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1 Introduction

Positioning of moving platforms has been a technical driver for real-time appli-
cations of the particle filter (PF) in both the signal processing and the robotics
communities. For this reason, we will spend some time to explain several such
applications in detail, and to summarize the experiences of using the PF in
practice. The applications concern positioning of underwater vessels, surface
ships, cars, and aircraft using geographical information systems containing a
database with features of the surrounding. In the robotics community, the PF
has been developed into one of the main algorithms (FastSLAM) for solving
the simultaneous localization and mapping (SLAM) problem. This can be seen
as an extension to the aforementioned applications, where the features in the
geographical information system are dynamically detected and updated on the
fly.

The common denominator of these applications of the PF is the use of a
low-dimensional state vector consisting of horizontal position and course (three
dimensional pose). The PF performs quite well in a three dimensional state-
space. However, the PF is not practically useful when extending the models to
more realistic cases with

e models in three dimensions (six-dimensional pose),
e more dynamic states (accelerations, unmeasured velocities, etc),
e or sensor biases and drifts.

A technical enabler for such applications is the Rao-Blackwellized particle filter
also referred to as the marginalized particle filter (MPF). It allows the use of
high-dimensional state-space models as long as the (severe) nonlinearities only
affect a small subset of the states. In this way, the structure of the model is
utilized, so that the particle filter is used to solve the most difficult tasks, and the
Kalman filter is used for linear Gaussian subsystems of the complete model. For
subsystems that are almost linear and only slightly non-Gaussian, the extended
Kalman filter (EKF) or the unscented Kalman filter (UKF) can be applied to
reduce the burden of the PF. This latter is supposed to be a quite general case,



since it is hard to find high-dimensional models where all states undergo complex
nonlinear transformation with non-Gaussian noise disturbances.

The FastSLAM algorithm is in fact a version of the MPF, where hundreds
or thousands of feature points in the state vector are updated using the Kalman
filter. The need for the MPF in the list of applications will be motivated by
examples and experience from practice.

The subsequent section discusses four different applications, where the PF
and the MPF are primarily used to compute position estimates. Due to the
importance of MPF when it comes to applications, Section 3 is devoted to the
MPF. In Section 4 the positioning problem is extended to the case where there
is no map available, i.e., the SLAM problem. Finally, the conclusions are given
in Section 5.

2 Positioning Applications

This section is concerned with four positioning applications of underwater ves-
sels, surface ships, wheeled vehicles (cars), and aircraft, respectively. Though
these applications are at first glance quite different, almost the same particle
filter can be used in all of them. In fact, successful applications of a PF are
described in literature which are all based on the same state-space model and
similar measurement equations.

2.1 Model Framework

The positioning applications, as well as existing applications of FastSLAM, are
all based on the model
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Here, X;,Y; denote the Cartesian position, ¥; the course or heading, T is the
sampling interval, v; is the speed and z/}t the yaw rate. The inertial signals vy
and 1/)t are considered as inputs to the dynamic model, and are given by on-
board sensors. These are different in each of the four applications, and they will
be described in more detail in the sequel. The measurement relation is based on
a distance measuring equipment and a geographical information system (GIS).
Both the distance measurement equipment and the GIS are different in the four
applications, but the measurement principle is the same. By comparing the
measured distance to objects in the GIS, a likelihood for each particle can be
computed. It should here be noted that neither an EKF, UKF or KF bank
are suited for such problems. The reason is that it is typically not possible to
linearize the database other than in a very small neighborhood.

In common for the applications is that they do not rely on satellite naviga-
tion systems, which are assumed not available or to provide insufficient naviga-
tion integrity. First, the inertial inputs, the distance measurement equipment



Figure 1: The left plot is an illustration of an underwater vessel measuring
distance di to sea bottom, and absolute depth do. The sum d = dy + do s
compared to a bottom map as illustrated with the contours in the plot to the
right. The particle cloud illustrates a snapshot of the PF from a known validation
trajectory.

and GIS for the four applications are described. Then, some conclusions from
practice are summarized. Finally, different ways to augment the state vector
are described for each application, and conclusions from applying the MPF are
drawn. The point is that the dimension of the state vector has to be increased in
order to account for model errors and more complicated dynamics. This implies
that the PF is simply not applicable, due to the high dimensional state vector.

2.2 Applications of the PF

The outline follows a bottom—up approach, starting with underwater vessels
below sea level and ending with fighter aircraft in the air.

2.2.1 Underwater Positioning using a Topographic Map

The speed v; and yaw rate 1/}t are computed using simplified dynamic motion
models based on the propeller speed and the rudder angle. It is important to
note that since the PF does not rely on pure dead-reckoning, such models do not
have to be very accurate, see [12] for one simple linear model. An alternative is
to use inertial measurement units for measuring and computing speed and yaw
rate.

A sonar is measuring the distance d; to the sea floor. The depth of the plat-
form itself dy can be computed from pressure sensors, or from a sonar directed
up-wards. By adding these distances, the sea depth at the position X, Y; is
measured. This can be compared to the depth in a dedicated sea chart with
detailed topographical information, and the likelihood takes the combined effect
of errors in the two sensors and the map into account, see [20]. Figure 1 pro-
vides an illustration. Detailed bottom sea charts are so far proprietary military
information, and most applications are also military. However, oil companies
are starting to use unmanned underwater vessels for exploring the sea and oil
platforms, and in this way building up their own maps.
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Figure 2: The rotating radar returns detections of range R at body angle 8. The
result of one radar revolution is conventionally displayed in polar coordinates
as illustrated. Comparing the (R,0) detections to a sea chart as shown to the
right, the position and course are estimated by the PF. When correctly estimated,
the radar overlay principle can be used for visual validation as also illustrated
in the sea chart. The PF has to distinguish radar reflections from shore with
clutter and other ships. The latter can be used for conventional target tracking
algorithms, and collision avoidance algorithms, as also illustrated to the right.

2.2.2 Surface Positioning using a Sea Chart

The same principle as above can of course be used also for surface ships, which
are constrained to be on the sea level (dz = 0). However, the standard vectorized
sea charts (for instance the S-57 standard) contain a commercially available
world-wide map.

The idea is to use the radar as distance measurement equipment and com-
pare the detections with the shore profile, which is known from the sea chart
conditioned on the position X;,Y; and course v, (indeed the ship orientation,
but more on this later), see [20]. The likelihood function models the radar error,
but must also take clutter (false detections) and other ships into account.

The left hand part of Figure 2 illustrates the measurements provided by the
radar, while the right hand part of the same figure shows the radar detections
from one complete revolution overlayed on the sea chart. The inertial data can
be computed from propeller speed and rudder angle using simplified dynamical
models as above. American and European maritime authorities have recently
published reports highlighting the need for a backup and support system to
satellite navigation to increase integrity. The reason is accidents and incidents
caused by technical problems with the satellite navigation system, and the risk
of accidental or deliberate jamming. The PF solution here is one candidate,
since it is not sensitive to jamming nor does it require any extra infrastructure.

2.2.3 Vehicle Positioning using a Road Map

The speed v; and yaw rate z/}t are here computed from the angular velocities of
the non-driven wheels on one axle, using rather simple geometrical relations.
The measurement relation is in its simplest form a binary likelihood which
is zero for all positions outside the roads, and a non-zero constant otherwise. In
this case, the distance measurement equipment is basically the prior that the
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Figure 3: Left: Example of multimodal posterior represented by a nmumber of
distinct particle clouds from NIRA Dynamics navigation system. This is caused
by the reqular road pattern and will be resolved after a sufficiently long sequence
of turns. Right: PF in an embedded navigation solution run in real-time on a
pocket PC.

vehicle is located on a road, and not a conventional physical sensor. See [13, 15]
for more details, and Figure 3 for an illustration. More sophisticated applica-
tions use vibrations in wheel speeds and vehicle body as a distance measure-
ment equipment. When a rough surface is detected, this distance measurement
equipment an increase the likelihood for being outside the road. Likewise, if a
forward-looking camera is present in the vehicle, this can be used to compute the
likelihood that the front view resembles a road, or if it is rather a non-mapped
parking area or a smaller private road.

The system is suitable as a support to satellite navigation in urban environ-
ments, in parking garages or tunnels or whenever satellite signals are likely to be
obstructed. It is also a stand-alone solution to the navigation problem. Road
databases covering complete continents are available from two main vendors
(NavTech and TeleAtlas).

2.2.4 Aircraft Positioning using a Topographic Map

The principal approach here is quite similar to the underwater positioning. A
high-end IMU is used in an inertial navigation system (INS) which dead-reckons
the sensor data to position and orientation with quite high accuracy. Still,
absolute position support is needed to prevent long-term drifts.

The distance measurement equipment is a wide-lobe down-ward looking
radar that measures the distance to the ground. The absolute altitude is com-
puted using the INS and a supporting barometric pressure sensor. For more
information about this application, see e.g., [28, 25]. Figure 4 shows one exam-
ple just before convergence to a unimodal filtering density.

Commercial databases of topographic information are available on land (but
not below sea level), with a resolution of 50-200 meters.



Figure 4: The left figure is an illustration of an aircraft measuring distance
hy to ground. The on-board baro-altitude supported INS system provides abso-
lute altitude over sea level h, and the difference ho = h — hy is compared to a
topographical map. The right plot shows a snapshot of the P particle cloud,
just after the aircraft has left the sea in the upper left corner. There are three
distinct modes, where the one corresponding to the correct position dominates.

2.3 Summary of Practical Experiences
2.3.1 Real-Time Issues

The PF has been applied to real data and implemented on hardware targeted
for the application platforms. The sampling rate has been chosen in the order
1-2 Hz, and there is no problem to achieve real-time performance in any of the
applications. Some remarkable examples:

e The vehicle positioning PF was implemented on a pocket computer using
15000 particles already in 2001, [13].

e The aircraft positioning PF was implemented in the programming lan-
guage ADA used in the aircraft computer and shown to satisfy real-time
performance on the on-board computer in the Swedish fighter Gripen in
the year 2000. Real-time performance was reached, despite the facts that
a very large number of particles were used, and that a rather old computer
was used.

2.3.2 Sampling Rates

The distance measurement equipment can in all cases deliver measurements
much faster than the chosen sampling rate. However, faster sampling will intro-
duce an unwanted correlation in the observations. This is due to the fact that
the databases are quantized, so the platform should make a significant move
between two measurement updates.

2.3.3 Implementation

Implementing and debugging the PF has not been a major issue. On the con-
trary, students and non-experts have faced less problems with the PF than for
similar projects involving the EKF. In many cases, they obtained deep intuition
for including non-trivial but ad-hoc modifications.



2.3.4 Dithering

Both the process noise and measurement noise distributions need some dithering
(increased covariance). Dithering the process noise is a well-known method to
mitigate the sample impoverishment problem [14]. Dithering the measurement
noise is a good way to mitigate the effects of outliers and to robustify the
PF in general. One simple and still very effective method to mitigate sample
impoverishment is to introduce a lower bound on the likelihood. This lower
bound was first introduced more or less ad hoc. However, recently this algorithm
modification has been justified more rigorously. In proving that the particle filter
converges for unbounded functions, like the state x; itself, it is sufficient to have
a lower bound on the likelihood, see [19] for details.

2.3.5 Number of Particles

The number of particles is chosen quite large to achieve good transient behavior
in the start up phase and to increase robustness. However, it has been concluded
that in the normal operational mode the number of particles can be decreased
substantially (typically a factor of ten). A real-time implementation should
be designed for the worst case. However, adapting the sampling time 7" and
the number of particles N is one option. The idea is to use a longer sampling
interval and more particles initially, and when the PF has converged to a few
distinct modes, T' and N can be decreased in such a way that the complexity
N/T is constant.

2.3.6 Choosing the Proposal Density

The standard sampling importance resampling (SIR) PF works fine for an initial
design. However, the maps contain rather detailed information about position,
and can in the limit be considered as state constraints. In such high signal-
to-noise applications, the standard proposal density p(z:4+1|z:) used in the SIR
PF is not particularly efficient. An alternative, that typically improves the
performance, is to use the information available in the next measurement already
in the state prediction step. Note that the proposal in general has the form

90&)1 ~ q(ze1|T1e, Y1), i=1,...,N (2)
so this is perfectly fine. Consider for instance positioning based on road maps.
In standard SIR PF, the next positions are randomized around the predicted
position according to the process noise, which is required to obtain diversity.
Almost all of these new particles are outside the road network, and will not
survive the resampling step. Obviously this is a waste of particles. By looking
in the map how the roads are located locally around the predicted position, a
much more clever process noise can be computed, and the particles explore the
road network much more efficiently.

2.3.7 Divergence Monitoring

Divergence monitoring is fundamental for real-time implementations to achieve
the required level of integrity. After divergence, the particles do not reflect
the true state distribution and there is no mechanism that automatically sta-
bilizes the particle filter. Hence, divergence monitoring has to be performed in
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Figure 5: Left: The position RMSE for the underwater application from the PF
(solid line) using the experimental test data together with the parametric CRLB
(dashed line) as the EKF solution around the true trajectory. Right: Horizontal
position error from the aircraft application as a function of time for different
number of particles. Note that the scale has been normalized for confidentiality
reasons.

parallel with the actual PF code, and when divergence is detected, the PF is
re-initialized.

One indicator of particle impoverishment is the efficient number of samples
Neg, used in the PF. This number monitors the amount of particles that sig-
nificantly contribute to the posterior, and it is computed from the normalized
weights. However, the un-normalized likelihoods are a more logical choice for
monitoring. Standard hypothesis tests can be applied for testing whether the
particle predictions represent the likelihood distribution.

Another approach is to use parallel particle filters interleaved in time. The
requirement is that the sensors are faster than the chosen sampling rate in the
PF. The PF’s then use different time delays in the sensor observations.

The re-initialization procedure issued when divergence is detected is quite
application dependent. The general idea is to use a very diffuse prior, or to
infer external information. In the vehicle positioning application [13], a cellular
phone operator took part in the demonstrator, and cell information was used as
a new prior for the PF in case of occasional divergence.

2.3.8 Performance Bounds

For all four GPS-free applications the positioning performance is in the order
of ten meter root mean square error (RMSE). Further, the performance has
been shown to be close to the Cramér-Rao lower bound (CRLB) for a variety
of examined trajectories. In Figure 5 two examples of performance evaluations
in terms of the RMSE are depicted. On the left hand side the position RMSE
and CRLB are shown for the underwater application and on the right hand side
the horizontal position error is provided for the aircraft application.

2.3.9 PF in Embedded Systems

The primary application is to output position information to the operator. How-
ever, in all cases there have been decision and control applications built on the



position information, which indicates that the PF is a powerful software com-
ponent in embedded systems:

e Underwater positioning: Here, the entire mission relies on the position,
so path planning and trajectory control are based on the output from
the PF. Note that there is hardly no alternative below sea level, where
no satellites are reachable, and deploying infrastructure (sonar buoys) is
quite expensive.

e Surface positioning: Differentiating radar detections from shore, clutter
and other ships is an essential association task in the PF. It is a natural
extension to integrate a collision avoidance system in such an application,
as illustrated in a sea chart snapshot in Figure 2.

e Vehicle positioning: The PF position was also used in a complete voice
controlled navigation system with dynamic route optimization, see Fig-
ure 3.

e Aircraft navigation: The position from the PF is primarily used as a
supporting sensor in the INS, whose position is a refined version of the PF
output.

2.4 Applications of the MPF
2.4.1 Underwater Positioning

Navigating an unmanned or manned underwater vessel requires knowledge of
the full three-dimensional position and orientation, not only the projection on
a horizontal plane. That is, at least six states are needed. For control, also the
velocity and angular velocity are needed, which directly implies at least a twelve
dimensional state vector. The PF cannot be assumed to perform well in such
cases, and the MPF is a promising approach.

2.4.2 Surface Positioning

There are two bottlenecks in the surface positioning PF that can be mitigated
using the MPF. Both relates to the inertial measurements. First, the speed
sensed by the log is the speed in water, not the speed over ground. Hence, the
local water current is a parameter to include in the state vector. Second, the
radar is strap-down and measures relative to body orientation, which is not the
same as the course ;. The difference is the so called crab angle, which depends
on currents and wind. This can also be included in the state vector. Further,
there is in our demonstrator system an unknown and time-varying offset in the
reported radar angle, which has to be compensated for.

2.4.3 Vehicle Positioning

The bottleneck of the first generation of vehicle positioning PF is the assumption
that the vehicle must be located on a road. As previously hinted, one could use
a small probability in the likelihood function for being off-road, but there is no
real benefit for this without an accurate dead-reckoning ability, so re-occurrence
on the road network can be predicted with high reliability.
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Figure 6: Navigation of a car in a parking garage. Results for the MPF
when relative wheel radii and gyro offset are added to the state vector. The two
trajectories correspond to the map-aided system and an EKF with the same state
vector, but where GPS is used as position sensor. Since the GPS gets several
drop-outs before the parking garage, the dead-reckoning trajectory is incorrect.

The speed and yaw rate computed from the wheel angular velocity are lim-
ited by the insufficient knowledge of wheel radii. However, the deviation between
actual and real wheel radii on the two wheels on one axle can be included in the
state vector. Similarly, with a yaw rate sensor available (standard component in
electronic stability programs and navigation systems), the yaw rate drift can be
included in the state vector. The point is that these parameters are accurately
estimated when the vehicle is on the road, and in the off-road mode, accurate
dead-reckoning can be achieved. Tests in demonstrator vehicles have shown that
the exit point from parking garages and parking areas are well estimated, and
that shorter unmapped roads are not a problem, see Figure 6.

2.4.4 Aircraft Positioning

The primary role of the terrain based navigation module is to support the inertial
navigation system (INS) with absolute position information. The INS consists
of an extended Kalman filter based on a state vector with over 20 motion states
and sensor bias parameters. The current bottleneck is the interface between the
terrain navigation module and the INS. The reason is that the terrain navigation
module outputs a possibly multimodal position density, while the EKF used for
INS expects a Gaussian observation. The natural idea is to integrate both
terrain navigation and INS into one filter. This results in a high-dimensional
state vector, where one measurement (radar altitude) is very nonlinear. The
MPF handles this elegantly, by essentially keeping the EKF from the existing
INS and using the PF only for the radar altitude measurement.

The altitude radar gives a measurement outlier when the radar pulse is re-
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flected in trees. Tests have validated that a Gaussian mixture where on mode
as a positive mean models the real measurement error quite well. This Gaus-
sian mixture distribution can be used in the likelihood computation, but such
a distribution is in this case logically modeled by a binary Markov parameter,
which is one in positions over forest and zero otherwise. In this way, the positive
correlation between outliers is modeled, and a prior from ground type informa-
tion in the GIS can be incorporated. This example motivates the inclusion of
discrete states in the model framework. See [28, 26] for the details.

3 Marginalized Particle Filter

If there is a linear Gaussian substructure available in the model this can often
be exploited to derive a better estimator. The basic idea is to estimate the
“nonlinear” states using the particle filter and the conditionally linear Gaussian
states using the Kalman filter. The resulting filter is called the MPF or the
Rao-Blackwellized particle filter, and it has been known for quite some time,
see e.g., [8, 5, 10, 6, 2, 28, 25].

In Section 3.1 the representation used in the MPF is illustrated by compar-
ing it to several well-known estimators. The model structure is introduced in
Section 3.2 and in Section 3.3 the MPF algorithm is given. Finally, the vari-
ance reduction property and the computational complexity of MPF are briefly
discussed in Section 3.4 and 3.5, respectively.

3.1 Representation

The task of nonlinear filtering can be split into two parts: representation of the
filtering density function and the propagation of this density through the time
and measurement update stages. Figure 7 illustrates different representations of
the filtering density for a two-dimensional example (similar to the example used
in [29]). The extended Kalman filter can be interpreted as using one Gaussian
distribution for representation and the propagation is performed according to a
linearized model. The Gaussian sum filter [1, 30] extends the EKF to be able
to represent multi-modal densities, still with an approximate propagation.
Figure 7(d)—(f) illustrates numerical approaches where the exact nonlinear
relations present in the model are used for propagation. The point mass filter
(grid-based approximation) [4] employ a regular grid, where the grid weight is
proportional to the filtering density. The PF represents the filtering density by
a stochastic grid in the form of a set of samples, where all particles (samples)
have the same weight. Finally, the marginalized particle filter uses a stochastic
grid for some of the states, and Gaussian densities for the rest. That is, the
MPF can be interpreted as a particle representation for a subspace of the state-
space, where each particle has an associated Gaussian density for the remaining
state dimensions, Figure 7(f). It will be demonstrated that an exact nonlinear
propagation is still possible if there is a linear substructure present in the model.

11
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Figure 7: True probability density function and different approximate rep-
resentations, in order of appearance, Gaussian, Gaussian sum, point masses
(grid-based approximation), particle samples and MPF representation.

3.2 Model Structure

A general nonlinear state-space model is given by

Tep1 = fe(@e, ug) + wy, (3a)
Yt = ht (.13,5) =+ €t. (Sb)

Note that the model (1) used in the positioning applications of the PF consti-
tutes a special case of this structure. If there is a linear Gaussian substructure
available in the model it is often rewarding to partitioned the state vector x

according to
mn
o= (%) @)

where the subvector x! enters the dynamic model linearly with additive Gaussian
noise, conditioned on z}. Furthermore, 27" denotes the part of the state vector
that does not fulfil the conditions for xt. We will, for simplicity, informally refer
to ! as the linear states and 27 as the nonlinear states. A rather general model,
containing a conditionally linear Gaussian substructure is given by

apy g = 11 (@))+ AL (2] 2 +Gy (a7 wy, (5a)
xp = fl(a}) AL (]2 + G w), (5b)
e = he(a}) +Ci(x})z) +ey, (5¢)

where the process noise is assumed white and Gaussian distributed with

n n In
w= (M) ~x0e a= (g W) 6o

t t
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The measurement noise e; is assumed white and Gaussian distributed according
to

et ~ N (0, Ry). (5e)
Furthermore, a:f) is Gaussian,
2 ~ N (30, Py). (5)

Finally, the density of xzf can be arbitrary, but it is assumed known. More
specifically, conditioned on the nonlinear state variables there is a linear sub-
structure, subject to Gaussian noise available in (5).

Bayesian estimation methods, such as the particle filter, provide estimates
of the filtering density function p(x:|y;.+). By employing the fact

p(‘rih x?:t |y1:t) = p(SCi |I?:t7 yl:t)p(x?:t |y1:t)7 (6)
the overall problem is decomposed into two sub-problems,

e A Kalman filter operating on the conditionally linear, Gaussian model (5)
provides an estimate of p(x!|2%,, y1.).

e A particle filter for estimating the filtering density for the nonlinear states.

It is very important to note that the two sub-problems mentioned above are
coupled. This coupling is given in the subsequent section. However, a com-
plete derivation is out of the scope for the present work, see e.g., [28] for such
a derivation. Here, it is worth noting that the model (5) can be further gen-
eralized by introducing an additional discrete mode parameter, giving a larger
family of marginalized filters, see [29]. This has recently been applied in [26].
An important special case of (5) is a model with linear state equations and
nonlinear measurement equations. For this case the computational complexity
is significantly reduced, since the same covariance matrix can be used for all the
Kalman filters. This will be clearer from the discussion below.

3.3 Algorithm

Using (6) the problem can be put in a form that is suitable for the MPF
framework, i.e., to analytically marginalize out the linear state variables from
p(w¢|y1.t). Note that p(z!|z?.,,y1.¢) is analytically tractable, since z7., is given
by the particle filter. Hence, the underlying model is conditionally linear Gaus-
sian, and the density function is given by the Kalman filter. Furthermore, since
the estimate of p(z}'|y1.+) is provided by the particle filter, it is given by

PN (27 [y1.e) Zwt V5(a — ). (7)

Hence, the resulting estimate of the filtering density is given by

~l i
p xt|y1 it Zwt )5 )N(ﬂfiﬁﬂg )7Pt(|t))7 (8)
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motivating the fact that the MPF provides an estimate of the filtering density
that is a mix of a parametric and an nonparametric estimate. That is a mix of
a parametric distribution from the Gaussian family and a nonparametric dis-
tribution represented by samples. If the same number of particles is used in
the standard PF and the MPF, the latter will provide estimates of better or
at least the same quality. Intuitively this makes sense, since the dimension of
p(z}|y1.) is smaller than the dimension of p(z¢|y1.+), implying that the particles
occupy a lower dimensional space. Furthermore, the optimal algorithm (KF)
is used to estimate the linear state variables. In Section 3.4 a more detailed
discussion regarding the improved accuracy in the estimates is given. The MPF
for estimating the states in a dynamic model in the form (5) is provided in
Algorithm 1. For the sake of brevity, the particle index ¢ and the dependence
on the nonlinear state 7' are not explicitly stated in the algorithm.

14



Algorithm 1 (Marginalized particle filter)

1. Initialization: For i = 1,..., N, initialize the particles, xgl’gi ~ Pap (xf)

and set {xlo’l(i)l, Po(r)—1} = {7}, Py}. Sett:=0.
2. PF measurement update: Fori=1,..., N, evaluate the importance weights

oyt otV ) -
q(x?y(l) |x?:7t(i)17 yl:t)

o~
and normalize @ﬁ“ = wy)/ Z;V:l ng)'

3. Draw N new particles, with replacement (resampling), for eachi=1,..., N,

Pr (m?l;t(z) = x?lt(ﬁ)l) = G)Ej), j=1,..., N.

4. PF time update and KF:

(a) Kalman filter measurement update:

e = by + K (e = he = Cidly, ) (10a)
Py = Pyy — KyMUK] (10b)
M; = CiPyy1Cf + Ry, (10c)

(10d)

Ky = Py CF M. 10d

(b) PF time update (prediction): Fori=1,..., N, predict new particles,

n,(2)

x ~qa? \x"’(i)
t+1t ~ D\ TiqaelTre > Ylett+1 |-

(¢) Kalman filter time update:

A Tl LAl - !
Typqp = Ay + Gyl TGN + ff

+ Lt (Zt — A?‘%é\t> s (11a)

Prpe = AP (A" + GLQL(G)" — LiN, L, (11b)

Ny = AP Py (A" + GPQHGH)T, (11c)

Ly = APy (A7) N, (11d)

where

2 =xi — [t (12a)

A = AL - GHQMT(GrQ) AL, (12b)

Q= Qp — (@M (@) Q. (12¢)

5. Sett:=t+1 and repeat from step 2.
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From Algorithm 1, it should be clear that the only difference from the standard
PF is that the time update (prediction) stage has been changed. In the standard
PF, the prediction stage is given solely by step 4(b) in Algorithm 1. In order to
help intuition, step 4 in Algorithm 1 will now be briefly discussed. Step 4(a) is
a standard Kalman filter measurement update using the information available
in the measurement y;. Once this has been performed the new estimates of the
linear states can be used to obtain a prediction of the nonlinear state z}' e
This is performed in Step 4(b). Now, consider model (5) conditioned on the
nonlinear state variable. The conditioning implies that (5a) can be thought
of as a measurement equation. This is used in step 4(c) together with a time
update of the linear state estimates.

An alternative way is to describe the algorithm in terms of multiple models
and a mixing of PF and KF time updates and measurement updates, see [18]
for details on this approach. An elegant interpretation and derivation of the
MPF in terms of a filter bank is provided in [17].

The estimates, as expected means, of the state variables and their covariances
are given below.

{)ASt|t Z o) A:L|t(l ’ (138,)

A ) (i) (0) T

P, =3 al ((g;«gl,tz — i) (a0~ a,) ) (13b)
=1
N

- ~ A1,

i=> @iy, (13¢)
=1

T
Z*z ( PR+ (a4 = a,) (a0 - ) ) (13d)

where {wt )}N , are the normalized importance weights, provided by step 2 in

Algorithm 1.

3.4 Variance Reduction
The law of total variance says that
Cov (U) = Cov (E(U|V)) + E (Cov(U|V)), (14)

where U and V denotes stochastic variables. Letting U = 2! and V = 27,
results in the following decomposition of the variance of the PF

Cov(a}) = Cov (E(a}[27.,)) + E (Cov(allat,)) (15a)
———
PF
= Cov (xt\t) JrZw( 9 Pt(‘t) . (15b)
— =1 ~—~
MPF KF

Here, we recognize p(xl|x7,) as the Gaussian distribution, delivered by the
KF, conditioned on the trajectory «7.,. Now, the MPF computes the mean of
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each trajectory as :%t‘t

and the unconditional mean estimator is simply the

mean of these, Zf;l wgl)ii"il)7 and its covariance follows from the first term in
(15b). The second term in (15b) corresponds to the contribution due to the
fact that each Gaussian distribution is represented by one sample, as is done
in the PF. This principle, which leads to the variance reduction property is
sometimes referred to as Rao-Blackwellization, see, e.g., [27] and it is the basic
part that improves performance using the marginalization idea. Note that for
the variance reduction to be significant, the left hand side in (15) has to be
significantly smaller than the right hand side. In other words, the term

E (Cov(z}|zT.,)) (16)

has to be large. That is, the expectation of the conditional variance of the
corresponding Kalman filter has to be large. In order to make this a bit clearer,
we have

Cov (E(xﬂx?t)) < Cov(zl), (17)

since E (Cov(z}|z},)) > 0. This shows that the variance of the linear part is
always smaller for the MPF than for the PF. The difference is the expected
covariance term,

N

E (Cov(at|z},) = > @ Py). (18)
i=1

This states that the improvement in the quality of the estimate is given by
the term E (Cov(z!|2T,)). That is, the Kalman filter covariance Py, is a good
indicator of how much has been gained in using the MPF instead of the PF.
Further discussions regarding the variance reduction property of the MPF are
provided in e.g., [9, 10].

3.5 Computational Complexity
The variance reduction in the MPF can be used in two different ways:

e With the same number of particles, the variance in the estimates of the
linear states can be decreased.

e With the same performance in terms of variance for the linear states, the
number of particles can be decreased.

This is schematically illustrated in Figure 8, for the case where C' = 0, implying
that the same covariance matrix can be used for all particles. The two alterna-
tives above are illustrated with the thin lines, in case a PF with 10000 particles
is first applied, and then replaced by the MPF.

Another related question is how the computational complexity relates to
the number of particles. The MPF appears to add quite a lot of overhead
computations. It turns out, however, that the MPF is often more efficient also
here. It may seem impossible to give any general conclusions, so application
dependent simulation studies have to be performed. Nevertheless, quite realistic
predictions about the computational complexity can be done with rather simple
calculations, an example of this is given below.
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Figure 8: Schematic view of how the covariance of the linear part of the state
vector depends on the number of particles for the PF and MPF, respectively.
The gain in MPF is given by the Kalman filter covariance.

3.6 Radar Tracking Case Study

This section will serve as an illustration of the computational complexity of the
marginalized particle filter. A special case of the general model (5) will be used,
where the state dynamics are linear and Gaussian and the measurements are
nonlinear functions in some of the states:

10T 0 T%22 0
01 0T 0 T%2
00 1 0 T 0
Ti41 = 0 0 0 1 0 T e + Wt, (19&)
0 0 0 O 1 0
0 0 0 O 0 1
= 1
e (arctan(Yt/Xt) +et (19b)

where the state vector is z; = (X Y X Y X Y)7, i.e., position, velocity and
acceleration in two dimensions.

This is an archetypal model for many target tracking and some localization
problems, where the state dynamics is modeled using a constant velocity or a
constant acceleration assumption. The observation can in most applications
be written as a nonlinear function of position. This is the case for bearings-
only, range-only and radar sensors. More specifically, the measurement equation
in (19b) models measurements of the range and the azimuth from a radar system.

In [21] a general method for analyzing the computational complexity of the
MPF was presented. Here, the highlights of this analysis will be given, based
on model (19).

The model has two nonlinear state variables and four linear state variables.
Two cases are now studied, the full PF, where all states are estimated using the
PF and the completely marginalized PF, where all linear states are marginalized
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out and estimated using the KF. If we want to compare the two approaches
under the assumption that they use the same computational resources, we obtain

Nee = (1 = ¢) Nyps. (20)
——
<1

where Npp and Nypr denote the number of particles used in the PF and the
MPF, respectively. Furthermore, c is a positive constant depending of the com-
putational complexity of the various parts of the algorithm, see [21] for the
complete details. From (20) it is clear that for a given computational complex-
ity more particles can be used in the MPF than in the standard PF, in this
example.

Using a constant computational complexity the number of particles that can
be used is computed. The study is performed by first running the full PF and
measure the time consumed by the algorithm. A Monte Carlo simulation, using
N = 2000 particles, is performed in order to obtain a stable estimate of the
time consumed by the algorithm. In the left hand side of Table 1 the number
of particles (N), the total RMSE from 100 Monte Carlo simulations, and the
simulation times are shown both for the PF and the MPF.

Table 1: Results from the simulation. Left: Using a constant computational
complezity, i.e., the algorithms can consume the same amount of time. Right:
Using a constant velocity RMSE.

| [ PF | MPF || [ PF | MPF |

N 2000 | 2574 N 2393 264
RMSE pos | 7.10 | 5.60 RMSE pos | 7.07 | 7.27
RMSE vel | 3.62 3.21 RMSE vel | 3.58 3.61
RMSE acc | 0.52 0.44 RMSE acc | 0.50 0.48
Time 0.59 0.60 Time 0.73 0.10

From Table 1 it is clear that for this example, the MPF can use more particles
for a given time, which is in perfect correspondence with the theoretical result
summarized in (20).

Let us now discuss what happens if a constant velocity RMSE is used. First
the velocity RMSE for the full PF is found using a Monte Carlo simulation.
This value is then used as a target function in the search for the number of
particles needed by the MPF. The right hand side of Table 1 clearly indicates
that the MPF can obtain the same RMSE using fewer particles. The result is
that using full marginalization only requires 14% of the computational resources
as compared to the standard PF in this example.

Note that for this example Cy = 0, implying that the same covariance matrix
can be used for all Kalman filters, which significantly reduce the computational
complexity.

4 Simultaneous Localization and Mapping

Simultaneous localization and mapping (SLAM) is an extension of the position-
ing problem previously discussed to the case where the environment is unknown.
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In SLAM this is handled by estimating a map on-line together with the plat-
form states. The SLAM problem has been studied for a long time within many
different settings and an introduction to the problem can be found in the survey
papers [3, 11] and the book [31]. Here, the focus will be on the filtering part of
the SLAM problem. The SLAM problem also contains very interesting issues
when it comes to feature extraction, data association and matching features in
consecutive images.

4.1 Problem Formulation

Many different estimation algorithms, including for example the extended Kalman
filter, the particle filter and the extended information filter, have been used in
solving the SLAM problem. A key observation here is that the most promising
algorithms so far utilize the structure inherent in the SLAM problem in one way
or the other. When it comes to the algorithms based on the particle filter it
is perhaps the FastSLAM algorithm [24, 23] that has received most attention.
FastSLAM can be seen as a special case of the MPF. Here, the state vector
contains information about the platform x; and the position of the features m,,
which consists of the entire map at time t, i.e.,

my = (m{t m?\}t,t)T, (21)

where m;; denotes the position of the 4" map entry at time t and M, denotes
the number of entries in the map at time ¢. The underlying idea is to use
the particle filter to estimate the platform states and to model the landmarks
as linear Gaussian states, which are estimated using Kalman filters. We are
interested in estimating the filtering density function p(xs, m¢|y1.+), which using
Bayes’ theorem can be expressed as

p(xlzta mt|yl:t) = p(mt|xl:ta yl:t)p(xl:t‘ylzt)7 (22)

which is exactly the factorization previously employed in (6). The FastSLAM
algorithm was originally devised to solve the SLAM problem for mobile robots,
where the dimension of the state vector is small, typically consisting of only
three states (2D position and a course (heading) angle) [31]. This implies that
all platform states can be estimated by the PF. In discussing the FastSLAM
algorithm it is worth mentioning that when p(z¢41|2:) is used as proposal density
the algorithm is referred to as FastSLAMI1.0 and when p(zii1|®1.¢, Y1.041) 18
used it is referred to as FastSLAM2.0. The choice of importance density makes
a rather big difference in the SLAM application.

4.2 Marginalized FastSLAM

In considering different platforms, for example an unmanned aerial vehicle, the
dimension of the state vector describing the platform will typically be quite high.
The platform dynamics often has a linear, Gaussian substructure available in
it [15] and we can of course exploit this structure as well. This will give us an
algorithm capable of dealing with high dimensional platform state vectors as
well. Let us for this case partition the state vector according to

2= (@7 @HT m)", (23)
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where 2} denotes the states of the platform that are estimated by the particle
filter, and zF denotes the states of the platform that are linear and Gaussian,
given information about x. These states together with the map (landmarks)
my are estimated using Kalman filters. The dynamic model is a special case
of (5),

Ty = Ji (x7) + A} (3712)33%C + GY (a})wy, (24a)
iy = fE (@) + Af (af)zy + G (af)wy, (24b)
My t41 = Myt (24c¢)
Y1t = hit(2) + Cy(aD)af + ey, (244d)
usl) = haa(af) + Hyo(af)mye + 5], (24¢)

T .
where ' = 2f and @} = ((zf)” m{)" . In order to compute an estimate of the

filtering density function p(2%, 2¥, m4|y1.¢), the key is the following factorization

Py, l‘f, milyi:t) = plme|y.,, va y1;t)p($f|x§);t, Y1:0)p(27.4|y1:t) (25a)
My
= H p(mj,t |‘T11):t’ xf? yl:t)p(gjllf’C |:E;[1):ta yl:t) p(‘r:ll):t|y1:t)7 (25b)
5=t (extended) Kalman filter particle filter

where the second expression follows if all features are assumed independent.
Using this factorization together with model (24) and Algorithm 1 we can de-
rive a rather general algorithm which is applicable to many different platforms
(aircraft, helicopters, cars, etc.). The i*! particle at time ¢, xf) will contain the
following information

x§Z) = (xf,(2)7 ‘%57(1)7 (ml,h Zl,t)y ceey (th,h EMt,if)) 9 (26)

where M ; and ¥, ; provide the position estimate and the associated covariance
for the j*" map entry, respectively. The details of the derivation are thoroughly
discussed in [22, 32], where we also give an application example in terms of an
unmanned aerial vehicle. In order to illustrate the algorithm we will give some
insight to this example here.

4.3 Unmanned Aerial Vehicle Application

The information we use to solve the SLAM problem originates from the following
sensors:

e camera
e inertial measurement unit (IMU)
e pressure Sensor

Hence, solving the SLAM problem for this particular case is a sensor fusion
problem where the information from the above mentioned sensors is fused. Note
that we have to make use of a linearized measurement model (24e) for the camera
in order to fit the current framework, again we refer to [22] for the details. We
have employed a rather simple solution when it comes to the map and the
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computer vision part. We simply make use of the Harris detector [16] in order
to find points of interest. Then we cut out an 11 x 11 patch around this interest
point. These patches will then constitute our map. Similar approaches have
previously been used for similar problems, see e.g., [7]. The performance is
illustrated in Figure 9.

——— KF with GPS
Estimate

North [m]

Figure 9: Left: The scenario seen from the on-board camera, together with
particle clouds representing the landmarks/map features. The crosses show the
measurements from the computer vision algorithm. Right: Horizontal position
estimate from the SLAM algorithm, compared to the GPS, which is only used as
reference here. The unmanned aerial vehicle starts in the origin at time t = 0.

5 Conclusions

The particle filter (PF) has been successfully used in quite a few different ap-
plications, at least when the state dimension is moderately low. Design issues,
such as the choices of number of particles, resampling strategies and proposal
density are becoming better understood both in theory and practice. There are
many suggested ad-hoc strategies for practical aspects as divergence monitoring
and dithering. We have in this survey used four localization applications to illus-
trate these issues. We have also pointed out the similarity with the FastSLAM
algorithm for simultaneous localization and mapping used in robotics.
However, for complex high-dimensional models, the number of applications
in literature is quite limited. The surveyed localization applications all work well
using the PF for their simplest problem formulations leading to low-dimensional
models. However, we have also, for each application, motivated that more com-
plex models would give additional performance, if only the PF can be applied.
Now, the curse of dimensionality prevents the use of the PF in its original form.
However, all these applications reveal a linear Gaussian substructure that en-
ables the use of the MPF. The MPF strategy can be generalized to models with
substructures that are almost linear and Gaussian, using the same arguments
as when applying the EKF to nonlinear models. In fact, it is hard to find
high-dimension models useful in practice where all states are severely nonlinear
or non-Gaussian. To illustrate the concept, the MPF was applied to a kine-
matic model with a high dimensional state vector for navigating an unmanned
aerial vehicle using vision and inertial sensors. Here, the PF only involved the
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two-dimensional horizontal position, while all other states were sufficiently lin-
ear and Gaussian for the EKF. To understand the principles of the MPF, we
have reviewed a general model structure, the MPF algorithm and discussed the
interplay of variance reduction and computational complexity when the PF is
replaced with a MPF.
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