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Marginalized Particle Filters for Mixed
Linear/Nonlinear State-space Models

Thomas Scḧon, Fredrik Gustafsson,Member, IEEE,and Per-Johan Nordlund

Abstract— The particle filter offers a general numerical tool to
approximate the posterior density function for the state in nonlin-
ear and non-Gaussian filtering problems. While the particle filter
is fairly easy to implement and tune, its main drawback is that
it is quite computer intensive, with the computational complexity
increasing quickly with the state dimension. One remedy to this
problem is to marginalize out the states appearing linearly in
the dynamics. The result is that one Kalman filter is associated
with each particle. The main contribution in this article is
to derive the details for the marginalized particle filter for a
general nonlinear state-space model. Several important special
cases occurring in typical signal processing applications will also
be discussed. The marginalized particle filter is applied to an
integrated navigation system for aircraft. It is demonstrated that
the complete high-dimensional system can be based on a particle
filter using marginalization for all but three states. Excellent
performance on real flight data is reported.

Index Terms— State estimation, Particle filter, Kalman filter,
Marginalization, Navigation systems, Nonlinear systems.

I. I NTRODUCTION

T HE nonlinear non-Gaussian filtering problem considered
here consists of recursively computing the posterior prob-

ability density function of the state vector in a general discrete-
time state-space model, given the observed measurements.
Such a general model can be formulated as

xt+1 = f(xt, wt), (1a)

yt = h(xt, et). (1b)

Here,yt is the measurement at timet, xt is the state variable,
wt is the process noise,et is the measurement noise, andf, h
are two arbitrary nonlinear functions. The two noise densities
pwt

andpet
are independent and are assumed to be known.

The posterior densityp(xt|Yt), where Yt = {yi}t
i=0, is

given by the following general measurement recursion

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
, (2a)

p(yt|Yt−1) =
∫

p(yt|xt)p(xt|Yt−1)dxt, (2b)

and the following time recursion

p(xt+1|Yt) =
∫

p(xt+1|xt)p(xt|Yt)dxt, (2c)
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University and the Swedish Research Council (VR).
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initiated by p(x0|Y−1) = p(x0) [20]. For linear Gaussian
models, the integrals can be solved analytically with a finite
dimensional representation. This leads to the Kalman filter
recursions, where the mean and the covariance matrix of the
state are propagated [1]. More generally, no finite dimensional
representation of the posterior density exists. Thus, several
numerical approximations of the integrals (2) have been pro-
posed. A recent important contribution is to use simulation
based methods from mathematical statistics, sequential Monte
Carlo methods, commonly referred to as particle filters [11],
[12], [16].

Integrated navigation is used as a motivation and application
example. Briefly, the integrated navigation system in the
Swedish fighter aircraft Gripen consists of an inertial navi-
gation system (INS), a terrain-aided positioning (TAP) system
and an integration filter. This filter fuses the information from
INS with the information from TAP. For a more thorough
description of this system the reader is referred to [32], [33].
TAP is currently based on a point-mass filter as presented
in [6], where it is also demonstrated that the performance
is quite good, close to the Cramér-Rao lower bound. Field
tests conducted by the Swedish air force have confirmed the
good precision. Alternatives based on the extended Kalman
filter have been investigated [5], but have been shown to be
inferior particularly in the transient phase (the EKF requires
the gradient of the terrain profile, which is unambiguous only
very locally). The point-mass filter, as described in [6], is
likely to be changed to a marginalized particle filter in the
future for Gripen.

TAP and INS are the primary sensors. Secondary sensors
(GPS and so on) are used only when available and reliable. The
current terrain-aided positioning filter has three states (hori-
zontal position and heading), while the integrated navigation
system estimates the accelerometer and gyroscope errors, and
some other states. The integration filter is currently based on
a Kalman filter with 27 states, taking INS and TAP as primary
input signals.

The Kalman filter which is used for integrated navigation
requires Gaussian variables. However, TAP gives a multi-
modal un-symmetric distribution in the Kalman filter mea-
surement equation and it has to be approximated with a
Gaussian distribution before being used in the Kalman filter.
This results in severe performance degradation in many cases,
and is a common cause for filter divergence and system re-
initialization.

The appealing new strategy is to merge the two state vectors
into one, and solve integrated navigation and terrain-aided
positioning in one filter. This filter should include all 27 states,
which effectively would prevent application of the particle fil-
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ter. However, the state equation is almost linear, and only three
states enter the measurement equation nonlinearly, namely
horizontal position and heading. Once linearization (and the
use of EKF) is absolutely ruled out, marginalization would be
the only way to overcome the computational complexity. More
generally, as soon as there is a linear sub-structure available
in the general model (1) this can be utilized in order to
obtain better estimates and possibly reduce the computational
demand. The basic idea is to partition the state vector as

xt =
[
xl

t

xn
t

]
, (3)

wherexl
t denotes the state variable with conditionally linear

dynamics andxn
t denotes the nonlinear state variable [14],

[32]. Using Bayes’ theorem we can then marginalize out
the linear state variables from (1) and estimate them using
the Kalman filter [22], which is the optimal filter for this
case. The nonlinear state variables are estimated using the
particle filter. This technique is sometimes referred to as
Rao-Blackwellization [14]. The idea has been around for
quite some time, see e.g., [12], [7], [8], [2], [14], [31]. The
contribution of this article is the derivation of the details
for a general nonlinear state-space model with a linear sub-
structure. Models of this type are common and important in
engineering applications, e.g., positioning, target tracking and
collision avoidance [18], [4]. The marginalized particle filter
has been successfully used in several applications, for instance
in aircraft navigation [32], underwater navigation [24], com-
munications [9], [37], nonlinear system identification [28],
[35], and audio source separation [3].

Section II explains the idea behind using marginalization
in conjunction with general linear/nonlinear state-space mod-
els. Three nested models are used, in order to make the
presentation easy to follow. Some important special cases
and generalizations of the noise assumptions are discussed in
Section III. To illustrate the use of the marginalized particle
filter a synthetic example is given in Section IV. Finally, the
application example is given in Section V and the conclusions
are stated in Section VI.

II. M ARGINALIZATION

The variance of the estimates obtained from the standard
particle filter can be decreased by exploiting linear sub-
structures in the model. The corresponding variables are
marginalized out and estimated using an optimal linear filter.
This is the main idea behind the marginalized particle filter.
The goal of this section is to explain how the marginalized
particle filter works by using three nested models. The models
are nested in the sense that the first model is included in the
second, which in turn is included in the third. The reason for
presenting it in this fashion is to facilitate reader understand-
ing, by incrementally extending the standard particle filter.

A. The Standard Particle Filter

The particle filter is used to get an approximation of the
posterior densityp(xt|Yt) in the general model (1). This

approximation can then be used to obtain an estimate of some
inference function,g(·), according to

I(g(xt)) = Ep(xt|Yt)[g(xt)] =
∫

g(xt)p(xt|Yt)dxt. (4)

In the following the particle filter, as it was introduced in [16],
will be referred to as the standard particle filter. For a thorough
introduction to the standard particle filter the reader is referred
to [11], [12]. The marginalized and the standard particle filter
are closely related. The marginalized particle filter is given
in Algorithm 1 and neglecting steps 4a and 4c results in the
standard particle filter algorithm.

ALGORITHM 1: The marginalized particle filter

1) Initialization: Fori = 1, . . . , N , initialize the par-
ticles,xn,(i)

0|−1 ∼ pxn
0
(xn

0 ) and set{xl,(i)
0|−1, P

(i)
0|−1} =

{x̄l
0, P̄0}.

2) Fori = 1, . . . , N , evaluate the importance weights
q
(i)
t = p(yt|Xn,(i)

t , Yt−1) and normalize

q̃
(i)
t = q

(i)
tPN

j=1 q
(j)
t

.

3) Particle filter measurement update (resampling):
ResampleN particles with replacement,

Pr(xn,(i)
t|t = x

n,(j)
t|t−1) = q̃

(j)
t .

4) Particle filter time update and Kalman filter:

a) Kalman filter measurement update:
Model 1: (10),
Model 2: (10),
Model 3: (22).

b) Particle filter time update (prediction): For
i = 1, . . . , N , predict new particles,

x
n,(i)
t+1|t ∼ p(xn

t+1|t|Xn,(i)
t , Yt).

c) Kalman filter time update:
Model 1: (11),
Model 2: (17),
Model 3: (23).

5) Sett := t + 1 and iterate from step 2.

The particle filter algorithm 1 is quite general and several
improvements are available in the literature. It is quite common
to introduce artificial noise in step 3 in order to counteract
the degeneracy problem. Depending on the context various
importance functions can be used in step 4b. In [11] several
refinements to the particle filter algorithm are discussed.

B. Diagonal Model

The explanation of how the marginalized particle filter
works is started by considering the following model,

Model 1:

xn
t+1 = fn

t (xn
t ) +wn

t , (5a)

xl
t+1 = Al

t(x
n
t )xl

t +wl
t, (5b)

yt = ht(xn
t ) +Ct(xn

t )xl
t +et. (5c)

The gaps in the equations above are placed there intentionally,
in order to make the comparison to the general model (18) eas-
ier. The state noise is assumed white and Gaussian distributed
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according to

wt =
[
wl

t

wn
t

]
∼ N (0, Qt), Qt =

[
Ql

t 0
0 Qn

t

]
. (6a)

The measurement noise is assumed white and Gaussian dis-
tributed according to

et ∼ N (0, Rt). (6b)

Furthermore,xl
0 is Gaussian,

xl
0 ∼ N (x̄0, P̄0). (6c)

The density ofxn
0 can be arbitrary, but it is assumed known.

The Al andC matrices are arbitrary. �

Model 1 is called “diagonal model” due to the diagonal struc-
ture of the state equation (5a) – (5b). The aim of recursively
estimating the posterior densityp(xt|Yt) can be accomplished
using the standard particle filter. However, conditioned on the
nonlinear state variable,xn

t , there is a linear sub-structure
in (5), given by (5b). This fact can be used to obtain better
estimates of the linear states. Analytically marginalizing out
the linear state variables fromp(xt|Yt) and using Bayes’
theorem gives (Xn

t = {xn
i }t

i=0)

p(xl
t,X

n
t |Yt) = p(xl

t|Xn
t , Yt)︸ ︷︷ ︸

Optimal KF

p(Xn
t |Yt)︸ ︷︷ ︸
PF

, (7)

where p(xl
t|Xn

t , Yt) is analytically tractable. It is given by
the Kalman filter (KF), see Lemma 2.1 below for the details.
Furthermore,p(Xn

t |Yt) can be estimated using the particle
filter (PF). If the same number of particles are used in the
standard particle filter and the marginalized particle filter the
latter will, intuitively, provide better estimates. The reason
for this is that the dimension ofp(xn

t |Yt) is smaller than
the dimension ofp(xl

t, x
n
t |Yt), implying that the particles

occupy a lower dimensional space. Another reason is that
optimal algorithms are used in order to estimate the linear
state variables. Let̂Is

N (g(xt)) denote the estimate of (4)
using the standard particle filter withN particles. When the
marginalized particle filter is used the corresponding estimate
is denoted by Îm

N (g(xt)). Under certain assumptions the
following central limit theorem holds,√

N(Îs
N (g(xt)) − I(g(xt))) =⇒ N (0, σ2

s), N → ∞ (8a)√
N(Îm

N (g(xt)) − I(g(xt))) =⇒ N (0, σ2
m), N → ∞ (8b)

whereσ2
s ≥ σ2

m. A formal proof of (8) is provided in [14],
[13]. For the sake of notational brevity the dependence ofxn

t

in At, Ct, andht are suppressed below.
Lemma 2.1:Given Model 1, the conditional probability

density functions forxl
t|t andxl

t+1|t are given by

p(xl
t|Xn

t , Yt) = N (x̂l
t|t, Pt|t), (9a)

p(xl
t+1|Xn

t+1, Yt) = N (x̂l
t+1|t, Pt+1|t), (9b)

where

x̂l
t|t = x̂l

t|t−1 + Kt(yt − ht − Ctx̂
l
t|t−1), (10a)

Pt|t = Pt|t−1 − KtCtPt|t−1, (10b)

St = CtPt|t−1C
T
t + Rt, (10c)

Kt = Pt|t−1C
T
t S−1

t , (10d)

and

x̂l
t+1|t = Al

tx̂
l
t|t, (11a)

Pt+1|t = Al
tPt|t(Al

t)
T + Ql

t. (11b)

The recursions are initiated witĥxl
0|−1 = x̄0 andP0|−1 = P̄0.

Proof: Straightforward application of the Kalman fil-
ter [22], [21].
The second density,p(Xn

t |Yt), in (7) will be approximated
using the standard particle filter. Bayes’ theorem and the
Markov property inherent in the state-space model can be used
to write p(Xn

t |Yt) as

p(Xn
t |Yt) =

p(yt|Xn
t , Yt−1)p(xn

t |Xn
t−1, Yt−1)

p(yt|Yt−1)
p(Xn

t−1|Yt−1),

(12)

where an approximation ofp(Xn
t−1|Yt−1) is provided by the

previous iteration of the particle filter. In order to perform
the update (12) analytical expressions forp(yt|Xn

t , Yt−1)
and p(xn

t |Xn
t−1, Yt−1) are needed. They are provided by the

following lemma.
Lemma 2.2:For Model 1 p(yt|Xn

t , Yt−1) and
p(xn

t+1|Xn
t , Yt) are given by

p(yt|Xn
t , Yt−1) = N (ht + Ctx̂

l
t|t−1, CtPt|t−1C

T
t + Rt),

(13a)

p(xn
t+1|Xn

t , Yt) = N (fn
t , Qn

t ). (13b)
Proof: Basic facts about conditionally linear models, see

e.g., [19], [36].
The linear system (5b) – (5c) can now be formed for each
particle, {xn,(i)

t }N
i=1 and the linear states can be estimated

using the Kalman filter. This requires one Kalman filter asso-
ciated with each particle. The overall algorithm for estimating
the states in Model 1 is given in Algorithm 1. From this
algorithm it should be clear that the only difference from
the standard particle filter is that the time update (prediction)
stage has been changed. In the standard particle filter the
prediction stage is given solely by step 4b in Algorithm 1.
Step 4a is referred to as themeasurement updatein the Kalman
filter [21]. Furthermore, the prediction of the nonlinear state
variables,x̂n

t+1|t is obtained in step 4b. According to (5a) the
prediction of the nonlinear state variables does not contain
any information about the linear state variables. This implies
that x̂n

t+1|t cannot be used to improve the quality of the
estimates of the linear state variables. However, if Model 1
is generalized by imposing a dependence between the linear
and the nonlinear state variables in (5a) the prediction of the
nonlinear state variables can be used to improve the estimates
of the linear state variables. In the subsequent section it will
be elaborated on how this affects the state estimation.

C. Triangular Model

Model 1 is now extended by including the termAn
t (xn

t )xl
t

in the nonlinear state equation. This results in a “triangular
model”, defined below.
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Model 2:

xn
t+1 = fn

t (xn
t )+An

t (xn
t )xl

t+wn
t , (14a)

xl
t+1 = Al

t(x
n
t )xl

t +wl
t, (14b)

yt = ht(xn
t ) +Ct(xn

t )xl
t +et, (14c)

with the same assumptions as in Model 1. �

Now, from (14a) it is clear that̂xn
t+1|t does indeed contain

information about the linear state variables. This implies that
there will be information about the linear state variable,xl

t,
in the prediction of the nonlinear state variable,x̂n

t+1|t. To
understand how this affects the derivation it is assumed that
step 4b in Algorithm 1 has just been completed. This means
that the predictions,̂xn

t+1|t, are available and the model can be
written (the information in the measurement,yt, has already
been used in step 4a)

xl
t+1 = Al

tx
l
t + wl

t, (15a)

zt = An
t xl

t + wn
t , (15b)

where

zt = xn
t+1 − fn

t . (15c)

It is possible to interpretzt as a measurement andwn
t as the

corresponding measurement noise. Since (15) is a linear state-
space model with Gaussian noise, the optimal state estimate
is given by the Kalman filter according to

x̂l∗
t|t = x̂l

t|t + Lt(zt − An
t x̂l

t|t), (16a)

P ∗
t|t = Pt|t − LtNtL

T
t , (16b)

Lt = Pt|t(An
t )T N−1

t , (16c)

Nt = An
t Pt|t(An

t )T + Qn
t , (16d)

where “∗” has been used to distinguish this second measure-
ment update from the first one. Furthermore,x̂l

t|t, and Pt|t
are given by (10a) and (10b) respectively. The final step is to
merge this second measurement update with the time update
to obtain the predicted states. This results in

x̂l
t+1|t = Al

tx̂
l
t|t + Lt(zt − An

t x̂l
t|t), (17a)

Pt+1|t = Al
tPt|t(Al

t)
T + Ql

t − LtNtL
T
t , (17b)

Lt = Al
tPt|t(An

t )T N−1
t , (17c)

Nt = An
t Pt|t(An

t )T + Qn
t . (17d)

For a formal proof of this the reader is referred to Appendix I.
To make Algorithm 1 valid for the more general Model 2
the time update equation in the Kalman filter (11) has to be
replaced by (17).

The second measurement update is called measurement
update due to the fact that the mathematical structure is the
same as a measurement update in the Kalman filter. However,
strictly speaking it is not really a measurement update, since
there does not exist any new measurement. It is better to think
of this second update as a correction to the real measurement
update, using the information in the prediction of the nonlinear
state variables.

D. The General Case

In the previous two sections the mechanisms underlying the
marginalized particle filter have been illustrated. It is now time
to apply the marginalized particle filter to the most general
model.

Model 3:

xn
t+1 = fn

t (xn
t )+An

t (xn
t )xl

t+Gn
t (xn

t )wn
t , (18a)

xl
t+1 = f l

t(x
n
t ) +Al

t(x
n
t )xl

t +Gl
t(x

n
t )wl

t, (18b)

yt = ht(xn
t ) +Ct(xn

t )xl
t +et, (18c)

where the state noise is assumed white and Gaussian dis-
tributed with

wt =
[
wl

t

wn
t

]
∼ N (0, Qt), Qt =

[
Ql

t Qln
t

(Qln
t )T Qn

t

]
. (19a)

The measurement noise is assumed white and Gaussian dis-
tributed according to

et ∼ N (0, Rt). (19b)

Furthermore,xl
0 is Gaussian,

xl
0 ∼ N (x̄0, P̄0). (19c)

The density ofxn
0 can be arbitrary, but it is assumed known.

�

In certain cases some of the assumptions can be relaxed. This
will be discussed in the subsequent section. Before moving
on it is worthwhile to explain how models used in some
applications of marginalization relate to Model 3. In [23]
the marginalized particle filter was applied to underwater
navigation using a model corresponding to (18), save the
fact that Gn

t = I,Gl
t = I, f l

t = 0, An
t = 0. In [18] a

model corresponding to linear state equations and a nonlinear
measurement equation is applied to various problems, such as
car positioning, terrain navigation, and target tracking. Due
to its relevance this model will be discussed in more detail
in Section III. Another special case of Model 3 has been
applied to problems in communication theory in [9], [37]. The
model used there is linear. However, depending on an indicator
variable the model changes. Hence, this indicator variable can
be thought of as the nonlinear state variable in Model 3. A
good and detailed explanation of how to use the marginalized
particle filter for this case can be found in [14]. They refer to
the model as a jump Markov linear system.

Analogously to what has been done in (7), the filtering
distribution,p(xt|Yt) is split using Bayes’ theorem,

p(xl
t,X

n
t |Yt) = p(xl

t|Xn
t , Yt)p(Xn

t |Yt). (20)

The linear state variables are estimated using the Kalman filter
in a slightly more general setting than which was previously
discussed. However, it is still the same three steps that are
executed in order to estimate the linear state variables. The first
step is a measurement update using the information available
in yt. The second step is a measurement update using the
information available inx̂n

t+1|t and finally there is a time
update. The following theorem explains how the linear state
variables are estimated.
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Theorem 2.1:Using Model 3 the conditional probability
density functions forxl

t andxl
t+1 are given by

p(xl
t|Xn

t , Yt) = N (x̂l
t|t, Pt|t), (21a)

p(xl
t+1|Xn

t+1, Yt) = N (x̂l
t+1|t, Pt+1|t), (21b)

where

x̂l
t|t = x̂l

t|t−1 + Kt(yt − ht − Ctx̂
l
t|t−1), (22a)

Pt|t = Pt|t−1 − KtMtK
T
t , (22b)

Mt = CtPt|t−1C
T
t + Rt, (22c)

Kt = Pt|t−1C
T
t M−1

t , (22d)

and

x̂l
t+1|t = Āl

tx̂
l
t|t + Gl

t(Q
ln
t )T (Gn

t Qn
t )−1zt

+ f l
t + Lt(zt − An

t x̂l
t|t), (23a)

Pt+1|t = Āl
tPt|t(Āl

t)
T + Gl

tQ̄
l
t(G

l
t)

T − LtNtL
T
t , (23b)

Nt = An
t Pt|t(An

t )T + Gn
t Qn

t (Gn
t )T , (23c)

Lt = Āl
tPt|t(An

t )T N−1
t , (23d)

where

zt = xn
t+1 − fn

t , (24a)

Āl
t = Al

t − Gl
t(Q

ln
t )T (Gn

t Qn
t )−1An

t , (24b)

Q̄l
t = Ql

t − (Qln
t )T (Qn

t )−1Qln
t . (24c)

Proof: See Appendix I.
It is worth noting that if the cross-covariance,Qln

t , between
the two noise sourceswn

t and wl
t is zero, thenĀl

t = Al
t

and Q̄l
t = Ql

t. The first density,p(xl
t|Xn

t , Yt), on the right
hand side in (20) is now taken care of. In order for the
estimation to work the second density,p(Xn

t |Yt), in (20) is
taken care of according to (12). The analytical expressions
for p(yt|Xn

t , Yt−1) andp(xn
t |Xn

t−1, Yt−1) are provided by the
following theorem.

Theorem 2.2:For Model 3 p(yt|Xn
t , Yt−1) and

p(xn
t+1|Xn

t , Yt) are given by

p(yt|Xn
t , Yt−1) = N (ht + Ctx̂

l
t|t−1, CtPt|t−1C

T
t + Rt),

(25a)

p(xn
t+1|Xn

t , Yt) = N (fn
t + An

t x̂l
t|t, An

t Pt|t(An
t )T

+ Gn
t Qn

t (Gn
t )T ). (25b)

Proof: Basic facts about conditionally linear models,
see [19]. The details for this particular case can be found
in [36].
The details for estimating the states in Model 3 have now been
derived, and the complete algorithm is Algorithm 1. As pointed
out before, the only difference between this algorithm and the
standard particle filtering algorithm is that the prediction stage
is different. If steps 4a and 4c are removed from Algorithm 1
the standard particle filter algorithm is obtained.

In this article the most basic form of the particle filter
has been used. Several more refined variants exist, which in
certain applications can give better performance. However,
since the aim of this article is to communicate the idea of
marginalization in a general linear/nonlinear state-space model
the standard particle filter has been used. It is straightforward

to adjust the algorithm given in this paper to accommodate
e.g., the auxiliary particle filter [34] and the Gaussian particle
filter [26], [27]. Several ideas are also given in the articles
collected in [11].

The estimates as expected means of the linear state variables
and their covariances are given by [32]

x̂l
t|t =

N∑
i=1

q̃
(i)
t x̂

l,(i)
t|t ≈ Ep(xl

t|Yt)

[
xl

t

]
, (26a)

P̂t|t =
N∑

i=1

q̃
(i)
t

(
P

(i)
t|t + (x̂l,(i)

t|t − x̂l
t|t)(x̂

l,(i)
t|t − x̂l

t|t)
T
)

(26b)

≈ Ep(xl
t|Yt)

[(
(xl

t)
2 − Ep(xl

t|Yt)

[
(xl

t)
2
])2

]
. (26c)

where q̃
(i)
t are the normalized importance weights, provided

by step2 in Algorithm 1.

III. I MPORTANT SPECIAL CASES AND EXTENSIONS

Model 3 is quite general indeed and in most applications
special cases of it are used. This fact, together with some
extensions will be the topic of this section.

The special cases are just reductions of the general re-
sults presented in the previous section. However, they still
deserve some attention in order to highlight some important
mechanisms. It is worth mentioning that linear sub-structures
can enter the model more implicitly as well, for example,
by modeling colored noise and by sensor offsets and trends.
These modeling issues are treated in several introductory texts
on Kalman filtering, see e.g., Section 8.2.4 in [17]. In the
subsequent section some noise modeling aspects are discussed.
This is followed by a discussion of a model with linear state
equations and a nonlinear measurement equation.

A. Generalized Noise Assumptions

The Gaussian noise assumption can be relaxed in two
special cases. First, if the measurement equation (18c) does
not depend on the linear state variables,xl

t, i.e., Ct(xn
t ) = 0,

the measurement noise can be arbitrarily distributed. In this
case (18c) does not contain any information about the linear
state variables, and hence cannot be used in the Kalman filter.
It is solely used in the particle filter part of the algorithm,
which can handle all probability density functions.

Second, ifAn
t (xn

t ) = 0 in (18a), the nonlinear state equation
will be independent of the linear states, and hence cannot be
used in the Kalman filter. This means that the state noise,wn

t ,
can be arbitrarily distributed.

The noise covariances can depend on the nonlinear state
variables, i.e.,Rt = Rt(xn

t ) and Qt = Qt(xn
t ). This is

useful for instance in terrain navigation, where the nonlinear
state variable includes information about the position. Using
the horizontal position and a geographic information system
(GIS) on-board the aircraft noise covariances depending on
the characteristics of the terrain at the current horizontal
position can be motivated. This issue will be elaborate upon
in Section V.
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B. An Important Model Class

A quite important special case of Model 3, is a model with
linear state equations and a nonlinear measurement equation.
In Model 4 below such a model is defined.

Model 4:

xn
t+1 = An

n,tx
n
t +An

l,tx
l
t+Gn

t wn
t , (27a)

xl
t+1 = Al

n,tx
n
t +Al

l,tx
l
t+Gl

tw
l
t, (27b)

yt = ht(xn
t ) +et, (27c)

with wn
t ∼ N (0, Qn

t ) and wl
t ∼ N (0, Ql

t). The distribution
for et can be arbitrary, but it is assumed known. �

The measurement equation (27c) does not contain any in-
formation about the linear state variable,xl

t. Hence, as far
as the Kalman filter is concerned (27c) cannot be used in
estimating the linear states. Instead all information from the
measurements enter the Kalman filter implicitly via the second
measurement update using the nonlinear state equation (27a)
and the prediction of the nonlinear state,x̂n

t+1|t, as a mea-
surement. This means that in Algorithm 1, step 4a can be left
out. In this case the second measurement update is much more
than just a correction to the first measurement update. It is the
only way in which the information inyt enters the algorithm.

Model 4 is given special attention as several important state
estimation problems can be modeled in this way. Examples in-
clude positioning, target tracking and collision avoidance [18],
[4]. For more information on practical matters concerning
modeling issues, see e.g., [30], [29], [4], [32]. In the applica-
tions mentioned above the nonlinear state variable,xn

t , usually
corresponds to the position, whereas the linear state variable,
xl

t, corresponds to velocity, acceleration and bias terms.
If Model 4 is compared to Model 3 it can be seen that

the matricesAn
t , Al

t, G
n
t , and Gl

t are independent ofxn
t in

Model 4, which implies that

P
(i)
t|t = Pt|t ∀ i = 1, . . . , N. (28)

This follows from (23b) – (23d) in Theorem 2.1. According
to (28) only one instead ofN Riccati recursions is needed,
which leads to a substantial reduction in computational com-
plexity. This is of course very important in real-time imple-
mentations. A further study of the computational complexity
of the marginalized particle filter can be found in [25].

If the dynamics in (18a) – (18b) is almost linear it can
be linearized to obtain a model described by (27a) – (27b).
Then the extended Kalman filter can be used instead of the
Kalman filter. As is explained in [30], [29] it is common that
the system model is almost linear, whereas the measurement
model is severely nonlinear. In these cases use the particle
filter for the severe nonlinearities and the extended Kalman
filter for the mild nonlinearities.

IV. A N ILLUSTRATING EXAMPLE

In order to make things as simple as possible the following
two dimensional model will be used

xt+1 =
[
1 T
0 1

]
xt + wt, (29a)

yt = h(zt) + et, (29b)

where the state vector isxt =
[
zt żt

]T
. Hence, the state

consists of a physical variable and its derivative. Models of
this kind are very common in applications. One example is
bearings only tracking, where the objective is to estimate the
angle and angular velocity and the nonlinear measurement
depends on the antenna diagram. Another common application
is state estimation in a DC-motor, where the angular position
is assumed to be measured nonlinearly. As a final application
terrain navigation in one dimension is mentioned, where the
measurement is given by a map. A more realistic terrain
navigation example is discussed in Section V.

Model (29) is linear inżt and nonlinear inzt. The state
vector can thus be partitioned asxt =

[
xn

t xl
t

]T
, which

implies that (29) can be written as

xn
t+1 = xn

t +Txl
t+wn

t , (30a)

xl
t+1 = xl

t +wl
t, (30b)

yt = ht(xn
t ) +et, (30c)

This corresponds to the triangular model given in Model 2.
Hence, the Kalman filter for the linear state variable is given
by (22) – (24) where the nonlinear state is provided by the
particle filter. The estimate of the linear state variable is given
by (23a) which for this example is

x̂l
t+1|t = (1 − ltT )x̂l

t|t + ltT
xn

t+1 − xn
t

T
, (31)

where

nt = T 2pt|t + qn
t , lt =

T

nt
pt|t. (32)

Intuitively (31) makes sense, since the velocity estimate is
given as a weighted average of the current velocity and the
estimated momentary velocity, where the weights are com-
puted from the Kalman filter quantities. In cases where (29a)
is motivated by Newtons’ force law the unknown force is
modeled as a disturbance andqn

t = 0. This implies that (31)
is reduced to

x̂l
t+1|t =

xn
t+1 − xn

t

T
. (33)

Again this can intuitively be understood, since conditioned on
the knowledge of the nonlinear state variable, (30a) can be
written

xl
t =

xn
t+1 − xn

t

T
. (34)

Thus, (30b) does not add any information for the Kalman filter,
since xl

t is a deterministic function of the known nonlinear
state variable.

V. I NTEGRATED AIRCRAFT NAVIGATION

As was explained in the introduction, the integrated naviga-
tion system in the Swedish fighter aircraft Gripen consists of
an inertial navigation system (INS), a terrain-aided positioning
(TAP) system and an integration filter. This filter fuses the
information from INS with the information from TAP, see
Fig. 1. The currently used integration filter, is likely to be
changed to a marginalized particle filter in the future for
Gripen, see Fig. 2. A first step in this direction was taken
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Fig. 1. The integrated navigation system consists of an inertial navigation
system (INS), a terrain-aided positioning (TAP) system and an integration
filter. The integration filter fuse the information from INS with the information
from TAP.

yt

INS

Marginalized
particle filter

-
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-

��
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Fig. 2. Using the marginalized particle filter for navigation. The terrain
information is now incorporated directly in the marginalized particle filter.
The radar altimeter delivers the hight measurementyt.

in [18], where a six dimensional model was used for integrated
navigation. In six dimensions, the particle filter is possible to
use, but better performance can be obtained. As demonstrated
in [18], 4000 particles in the marginalized filter outperforms
60000 particles in the standard particle filter.

The feasibility study presented here applies marginalization
to a more realistic nine dimensional sub-model of the total
integrated navigation system. Already here, the dimensionality
has proven to be too large for the particle filter to be applied
directly. The example contains all ingredients of the total
system, and the principle is scalable to the full 27-dimensional
state vector. The model can be simulated and evaluated in a
controlled fashion, see [32] for more details. In the subsequent
sections the results from field trials are presented.

A. The Dynamic Model

In order to apply the marginalized particle filter to the
navigation problem a dynamic model of the aircraft is needed.
In this article the overall structure of this model is discussed.
For details the reader is referred to [32] and the references
therein. The errors in the states are estimated instead of the
absolute states. The reason is that the dynamics of the errors
are typically much slower than the dynamics of the absolute
states. The model has the following structure

xn
t+1 = An

n,tx
n
t + An

l,tx
l
t + Gn

t wn
t , (35a)

xl
t+1 = Al

n,tx
n
t + Al

l,tx
l
t + Gl

tw
l
t, (35b)

yt = h

([
Lt

lt

]
+ xn

t

)
+ et. (35c)

There are7 linear states, and2 nonlinear states. The linear
states consist of2 velocity states and3 states for the aircraft
in terms of heading, roll, and pitch. Finally there are2 states
for the accelerometer bias. The nonlinear states correspond
to the error in the horizontal position, which is expressed in
latitude,Lt, and longitude,lt.

The total dimension of the state vector is thus9, which
is too large to be handled by the particle filter. The highly
nonlinear nature of measurement equation (35c), due to the
terrain elevation database, implies that an extended Kalman
filter cannot be used. However, the model described by (35)
clearly fits into the framework of the marginalized particle
filter.

The measurement noise in (35c) deserves some special
attention. The radar altimeter, which is used to measure the
ground clearance, interprets any echo as the ground. This
is a problem when flying over trees. The tree tops will be
interpreted as the ground, with a false measurement as a result.
One simple, but effective, solution to this problem is to model
the measurement noise as

pet
(·) = πN (m1, σ1) + (1 − π)N (m2, σ2), (36)

where π is the probability of obtaining an echo from the
ground, and(1 − π) is the probability of obtaining an echo
from the tree tops. The probability density function (36) is
shown in Fig. 3. Experiments have shown that this, in spite

0

Fig. 3. A typical histogram of the error in the data from the radar altimeter.
The first peak corresponds to the error in the ground reading and the second
peak corresponds to the error in the readings from the tree tops.

of its simplicity, is a quite accurate model [10]. Furthermore,
m1, m2, σ1, σ2, andπ in (36) can be allowed to depend on
the current horizontal position,Lt, lt. In this way information
from the terrain data base can be inferred on the measurement
noise in the model. Using this information it is possible to
model whether the aircraft is flying over open water or over
a forest.

B. Result

The flight that has been used is shown in Fig. 4. This is a
fairly tough flight for the algorithm, in the sense that during
some intervals data are missing, and sometimes the radar
altimeter readings become unreliable. This happens at high
altitudes and during sharp turns (large roll angle), respectively.
In order to get a fair understanding of the algorithms perfor-
mance,100 Monte Carlo simulations with the same data have
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Fig. 4. The flight path used for testing the algorithm. The flight path is
clockwise and the dark regions in the figure are open water.

been performed, where only the noise realizations have been
changed from one simulation to the other. Many parameters
have to be chosen, but only the number of particles used are
commented here (see [15] for more details). In Fig. 5 a plot
of the error in horizontal position as a function of time is
presented, for different number of particles. The true position
is provided by the differential GPS (DGPS). From this figure
it is obvious that the estimate improves as more particles are
used. This is natural since the theory states that the densities
are approximated better the more particles used. The difference
in performance is mainly during the transient, where it can be
motivated to use more particles. By increasing the number of
particles the convergence time is significantly reduced and a
better estimate is obtained. This is true up to 5000 particles.
Hence,5000 particles where used in this study. The algorithm
can be further improved, and in [15] several suggestions are
given.

The conclusion from this study is that the marginalized
particle filter performs well, and provides an interesting and
powerful alternative to methods currently used in integrated
aircraft navigation systems.

VI. CONCLUSIONS

The marginalization techniques have systematically been
applied to general nonlinear and non-Gaussian state-space
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Fig. 5. The horizontal position error as a function of time units for different
numbers of particles. The marginalized particle filter given in Algorithm 1
has been used.

models, with linear sub-structures. This has been done in
several steps, where each step implies a certain modification of
the standard particle filter. The first step was to associate one
Kalman filter with each particle. These Kalman filters were
used to estimate the linear states. The second step was to use
the prediction of the nonlinear state as an additional measure-
ment. This was used to obtain better estimates of the linear
state variables. The complete details for the marginalized
particle filter were derived for a general nonlinear and non-
Gaussian state-space model. Several important special cases
were also described. Conditions implying that all the Kalman
filters will obey the same Riccati recursion were given.

Finally, a terrain navigation application with real data from
the Swedish fighter aircraft Gripen was presented. The particle
filter is not a feasible algorithm for the full nine-state model
since a huge number of particles would be needed. However,
since only two states (the aircrafts horizontal position) appear
nonlinearly in the measurement equation, a special case of
the general marginalization algorithm can be applied. A very
good result can be obtained with only 5000 particles, which is
readily possible to implement in the computer currently used
in the aircraft.

APPENDIX I
PROOF FORTHEOREM 2.1

The proof of (16) and (17) is provided as a special case of
the proof below.

Proof: For the sake of notational brevity the dependence
on xn

t in (18) is suppressed in this proof. Write (18) as

xl
t+1 = f l

t + Al
tx

l
t + Gl

tw
l
t, (37a)

z1
t = An

t xl
t + Gn

t wn
t , (37b)

z2
t = Ctx

l
t + et, (37c)
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wherez1
t andz2

t are defined as

z1
t = xn

t+1 − fn
t , (37d)

z2
t = yt − ht. (37e)

Inspection of the above equations gives thatz1
t andz2

t can both
be thought of as measurements, since mathematically (37b)
and (37c) possess the structure of measurement equations. The
fact that there is a cross-correlation between the two noise
processeswl

t andwn
t , sinceQln

t 6= 0 in (19a), has to be taken
care of. This can be accomplished using the Gram-Schmidt
procedure to de-correlate the noise [17], [21]. Instead ofwl

t

the following can be used

w̄l
t = wl

t − E[wl
t(w

n
t )T ](E[wn

t (wn
t )T ])−1wn

t

= wl
t − Qln

t (Qn
t )−1wn

t , (38)

resulting inE[w̄l
t(w

n
t )T ] = 0 and

Q̄l
t = E[w̄l

t(w̄
l
t)

T ] = Ql
t − Qln

t (Qn
t )−1Qln

t . (39)

Using (37b) and (38), (37a) can be rewritten according to
(Gn

t is assumed invertible. The case of a non-invertibleGn
t

is treated in [5])

xl
t+1 = Al

tx
l
t + Gl

t[w̄
l
t + Qln

t (Qn
t )−1(Gn

t )−1(z1
t

− An
t xl

t)] + f l
t , (40)

= Āl
tx

l
t + Gl

tw̄
l
t + Gl

tQ
ln
t (Gn

t Qn
t )−1z1

t + f l
t , (41)

where

Āl
t = Al

t − Gl
tQ

ln
t (Gn

t Qn
t )−1An

t . (42)

The de-correlated system is

xl
t+1 = f l

t + Āl
tx

l
t + Gl

tQ
ln
t (Gn

t Qn
t )−1z1

t + Gl
tw̄

l
t, (43a)

z1
t = An

t xl
t + Gn

t wn
t , (43b)

z2
t = Ctx

l
t + et, (43c)

which is a linear system with Gaussian noise. Moreover,
from (37d) and (37e) it can be seen thatZ1

t and Z2
t are

known if Xn
t+1 and Yt are known. The actual proof, using

induction, of the theorem can now be started. At time zero;
p(xl

0|Xn
0 , Y−1) = p(xl

0|xn
0 ) = N (x̄l

0, P̄0). Now, assume that
p(xl

t|Xn
t , Yt−1) is Gaussian at an arbitrary time,t.

The recursions are divided into three parts. First, the in-
formation available in the actual measurement,yt, i.e., z2

t is
used. Once the measurement update has been performed the
estimates,̂xl

t|t andPt|t are available. These can now be used to
calculate the predictions of the nonlinear state,x̂n

t+1|t. These
predictions will provide new information about the system.
Second, this new information is incorporated by performing a
second measurement update using the artificial measurement,
z1
t . Finally a time update, using the result from the second

step, is performed.
Part 1: Assume that both p(xl

t|Xn
t , Yt−1) =

N (x̂l
t|t−1, Pt|t−1) and z2

t are available. This means that
p(xl

t|Xn
t , Yt) can be computed,

p(xl
t|Xn

t , Yt) =
p(yt|xn

t , xl
t)p(xl

t|Xn
t , Yt−1)∫

p(yt|xn
t , xl

t)p(xl
t|Xn

t , Yt−1)dxl
t

. (44)

Using the fact that the measurement noise and thereby
p(yt|xn

t , xl
t) is Gaussian and the Kalman filter [1] it can be

seen thatp(xl
t|Xn

t , Yt) = N (x̂l
t|t, Pt|t) where

x̂l
t|t = x̂l

t|t−1 + Kt(z2
t − Ctx̂

l
t|t−1), (45a)

Pt|t = Pt|t−1 − KtMtK
T
t , (45b)

Kt = Pt|t−1C
T
t M−1

t , (45c)

Mt = CtPt|t−1C
T
t + Rt. (45d)

Part 2: At this stagez1
t becomes available. Use

p(xl
t|Xn

t+1, Yt) =
p(xn

t+1|xn
t , xl

t)p(xl
t|Xn

t , Yt)∫
p(xn

t+1|xn
t , xl

t)p(xl
t|Xn

t , Yt)dxl
t

(46)

analogously to part1 p(xl
t|Xn

t+1, Yt) = N (x̂l∗
t|t, P

∗
t|t) where

x̂l∗
t|t = x̂l

t|t + Lt(z1
t − An

t x̂l
t|t), (47a)

P ∗
t|t = Pt|t − LtN

∗
t LT

t , (47b)

Lt = Pt|t(An
t )T (N∗

t )−1, (47c)

N∗
t = An

t Pt|t(An
t )T + Gn

t Qn
t (Gn

t )T . (47d)

Part 3: The final part is the time update, i.e., to compute

p(xl
t+1|Xn

t+1, Yt) =∫
p(xl

t+1|xn
t+1, x

n
t , xl

t)p(xl
t|Xn

t+1, Yt)dxl
t. (48)

Since the state noise is Gaussian this corresponds to
the time update handled by the Kalman filter. Hence,
p(xl

t+1|Xn
t+1, Yt) = N (x̂l

t+1|t, Pt+1|t) where

x̂l
t+1|t = Āl

tx̂
l
t|t + Gl

t(Q
ln
t )T (Gn

t Qn
t )−1z1

t

+ f l
t + Lt(z1

t − An
t x̂l

t|t), (49a)

Pt+1|t = Āl
tPt|t(Āl

t)
T + Gl

tQ̄
l
t(G

l
t)

T − LtNtL
T
t , (49b)

Lt = Āl
tPt|t(An

t )T N−1
t , (49c)

Nt = An
t Pt|t(An

t )T + Gn
t Qn

t (Gn
t )T . (49d)
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