄)

)]
. (25)

Hence, ∆t(f) can be written as a sum (though, we have
expressed it in a recursive form here) in which each term is
an expectation of a conditional variance. It is thus ensured
to be nonnegative.

6. DISCUSSION

In Theorem 3 we gave an explicit expression for the
difference in asymptotic variance between the SPF and
the RBPF. This expression can be used as a guideline for
when it is beneficial to apply Rao-Blackwellisation, and
when it is not. The variance expressions given in this paper
are asymptotic. Consequently, they do not apply exactly
to the variances of the estimators (6) and (7), for a finite
number of particles. Still, a reasonable approximation of
the accuracy of the estimator (6) is

Var
(
f̂NSPF

)
≈ σ2

t (f)

N
, (26)

and similarly for (7)

Var
(
f̂NRBPF

)
≈ τ2t (φct(f))

N
. (27)

Now, assume that the computational effort required by
the RBPF, using M particles, equals that required by the
SPF, using N particles (thus, M < N since, in general,
the RBPF is more computationally demanding than the
SPF per particle). We then have

Var
(
f̂NSPF

)
Var

(
f̂MRBPF

) ≈ M

N

(
1 +

∆t(f)

τ2t (φct(f))

)
. (28)

Whether or not this quantity is greater than one tells us
if it is beneficial to use Rao-Blackwellisation. The crucial
point is then to compute the ratio ∆t(f)/τ2t (φct(f)), which
in itself is a challenging problem. One option is to apply
an RBPF to estimate this ratio, but to sort out the details
of how this can be done is a topic for future work.

As a final remark, for the special case discussed in Sec-
tion 5.1, the variance difference (25) resembles the last
term in (8). They are both composed of an expectation of
a conditional variance. One important difference though, is
that the dependence on the weight function Wt−1 is visible
in (25). As an example, if the test function is restricted to
f ∈ L1(Xtξ, φ

m
t ) the gain in variance indicated by (8) would

be zero (since Var(f(Ξ1:t) | Ξ1:t) ≡ 0), but this is not the
case for the actual gain (25).

7. CONCLUSIONS

We have analysed the Rao-Blackwellised particle filter in
a fairly general setting, and provide an explicit expression
for the reduction of asymptotic variance obtained from
Rao-Blackwellisation. This expression is expected to be of
practical use, since it can serve as an indicator for when
it is beneficial to apply Rao-Blackwellisation, and when it
is not. We are currently investigating efficient methods,
based on the analytical expression, for estimating the
obtained variance reduction.



Appendix A. PROOFS

Proof of Theorem 1. In Theorem 10 in Douc and Moulines
(2008), take

Lt−1(x̃1:t−1, dx1:t) = Wt−1(x1:t)Rt−1(x̃1:t−1, dx1:t),
(A.1)

which satisfies the conditions of the hypothesis. Further-
more, φt−1Lt−1(Xt) = 1. Now, the results follow for the
choice κ = 0. �

In Theorem 10 in Douc and Moulines (2008), the asymp-
totic normality of a particle system obtained after resam-
pling is considered. Compared to Theorem 1 of this paper,
they thus obtain an additional term in the expression for
the asymptotic variance.

Proof of Theorem 2. As the previous proof, with

Lmt−1(ξ̃1:t−1, dξ1:t) = Wm
t−1(ξ1:t)R

m
t−1(ξ̃1:t−1, dξ1:t). (A.2)

�
Proof of Theorem 3. Let Assumption 1 be satisfied. Con-
sider

φt(dx1:t) =

∫
φt−1(dx̃1:t−1)Wt−1(x1:t)Rt−1(x̃1:t−1, dx1:t)

= at(ξ1:t)Wt−1(x1:t)π
m
t (dξ1:t)π

c
t (dz1:t | ξ1:t), (A.3)

where we have used (3) and (4) for the first equality, and
(5) and Assumption 1 for the second equality (recall that
πmt is defined analogously to (3)).

However, we may also write

φt =
dφmt
dπmt

dφct
dπct

πmt π
c
t . (A.4)

Hence, we have two candidates for the Radon-Nikodym
derivative of φt with respect to πmt π

c
t which, πmt π

c
t -almost

surely, implies

at(ξ1:t)Wt−1(x1:t) = Wm
t−1(ξ1:t)

dφct(· | ξ1:t)
dπct (· | ξ1:t)

(z1:t). (A.5)

Consider arbitrary ϕ ∈ Ãt. Using (5) and Assumption 1
we may write

φt−1 [Rt−1(·, ϕ)] = φmt−1
[
Rmt−1 (·, atπct (ϕ))

]
. (A.6)

Comparing (A.6) and (10), we see that we can let ϕ take
the role of (Wt−1f̄)2. Hence, consider

πct
(
(Wt−1f̄)2

)
=
(
πct (Wt−1f̄)

)2
+ Varπc

t
(Wt−1f̄), (A.7)

where, using (A.5) we have πmt -almost surely,

πct (Wt−1f̄) =

∫
Wm
t−1(ξ1:t)

at(ξ1:t)

dφct(· | ξ1:t)
dπct (· | ξ1:t)

(z1:t)

× f̄({ξ1:t, z1:t})πct (dz1:t | ξ1:t)

=
Wm
t−1(ξ1:t)

at(ξ1:t)
φct(f̄) =

Wm
t−1(ξ1:t)

at(ξ1:t)
ψ̄(ξ1:t).

(A.8)

Combining (A.7) and (A.8) we get, πmt -almost surely,

at(ξ1:t)π
c
t

(
(Wt−1f̄)2

)
=

(
Wm
t−1(ξ1:t)ψ̄(ξ1:t)

)2
at(ξ1:t)

+ at(ξ1:t)Varπc
t
(Wt−1f̄).

(A.9)

Let Lt−1 and Lmt−1 be defined as in (A.1) and (A.2),

respectively. Then, Rt−1(·,Wt−1f̄) = Lt−1(·, f̄) and
Rmt−1(·,Wm

t−1ψ̄) = Lmt−1(·, ψ̄).

Using (12), (10), (11) and the above results, the difference
in asymptotic variance can be expressed as

∆t(f) = σ2
t−1
(
Lt−1(·, f̄)

)
− τ2t−1

(
Lmt−1(·, ψ̄)

)
+ φt−1

[
Rt−1

(
·, (Wt−1f̄)2

)]
− φmt−1

[
Rmt−1

(
·, (Wm

t−1ψ̄)2
)]

= σ2
t−1
(
Lt−1(·, f̄)

)
− τ2t−1

(
Lmt−1(·, ψ̄)

)
+ φmt−1

[
Rmt−1

(
·,
(

1
at
− 1
)

(Wm
t−1ψ̄)2 + atVarπc

t
(Wt−1f̄)

)]
(A.10)

(recall that πmt = φmt−1R
m
t−1 which ensures that we, due to

the expectation w.r.t. φmt−1R
m
t−1 in (A.10), can make use

of the equality in (A.9)).

Finally, by straightforward, but somewhat tedious manip-
ulations

φct−1(Lt−1(·, f̄)) = Lmt−1(·, ψ̄), πmt -almost surely.
(A.11)

Hence,

σ2
t−1
(
Lt−1(·, f̄)

)
− τ2t−1

(
Lmt−1(·, ψ̄)

)
= ∆t−1(Lt−1(·, f̄)),

(A.12)

which completes the proof. �
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