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Abstract

The expectation maximization (EM) algorithm computes maximum like-
lihood estimates of unknown parameters in probabilistic models involving
latent variables. More pragmatically speaking, the EM algorithm is an iter-
ative method that alternates between computing a conditional expectation
and solving a maximization problem, hence the name expectation maxi-
mization. We will in this work derive the EM algorithm and show that it
provides a maximum likelihood estimate. The aim of the work is to show
how the EM algorithm can be used in the context of dynamic systems and
we will provide a worked example showing how the EM algorithm can be
used to solve a simple system identi�cation problem.

Keywords: Expectation Maximization, system identi�cation, Maximum
likelihood, latent variables, probabilistic models.
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Abstract

The expectation maximization (EM) algorithm computes maximum
likelihood estimates of unknown parameters in probabilistic models in-
volving latent variables. More pragmatically speaking, the EM algorithm
is an iterative method that alternates between computing a conditional
expectation and solving a maximization problem, hence the name expec-
tation maximization. We will in this work derive the EM algorithm and
show that it provides a maximum likelihood estimate. The aim of the
work is to show how the EM algorithm can be used in the context of
dynamic systems and we will provide a worked example showing how the
EM algorithm can be used to solve a simple system identi�cation problem.

1 Introduction

The expectation maximization (EM) algorithm computes maximum likelihood
(ML) estimates of unknown parameters θ in probabilistic models involving latent
variables Z1. An instructive way of thinking about EM is to think of it as a
systematic way of separating one hard problem into two new closely linked
problems, each of which is hopefully more tractable than the original problem.
This problem separation forms the very heart of the EM algorithm.

More pragmatically speaking, the EM algorithm is an iterative method that
alternates between computing a conditional expectation and solving a maxi-
mization problem, hence the name expectation maximization. To thoroughly
appreciate the EM algorithm, it is important to understand why the above
mentioned problem separation indeed results in an ML estimate. This will be
explained in detail below.

The motivation for this work is to provide a basic introduction to the EM
algorithm within the setting of dynamic systems. More speci�cally, the main
focus is to explain how the EM algorithm can be used for estimating models
of dynamic systems, i.e., system identi�cation. That is, besides the general
introduction and derivation of the EM algorithm given in Section 2, we will see
how it can be used to identify parameters in a simple, but still very instructive

1The term latent variable is adopted from statistics and refers to a variable that is not
directly observed. Hence, a latent variable has to be inferred (through a mathematical model)
from other variables that are directly observed, i.e., measured. Latent variables are sometimes
also referred to as hidden variables of unobserved variables and within the EM literature they
are sometimes called the missing data or the incomplete data.
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case in Section 3. In Section 4 we provide some brief insights into the, by now
rather large, literature surrounding the EM algorithm and its applications and
in Section 5 we provide the conclusions. Finally, in the Appendix we give some
of the details skipped in the main text and the Matlab code for the example
discussed in Section 3.

2 A Formal Derivation of the EM Algorithm

In order to derive the EM algorithm in Section 2.2 we must �rst clearly de�ne
the ML problem, which is the topic of Section 2.1.

2.1 Maximum Likelihood Estimation

The maximum likelihood method, which was introduced by Fisher (1912, 1922),
is based on the rather natural idea that the unknown parameters should be
chosen in such a way that the observed measurements becomes as likely as
possible. More speci�cally, the ML estimate is computed according to

θ̂ML , arg max
θ

pθ(y1, . . . , yN ), (1)

where yt denotes the measurement at time t. Furthermore, subindex θ indicates
that the corresponding probability density function pθ(y1, . . . , yN ) is parame-
terised by the (unknown) parameter θ. The joint density of the observations
pθ(y1, . . . , yN ) can, using the de�nition of conditional probabilities, be written
as

pθ(y1, . . . , yN ) = pθ(y1)
N∏
t=2

pθ(yt|Yt−1), (2)

where Yt−1 , {y1, . . . , yt−1}. It is often convenient to consider the so called
log-likelihood function

Lθ(Y ) , log pθ(y1, . . . , yN ) =
N∑
t=2

log pθ(yt | Yt−1) + log pθ(y1), (3)

rather than the likelihood function. In the interest of a more compact notation
we have here introduced the notation Y , {y1, . . . , yN}. The logarithm is a
strictly increasing function, implying that the following problem is equivalent
to (1)

θ̂ML = arg max
θ

N∑
t=2

log pθ(yt | Yt−1) + log pθ(y1). (4)

This problem can of course be solved using standard methods such as Newton's
method or one of its related variants, see e.g., Dennis and Schnabel (1983);
Nocedal and Wright (2006) for details on these methods. However, the ML
problem can also be solved using the expectation maximization algorithm, an
approach that has steadily gained in popularity since its formal birth in 1977
(Dempster et al., 1977).
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2.2 Expectation Maximization

The strategy underlying the EM algorithm is to separate the original ML prob-
lem (4) into two linked problems, each of which is hopefully easier to solve than
the original problem. Abstractly speaking this separation is accomplished by
exploiting the structure inherent in the probabilistic model. This will hopefully
be made clear below.

The key idea is to consider the joint log-likelihood function of both the
observed variables Y and the latent variables Z

Lθ(Z, Y ) = log pθ(Z, Y ), (5)

and then assume that the latent variables Z were available to us. In order to
understand why this makes sense, let us start by an example.

Example 2.1 (Identifying linear state-space models)
Consider the following linear state-space model(

xt+1

yt

)
=
(
A B
B D

)(
xt
ut

)
+
(
vt
et

)
, (6)

where the noise processes vt and et are assumed to be i.i.d.(
vt
et

)
∼ N

((
0
0

)
,

(
Q S
ST R

))
. (7)

The latent variables are for this problem given by the states, i.e., Z = X ,
{x1, . . . , xN+1}. The problem is now to identify the parameters in the fully
parameterized A,B,C and D matrices, based on the measured input ut and
output yt signals. If we, according to the key idea mentioned above, consider
the joint log-likelihood log pθ(X,Y ) and assume that the latent variables X
are known, the problem breaks down to a linear regression problem,

θ̂ = arg max
θ

N∑
t=1

∥∥∥∥(xt+1

yt

)
−
(
A(θ) B(θ)
C(θ) D(θ)

)(
xt
ut

)∥∥∥∥2

Γ−1

, Γ =
(
Q S
ST R

)
,

(8)

which straightforwardly allows for a closed form solution. The problem is of
course that the latent variables X are not known. An idea, allowing us to
still use the above idea, would then be to use the available observations in
order to �nd the best possible estimate of the latent variables. This estimate
can then be used in solving (8) and hopefully this results in something that
is meaningful. As we will soon see the intuition used above is in fact in close
agreement with theory.

Using the de�nition of conditional probability

pθ(Z | Y ) ,
pθ(Z, Y )
pθ(Y )

, (9)

we can establish the following connection between (3) and (5),

log pθ(Y ) = log pθ(Z, Y )− log pθ(Z | Y ). (10)
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Let θk denote the estimate of the parameter θ from the kth iteration of the
algorithm. The problem separation mentioned above is now obtained by inte-
grating (10) w.r.t. pθk

(Z | Y ), resulting in

log pθ(Y ) =
∫

log pθ(Z, Y )pθk
(Z | Y )dZ −

∫
log pθ(Z | Y )pθk

(Z | Y )dZ

= Eθk
{log pθ(Z, Y ) | Y }︸ ︷︷ ︸

,Q(θ,θk)

−Eθk
{log pθ(Z | Y ) | Y }︸ ︷︷ ︸

,V(θ,θk)

. (11)

In the above equation we have used the fact that∫
log pθ(Y )pθk

(Z | Y )dZ = log pθ(Y ). (12)

It is worth noticing that the latent variables are here assumed to be continuous.
However, there is nothing that prevents us from deriving the EM algorithm for
discrete latent variables, the only di�erence is that the integrals in (11) will be
replaced by summations.

Let us now study the di�erence between the log-likelihood function Lθ(Y )
evaluated at two di�erent values θ and θk,

Lθ(Y )− Lθk
(Y ) = (Q(θ, θk)−Q(θk, θk)) + (V(θk, θk)− V(θ, θk)) , (13)

where we have made use of the de�nitions in (11). It is now interesting to
consider V(θk, θk)− V(θ, θk) in more detail. Straightforward application of the
de�nition of V(θ, θk) provided in (11) results in,

V(θk, θk)− V(θ, θk) =
∫

log
(
pθk

(Z | Y )
pθ(Z | Y )

)
pθk

(Z | Y )dZ

= Eθk

{
− log

(
pθ(Z | Y )
pθk

(Z | Y )

)
| Y
}
. (14)

Note that this means that V(θk, θk)− V(θ, θk) is the Kullback-Leibler informa-
tion distance (Kullback and Leibler, 1951) between pθk

(Z | Y ) and pθ(Z | Y ).
Furthermore, the negative logarithm is a convex function, which implies that
Jensen's inequality2 can be used to establish

Eθk

{
− log

pθ(Z | Y )
pθk

(Z | Y )
| Y
}
≥ − log Eθk

{
pθ(Z | Y )
pθk

(Z | Y )
| Y
}

= − log
∫
pθ(Z | Y )dZ = 0, (16)

which e�ectively proves that

V(θk, θk)− V(θ, θk) ≥ 0. (17)

2Jensen's inequality states that if f is a convex function then

E{f(x)} ≥ f(E{x}), (15)

provided that both expectations exist.
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Hence, if we make use of this fact in (13) and choose a new parameter θ such
that Q(θ, θk) ≥ Q(θk, θk), we have in fact also increased the likelihood, or left
it unchanged,

Q(θ, θk) ≥ Q(θk, θk) ⇒ Lθ(Y ) ≥ Lθk
(Y ). (18)

The EM algorithm now suggests itself in that if we start by computing Q(θ, θk)
according to its de�nition in (11) this function can then be maximized with
respect to θ in order to obtain a new estimate θk+1. According to the above
analysis, this new estimate will indeed produce a higher or at least the same
likelihood as the previous estimate θk. This procedure is then repeated until
convergence, which is summarised in the algorithm below. It is important to
note that the convergence is only guaranteed to be to a local minima.

Algorithm 2.1 (Expectation Maximization)

1. Set k = 0 and initialize θ0 such that Lθk
(Y ) is �nite.

2. Expectation (E) step: Compute

Q(θ, θk) = Eθk
{log pθ(Z, Y ) | Y } =

∫
log pθ(Z, Y )pθk

(Z | Y )dZ. (19)

3. Maximization (M) step: Compute

θk+1 = arg max
θ

Q(θ, θk). (20)

4. If not converged, update k := k + 1 and return to step 2.

There are several ways in which the convergence check in step 4 of the above
algorithm can be performed. One common way is to simply monitor the value
of the log-likelihood and say that the algorithm has converged whenever the
increase falls below a certain threshold εL > 0 (a typical default value is εL =
10−6), i.e.,

|Lθk+1(Y )− Lθk
(Y )| ≤ εL. (21)

Another way to check for convergence is to monitor the change in the param-
eter value between two consecutive iterations and state that the algorithm has
converged when

‖θk+1 − θk‖2 ≤ εP, (22)

where εP > 0 is some suitably chosen threshold.

3 An Illustrative Example

Rather than providing a general solution to the problem of identifying linear
state-space models, we will solve the simplest problem we can think of. The
motivation for this is simply that it facilitates understanding. The general
case is then a generalisation of this, see (Gibson and Ninness, 2005) for details
concerning the fully parameterised case.
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Let us consider the following scalar linear state-space model,

xt+1 = θxt + vt, (23a)

yt =
1
2
xt + et, (23b)

where the noise processes are Gaussian according to(
vt
et

)
∼ N

((
0
0

)
,

(
0.1 0
0 0.1

))
. (23c)

For simplicity we assume that initial state is fully known, according to x1 = 0.
Finally, the true θ-parameter is given by

θ? = 0.9. (23d)

The identi�cation problem is now to determine the parameter θ on the basis
of the observations Y = {y1, . . . , yN}, using the EM algorithm introduced in
the previous section. The �rst thing to do is to identify the latent variables Z.
Inspired by Example 2.1 we realise that the states X , {x1, . . . , xN+1} plays
the role of latent variables in this problem, due to the fact that if the states
were known we could �nd the parameter simply by solving a linear regression
problem.

In the rest of this section we will now provide all the details necessary to
device a working EM algorithm to identify the parameter θ in (23). More specif-
ically, the E and the M steps are presented in Section 3.1 and 3.2, respectively.
Together, this results in the EM algorithm detailed in Section 3.3. Finally,
numerical experiments are provided in Section 3.4.

3.1 The Expectation (E) Step

The expectation (E) step of the algorithm consists in computing the following
quantity

Q(θ, θk) , Eθk
{log pθ(X,Y ) | Y } =

∫
log pθ(X,Y )pθk

(X | Y )dX. (24)

Let us start by �nding an expression for log pθ(X,Y ), when the data is generated
by the probabilistic model given in (23). We have,

pθ(X,Y ) = pθ(xN+1, XN , yN , YN−1)
= pθ(xN+1, yN | XN , YN−1)pθ(XN , YN−1), (25)

where we have used the de�nition of conditional probabilities in the second
equality. According to the Markov property3 inherent in (23) we have

pθ(xN+1, yN | XN , YN−1) = pθ(xN+1, yN | xN ), (27)

3A discrete-time stochastic process {xt} is said to possess the Markov property if

p(xt+1|x1, . . . , xt) = p(xt+1|xt). (26)
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implying that (25) can be written as

pθ(X,Y ) = pθ(xN+1, yN | xN )pθ(XN , YN−1). (28)

Repeated use of the above ideas straightforwardly yields

pθ(X,Y ) = pθ(x1)
N∏
t=1

pθ(xt+1, yt | xt). (29)

From (23) we have

pθ

((
xt+1

yt

)
| xt
)

= N
((

xt+1

yt

)
;
(
θ

1/2

)
xt,

(
0.1 0
0 0.1

))
, (30)

which inserted in (29) results in the following expression for log pθ(X,Y )

log pθ(X,Y ) = pθ(x1)
N∑
t=1

logN
((

xt+1

yt

)
;
(
θ

1/2

)
xt,

(
0.1 0
0 0.1

))
. (31)

Inserting the expression for the normal density function and using the fact that
in the current example we, for simplicity, assumed that the initial state was
known, we obtain,

log pθ(X,Y ) ∝
N∑
t=1

log
(

1
0.01
√

2π
e−

1
2wt

)
∝ −1

2

N∑
t=1

wt (32a)

where the exponent wt is given by

wt =
(
xt+1 − θxt
yt − 1

2xt

)T (0.1 0
0 0.1

)−1(
xt+1 − θxt
yt − 1

2xt

)
. (32b)

The expression (32) can be simpli�ed, resulting in

log pθ(X,Y ) ∝ −
N∑
t=1

x2
t θ

2 + 2
N∑
t=1

xtxt+1θ, (33)

where terms independent of θ have been neglected, since they, similar to x1, will
not a�ect the resulting optimization problem. Recall the we are interested in
the Q-function, which was de�ned in (24). Now, inserting (33) into (24) results
in

Q(θ, θk) ∝ −Eθk

{
N∑
t=1

x2
t | Y

}
θ2 + 2 Eθk

{
N∑
t=1

xtxt+1 | Y

}
θ

= −ϕθ2 + 2ψθ, (34)

where we have de�ned

ϕ ,
N∑
t=1

Eθk

{
x2
t | Y

}
, ψ ,

N∑
t=1

Eθk
{xtxt+1 | Y } . (35)

The expected values used to compute ϕ in (35) are explicitly provided by the
Rauch-Tung-Striebel (RTS) smoother (Rauch et al., 1965). Furthermore, the
expected values used to compute ψ in (35) are provided by an extension to the
RTS formula. All the details are provided in Theorem 1 below.
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Theorem 1 Consider the following linear state-space model

xt+1 = Axt +But + vt, (36a)

yt = Cxt +Dut + et, (36b)

where the noise processes are Gaussian according to(
vt
et

)
∼ N

((
0
0

)
,

(
Q S
ST R

))
(36c)

and the initial state is distributed according to x1 ∼ N (µ, P1). Let the parameter
vector θ be composed of A,B,C,D,Q,R, S, P1 and µ. Then

Eθk

{
xtx

T
t | Y

}
= x̂t|N x̂

T
t|N + Pt|N , (37a)

Eθk

{
xt+1x

T
t | Y

}
= x̂t+1|N x̂

T
t|N +Mt+1|N , (37b)

Eθk

{
ytx

T
t | Y

}
= ytx̂

T
t|N , (37c)

where

x̂t|N = x̂t|t + Jt
(
x̂t+1|N − Āx̂t|t − B̄ut − SR−1yt

)
, (38a)

Pt|N = Pt|t + Jt
(
Pt+1|N − Pt+1|t

)
JTt , (38b)

Jt = Pt|tĀ
TP−1

t+1|t, (38c)

for t = N, . . . , 1 and

Mt|N = Pt|tJ
T
t−1 + Jt(Mt+1|N − ĀPt|t)JTt−1, (39a)

for t = N − 1, . . . , 1 and MN |N is initialized according to

MN |N = (I −KNC)ĀPN−1|N−1. (39b)

Finally, the quantities x̂t|t, Pt|t and Pt+1|t are provided by the Kalman �lter for
the system given by

Ā = A− SR−1C, (40a)

B̄ = B − SR−1D, (40b)

Q̄ = Q− SR−1ST . (40c)

Proof 1 We refrain from giving the proof here, instead we refer to Shumway
and Sto�er (2006).

3.2 The Maximization (M) Step

According to (20), the maximization (M) step amounts to solving the following
problem

θk+1 = arg max
θ

Q(θ, θk). (41)

In the previous section we derived the following expression for Q(θ, θk)

Q(θ, θk) = −ϕθ2 + 2ψθ, (42)
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where ϕ and ψ are de�ned in (35). Hence, the M step simply amounts to solving
the following quadratic problem,

θk+1 = arg max
θ

− ϕθ2 + 2ψθ, (43)

which results in

θk+1 =
ψ

ϕ
. (44)

3.3 Explicit EM Algorithm

The �nal algorithm is now obtained simply by inserting the results derived in
Section 3.1 and Section 3.2 into the general EM algorithm provided in Algo-
rithm 2.1. This results in the algorithm provided below.

Algorithm 3.1 (Expectation Maximization for (23))

1. Set k = 0 and initialize θ0.

2. Expectation (E) step: Compute

Q(θ, θk) = −Eθk

{
N∑
t=1

x2
t | Y

}
θ2 + 2 Eθk

{
N∑
t=1

xtxt+1 | Y

}
θ, (45)

where the involved expected values are computed according to Theorem 1.

3. Maximization (M) step: Find the next iterate according to

θk+1 =
Eθk

{∑N
t=1 xtxt+1 | Y

}
Eθk

{∑N
t=1 x

2
t | Y

} (46)

4. If |Lθk
(Y ) − Lθk−1(Y )| ≥ 10−6, update k := k + 1 and return to step 2,

otherwise terminate.

All the details of the above algorithm are now accounted for, save for how to
compute the log-likelihood function Lθ(Y ), which is needed for the convergence
check. In the interest of a self-contained presentation we provide a derivation of
an explicit expression for Lθ(Y ) in Appendix A and in Appendix B, theMatlab

code is available.

3.4 Numerical Experiments

In the previous sections we derived an EM algorithm for estimating the unknown
parameter θ in (23a). We know that the maximum likelihood method is asymp-
totically consistent and since (23) is a linear model we expect the estimate to
converge to the true value as the number of samples N tends to in�nity. Before
we show that this is indeed the case for Algorithm 3.1, let us explain the exper-
imental conditions. The experiment is made by conducting seven Monte Carlo
studies, each using 1000 realisations of data Y . The only di�erence between the
studies is that the number of samples N used is di�erent for each study. All
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Table 1: The table shows the EM estimate provided by Algorithm 3.1 for seven
di�erent N . More speci�cally, θ̂ is the result of Monte Carlo studies, each using
1000 realisations of data. Recall that the true parameter value is θ? = 0.9.

N 100 200 500 1000 2000 5000 10000
θ̂ 0.8716 0.8852 0.8952 0.8978 0.8988 0.8996 0.8998

information concerning the model is provided in (23) and the initial guess used
for θ is chosen as θ0 = 0.1 for all realisations.

The result is provided in Table 1, where the EM estimate θ̂ is shown for the
di�erent number of samples N used. As expected, the EM estimate approaches
the true value θ? as the number of samples N increase. In order to further illus-
trate how the EM algorithm works we have provided plots of the log-likelihood
Lθ(Y ) and the Q-function in Figure 1. In the expectation (E) step, that is
step 2, an expression for the Q-function is computed according to the details
provided in Section 3.1 and Appendix A.2. The result of this computation is
provided by the black curve in Figure 1. In the subsequent step, the maximiza-
tion (M) step, of the EM algorithm, the task is to �nd the θ that maximizes the
Q-function. The result of this is illustrated by a vertical line in the �gure. The
grey curve in Figure 1 is the corresponding log-likelihood, computing according
to Appendix A.1.

4 Bibliography

To the best of the author's knowledge, the earliest account of an EM type
algorithm is Newcomb (1886), who used it for estimating a mixture model.
Since then there have been quite a few papers on EM type algorithms. How-
ever, the algorithm is usually accredited to Dempster et al. (1977), where the
�rst systematic treatment of the method is provided and the name expectation
maximization was coined. Currently, the most complete account of the EM al-
gorithm is provided by McLachlan and Krishnan (2008), which also provides a
good historical account of the algorithm.

As already mentioned in the introduction, the main focus in this work has
been the use of the EM algorithm for estimation problems arising in dynamic
systems, i.e., system identi�cation. A solid overview of the use of the EM algo-
rithm for system identi�cation was provided by Ninness (2009) in his plenary
talk at the 15th IFAC Symposium on System Identi�cation held in Saint-Malo,
France in July 2009. Since the EM algorithm o�ers a solution to the general
problem of maximum likelihood estimation it is widely used within many dis-
ciplines of science, see McLachlan and Krishnan (2008) for many examples of
this. Before we provide a brief overview of what has been done when it comes to
system identi�cation it is interesting to note that the algorithm is very popular
in the neighbouring areas of machine learning, see e.g., (Bishop, 2006), robotics,
see e.g., (Thrun et al., 2005) and signal processing, see e.g., (Moon, 1996).

Let us now brie�y review what has been done within the system identi�-
cation community when it comes to using the EM algorithm. When it comes
to identifying linear state-space models the work of Gibson and Ninness (2005)
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(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 11

Figure 1: Four instances of the log-likelihood Lθ(Y ) and the Q-function for
estimating the parameter θ in (23) using Algorithm 3.1. More speci�cally, the
di�erent plots show the log-likelihood and the Q-function as a function of the
parameter θ at iterations k = 1, k = 2, k = 3 and k = 11 of Algorithm 3.1. The
vertical lines corresponds to the estimate computed at iteration k and the true
parameter value, respectively.

provides most of the necessary details. The earlier work of Shumway and Sto�er
(1982) is also worth mentioning here. An early application of the EM algorithm
for solving system identi�cation problems is provided by Isaksson (1993). Bi-
linear systems are discussed by Gibson et al. (2005). There is also a very useful
toolbox available for using EM to identify dynamic systems (Ninness and Wills,
2009a,b). There are by now also quite a few approaches for nonlinear system
identi�cation using the EM algorithm. In order to handle the nonlinear prob-
lem more approximations are needed. There are several suboptimal solutions
available, where the nonlinear smoothing problem is approximated using an ex-
tended Kalman smoother, see e.g., (Ghaharamani and Roweis, 1999; Roweis
and Ghaharamani, 2001; Duncan and Gyöngy, 2006). There is also a recent
approach, where the theoretically appealing particle smoothers are employed
(Schön et al., 2009, 2006; Wills et al., 2008). An interesting extension, handling
the case of missing observations is discussed by Gopaluni (2008). Finally, there
are recent discussions on possible embellishments based on variational inference,
as discussed by Tzikas et al. (2008) and Bishop (2006).
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5 Conclusion

The aim of this work has been to show how the expectation maximization algo-
rithm can be used to estimate unknown parameters in dynamic systems, that
is how it can be used to solve certain system identi�cation problems. We did
this by �rst showing that the expectation maximization algorithm is an iterative
method for computing maximum likelihood estimates of unknown parameters
in probabilistic models involving latent variables. In order to make the material
as accessible as possible we provided all the details (in terms of the necessary
derivations and the �nalMatlab code) for a simple system identi�cation prob-
lem.
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A Explicit Expressions for L and Q
This appendix provides derivations of explicit expressions for the log-likelihood
function and the Q-function used in the example in Section 3, repeated below
for convenience,

xt+1 = θxt + vt,
yt = 1

2xt + et,

(
vt
et

)
∼ N

((
0
0

)
,

(
0.1 0
0 0.1

))
, (47)

where the initial state is assumed known according to x1 = 0.

A.1 Log-Likelihood L

Let us start with the log-likelihood, which according to (3) is given by

Lθ(Y ) =
N∑
t=2

log pθ(yt | Yt−1) + log pθ(y1). (48)

We have that

pθ(yt | Yt−1) = N
(
yt ;

1
2
x̂t|t−1,

1
4
Pt|t−1 + 0.1

)
, (49a)

pθ(y1) = N
(
y1 ;

1
2
x̂1|0,

1
4
P1|0 + 0.1

)
, (49b)

where x̂t|t−1 and Pt|t−1 are both provided by the Kalman �lter and x̂1|0 and
P1|0 are the initial guesses for the state variable and its covariance. Now insert-
ing (49) into (48) results in

Lθ(Y ) = −N
2

log(2π)− 1
2

N∑
t=1

log
(

1
4
Pt|t−1 + 0.1

)
−

N∑
t=1

(
yt − 1

2 x̂t|t−1

)2
1
2Pt|t−1 + 0.2

(50)
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A.2 Q-Function
According to (24) and (29) the Q-function is given by

Q(θ, θk) =
∫

log pθ(x1)
N∏
t=1

pθ(xt+1, yt | xt)pθk
(X | Y )dX, (51)

where

pθ(xt+1, yt | xt) = pθ(xt+1 | xt)pθ(yt | xt). (52)

Inserting (52) into (51) together with the fact that x1 is fully known results in

Q(θ, θk) =
∫

log

(
N∏
t=1

pθ(xt+1 | xt)pθ(yt | xt)

)
pθk

(X | Y )dX

=
∫ N∑

t=1

log
(

1
(2π)1/2

√
0.1

e−
1

0.2 (xt+1−θxt)2
)
pθk

(X | Y )dX

+
∫ N∑

t=1

log
(

1
(2π)1/2

√
0.1

e−
1

0.2 (yt− 1
2xt)2

)
pθk

(X | Y )dX

=
∫ N∑

t=1

(
−1

2
log(2π)− 1

2
log(0.1)− 5(xt+1 − θxt)2

)
pθk

(X | Y )dX

+
∫ N∑

t=1

(
−1

2
log(2π)− 1

2
log(0.1)− 5(yt −

1
2
xt)2

)
pθk

(X | Y )dX

= −N log(0.2π)− 5
N∑
t=1

∫
(x2
t+1 − 2θxt+1xt + θ2x2

t )pθk
(X | Y )dX

− 5
N∑
t=1

∫
(y2
t − ytxt +

1
4
x2
t )pθk

(X | Y )dX

= −N log(0.2π)− 5α+ 10θψ − 5θ2σ − 5
N∑
t=1

y2
t + 5β − 5

4
σ, (53)

where we have de�ned

α ,
N∑
t=1

∫
x2
t+1pθk

(X | Y )dX, (54a)

β ,
N∑
t=1

∫
xtytpθk

(X | Y )dX, (54b)

ψ ,
N∑
t=1

∫
xt+1xtpθk

(X | Y )dX, (54c)

σ ,
N∑
t=1

∫
x2
tpθk

(X | Y )dX. (54d)
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B Matlab Code for the Numerical Example

This appendix provides the Matlab code for solving the problem studied in
Section 3. In order to run the code below the UNIT system identi�cation tool-
box, available from http://sigpromu.org/idtoolbox/ has to be installed �rst.
The toolbox is used for computing the necessary expected values (35).

Listing 1: EM code for the example
1 addpath ( 'H: \ Matlab\ un i t ' ) ; % Add path to UNIT too l b ox

opt . miter = 100 ; % Max number o f EM i t e r a t i o n s
opt . LLdec = 1e−6; % Min decrease o f log− l i k e l i h o o d
theta0 = 0 . 1 ; % I n i t i a l guess f o r the parameter

6
%==========================================================
%=== Simulate the one dimensional s t a t e−space model ===
%==========================================================
N = 500 ; % Number o f data

11 m. s s .A = 0 . 9 ; m. s s .B = 0 ;
m. s s .C = 0 . 5 ; m. s s .D = 0 ;
m. s s .Q = 0 . 1 ; m. s s . S = 0 ;
m. s s .R = 0 . 1 ;

16 m. s s .X1 = 0 ; m. s s . P1 = 0 ; % I n i t i a l s t a t e ( f u l l y known)
x = zeros (1 ,N+1); y = zeros (1 ,N) ;
x (1 ) = m. s s .X1 ;
v = sqrt (m. s s .Q)∗randn (1 ,N) ; % Process noise sequence
e = sqrt (m. s s .R)∗randn (1 ,N) ; % Measurement noise sequence

21 for t=1:N
x( t+1) = m. s s .A∗x ( t ) + v( t ) ;
y ( t ) = m. s s .C∗x ( t ) + e ( t ) ;

end

z . y = y ;
26 mEst = m;

mEst . s s .A = theta0 ; % I n i t i a l parameter guess
%========================
%=== EM algor i thm ===
%========================

31 for k = 1 : opt . miter
% E step
g = ks ( z ,mEst , opt ) ; % Smoother
LL(k ) = −0.5∗g .LL ; % Store the log− l i k e l i h o o d
phi = 0 ; p s i = 0 ; sigma = 0 ;

36 for t = 1 :N
phi = phi + g . s s . xs ( t+1)∗g . s s . xs ( t+1) + g . s s . Ps (1 , 1 , t +1)^2;
sigma = sigma + g . s s . xs ( t ) .^2 + g . s s . Ps (1 , 1 , t )^2 ;
p s i = ps i + g . s s . xs ( t )∗ g . s s . xs ( t+1) + g . s s .Ms(1 , 1 , t ) ;

end ;
41 % M step

a (k ) = ps i / sigma ; % Store r e s u l t
mEst . s s .A = a (k ) ; % Update model

% Compute the Q−f unc t i on fo r the current es t imate
46 alpha = phi ;

beta = 0 ;
for t=1:N
beta = beta + z . y ( t )∗ g . s s . xs ( t ) ;

end ;
51 aNow = [ 0 : 0 . 0 1 : 0 . 8 0 . 8 : 0 . 0 0 1 : 1 1 . 0 1 : 0 . 0 1 : 1 . 3 ] ;

for i = 1 : length (aNow)
Q1 = −N∗ log ( 0 . 2∗ pi ) − 5∗sum( z . y .^2) − 5∗ alpha ;
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Q2 = 5∗beta + 10∗ p s i ∗aNow( i ) − 5∗ sigma ∗(aNow( i )^2+1/4);
Q{k}( i ) = Q1 + Q2 ;

56 end ;

i f k>1 % Check terminat ion cond i t i on
i f LL(k)−LL(k−1) < opt . LLdec
break ;

61 end ;
end ;

end ;
a = [ theta0 a ] ;

66 % Compute the log− l i k e l i h o o d func t i on
for i = 1 : length (aNow)
m. s s .A = aNow( i ) ;
g = kf ( z ,m, opt ) ; % Kalman f i l t e r
Ltmp = −(N/2)∗ log (2∗pi ) ;

71 for t = 2 :N
CovInn = g . s s . Ri (1 , 1 , t )^2 ;
Lpart1 = −(1/2)∗(( z . y ( t ) − m. s s .C∗g . s s . xp ( t ))^2)/CovInn ;
Lpart2 = −(1/2)∗ log (det (CovInn ) ) ;
Ltmp = Ltmp + Lpart1 + Lpart2 ;

76 end ;
LL( i ) = Ltmp ;

end ;
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