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Abstract—The marginalized particle filter is a powerful
combination of the particle filter and the Kalman filter,
which can be used when the underlying model contains a
linear sub-structure, subject to Gaussian noise. This pa-
per will illustrate several positioning and target tracking
applications, solved using the marginalized particle filter.
Furthermore, we analyze several properties of practical
importance, such as its computational complexity and
how to cope with quantization effects.

1. INTRODUCTION

Many problems in for instance positioning and target
tracking can be cast as nonlinear state estimation prob-
lems, where the uncertainty in the process model and/or
in the measurement model may be non-Gaussian. Such
a general model can be formulated according to

xt+1 = f(xt, ut) + wt, (1a)

yt = h(xt) + et, (1b)

with state variable xt ∈ R
m, input signal ut and mea-

surements Yt = {yi}t
i=1, with known probability den-

sity functions(pdfs) for the process noise pw(w) and the
measurement noise pe(e). Hence, traditional estimation
methods based on the Kalman filter (KF) [25, 26], or lin-
earized version thereof, do not always provide good per-
formance. Over the past 40 years there has been several
suggestions on how to tackle the problem of estimat-
ing the states in (1). An appealing solution is provided
by the particle filter (PF) [11, 22, 37], which allows for
a systematic treatment of both nonlinearities and non-
Gaussian noise. However, due to the inherent computa-
tional complexity of the particle filter, real-time issues
arise in many applications when the sampling rate is
high. If the model includes a sub-structure with linear
equations, subject to Gaussian noise, it is often possible
to perform the estimation more efficiently. Here, this
method is referred to as the marginalized particle filter
(MPF), it is also known as the Rao-Blackwellized parti-
cle filter, see for instance [3, 4, 8, 11, 12, 40]. The MPF is
a clever combination of the standard particle filter and
the Kalman filter. It is a well known fact that in some
cases it is possible to obtain better estimates, i.e., es-
timates with reduced variance, using the marginalized
particle filter instead of using the standard particle fil-
ter [14].

The aim of this paper is to explain how the marginalized
particle filter works in practice. We will try to achieve
this by considering several applications where we have
successfully applied the MPF. Since we cannot cover all
the details in this paper references to more detailed de-
scriptions are provided. Furthermore, the algorithm’s
computational complexity and the presence of quanti-
zation effects are analyzed, due to their importance in
practical applications. To summarize, the analysis and
applications covered are

Theory and analysis:
• Background theory
• Complexity analysis
• Quantization effects

Positioning applications:
• Underwater terrain-aided positioning
• Aircraft terrain-aided positioning
• Automotive map-aided positioning

Target tracking applications:
• Automotive target tracking
• Bearings-only target tracking
• Radar target tracking

There are certainly more applications of the marginal-
ized particle filter reported in the literature. Just to
mention a few, there are communication applications [9,
44], nonlinear system identification [10, 33, 39], GPS nav-
igation [20] and audio source separation [4].

The paper is organized as follows. In Section 2, the
background theory and MPF algorithm are briefly in-
troduced. The algorithm performance, computational
complexity and ability to handle quantization effects are
analyzed in Section 3. In Section 4, the applications
are introduced and the structure of the underlying mod-
els is reviewed. The positioning and target tracking ap-
plication are described in more detail in Section 5 and
Section 6, respectively. Finally, Section 7 provides a con-
cluding discussion of some lessons learned in using the
marginalized particle filter.

2. MARGINALIZED PARTICLE FILTER

The aim of recursively estimating the filtering density
p(xt|Yt) can be accomplished using the standard par-
ticle filter. However, if there is a linear sub-structure,
subject to Gaussian noise, present in the model this can



be exploited to obtain better estimates and possibly re-
duce the computational demand as well. This is the
motivation underlying the marginalized particle filter.

Representation

The task of nonlinear filtering can be split into two
parts: representation of the filtering probability den-
sity function and propagation of this density during the
time and measurement update stages. Figure 1 illus-
trate different representations of the filtering density for
a two-dimensional example. The extended Kalman filter
(EKF) [2, 25], can be interpreted as using one Gaussian
distribution for representation and the propagation is
performed according to a linearized model. The Gaussian
sum filter, [2, 41], extends the EKF to be able to repre-
sent multi-modal distributions, still with an approximate
propagation.
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(b) Gaussian approxima-
tion.
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(c) Gaussian sum
approximation.
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(d) Grid-based approxi-
mation.
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(e) Particle approxima-
tion.
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Figure 1. True probability density function (pdf) and dif-
ferent approximate representations, in order of appearance,
Gaussian, Gaussian sum, point-masses (grid-based approxi-
mation), particle samples and waterfall view that corresponds
to the MPF.

Figure 1(d)–(f) illustrates numerical approaches where
the exact nonlinear relations present in the model are
used for propagation. The point-mass filter(grid-based
approximation), [6] employ a regular grid, where the grid
weight is proportional to the posterior. The particle filter
(PF), [22], represents the posterior by a stochastic grid
in form of a set of samples, where all particles (sam-
ples) have the same weight. Finally, the marginalized
particle filter (MPF) uses a stochastic grid for some of
the states, and Gaussian distributions for the rest. That
is, the MPF can be interpreted as a particle representa-
tion for a subspace of the state dimension, where each
particle has an associated Gaussian distribution for the
remaining state dimensions. This is the waterfall view
in Figure 1(f). It will be demonstrated that an exact

nonlinear propagation is still possible if there is a linear
sub-structure in the model. An important model class
has the property that the (co-)variance is the same for
all particles, which simplifies computations significantly.

Model

Consider a state vector xt, which can be partitioned ac-
cording to

xt =
(

xl
t

xn
t

)
, (2)

where xl
t denotes the linear states and xn

t denotes the
nonlinear states, in the dynamics and measurement re-
lation. A rather general model with the properties dis-
cussed above is given by

xn
t+1 = fn

t (xn
t )+An

t (xn
t )xl

t+Gn
t (xn

t )wn
t , (3a)

xl
t+1 = f l

t(x
n
t ) +Al

t(x
n
t )xl

t +Gl
t(x

n
t )wl

t, (3b)

yt = ht(xn
t ) +Ct(xn

t )xl
t +et, (3c)

where the state noise is assumed white and Gaussian
distributed with

wt =
(

wl
t

wn
t

)
∼ N(0, Qt), Qt =

(
Ql

t Qln
t

(Qln
t )T Qn

t

)
. (3d)

The measurement noise is assumed white and Gaussian
distributed according to

et ∼ N(0, Rt). (3e)

Furthermore, xl
0 is Gaussian,

xl
0 ∼ N(x̄0, P̄0). (3f)

Finally, the density of xn
0 can be arbitrary, but it is

assumed known. More specifically, conditioned on the
nonlinear state variables there is a linear sub-structure,
subject to Gaussian noise available in (3), given by (3b).

Algorithm

Bayesian estimation methods, such as the particle fil-
ter, provide estimates of the filtering density function,
p(xt|Yt). By employing the fact

p(xl
t, X

n
t |Yt) = p(xl

t|Xn
t , Yt)p(Xn

t |Yt), (4)

we can put the problem in a description suitable for
the MPF framework, i.e., to analytically marginalize
out the linear state variables from p(xt|Yt). Note that,
p(xl

t|Xn
t , Yt) is analytically tractable, since X

n
t is given.

Hence, the underlying model is linear-Gaussian, and the
pdf can be computed from the Kalman filter. Further-
more, an estimate of p(Xn

t |Yt) is provided by the particle
filter. These two algorithms can then be combined into
a single algorithm, the marginalized particle filter. An-
other name for this technique is the Rao-Blackwellized
particle filter, and it has been known for quite some



time, see e.g., [3, 7, 8, 12, 14, 35, 40]. If the same numbers
of particles are used in the standard particle filer and
the marginalized particle filter, the latter will provide
estimates of better or at least the same quality. Intu-
itively this makes sense, since the dimension of p(xn

t |Yt)
is smaller than the dimension of p(xt|Yt), implying that
the particles occupy a lower dimensional space. Further-
more, the optimal algorithm is used to estimate the lin-
ear state variables. For a detailed discussion regarding
the improved accuracy of the estimates, see [13, 14].

The marginalized particle filter for estimating the states
in a dynamic model in the form (3) is provided in Alg. 1.
Since the focus of the present paper is on the practical
aspects of Alg. 1, we will merely provide the intuition for
this algorithm here. For a detailed derivation, see [40].
From this algorithm, it should be clear that the only
difference from the standard particle filter is that the
time update (prediction) stage has been changed. In
the standard particle filter, the prediction stage is given
solely by step 4(b) in Alg. 1.

Let us now briefly discuss step 4 in Alg. 1. Step 4(a)
is a standard Kalman filter measurement, update using
the information available in the measurement yt. Once
this has been performed the new estimates of the linear
states can be used to obtain a prediction of the nonlin-
ear state xn

t+1|t. This is performed in Step 4(b). Let
us now consider model (3) conditioned on the nonlinear
state variable. The conditioning implies that (3a)can be
thought of as a measurement equation. This is used in
step 4(c) together with a time update of the linear state
estimates.

The estimates, as expected means, of the state variables
and their covariances are given below.

x̂n
t|t =

N∑
i=1

q̃
(i)
t x̂

n,(i)
t|t , (9a)

P̂n
t|t =

N∑
i=1

q̃
(i)
t

((
x̂

n,(i)
t|t − x̂n

t|t
)(

x̂
n,(i)
t|t − x̂n

t|t
)T

)
, (9b)

x̂l
t|t =

N∑
i=1

q̃
(i)
t x̂

l,(i)
t|t , (9c)

P̂ l
t|t =

N∑
i=1

q̃
(i)
t

(
P

(i)
t|t +

(
x̂

l,(i)
t|t − x̂l

t|t
)(

x̂
l,(i)
t|t − x̂l

t|t
)T

)
,

(9d)

where {q̃(i)
t }N

i=1 are the normalized importance weights,
provided by step 2 in Alg. 1.

3. ANALYSIS

In this section, several properties important in the prac-
tical application of the marginalized particle filter are
analyzed. First, the variance reduction inherent using

Alg. 1 Marginalized Particle Filter (MPF)
1: Initialization: Fori = 1, . . . , N , initialize the particles,

x
n,(i)
0|−1 ∼ pxn

0
(xn

0 ) and set{xl,(i)
0|−1, P

(i)
0|−1} = {x̄l

0, P̄0}.
2: Particle filter measurement update: Fori = 1, . . . , N ,

evaluate the importance weights

q
(i)
t = p(yt|Xn,(i)

t , Yt−1), (5)

and normalizẽq(i)
t = q

(i)
tP

N
j=1 q

(j)
t

.

3: ResampleN particles with replacement,

Pr(xn,(i)
t|t = x

n,(j)
t|t−1) = q̃

(j)
t .

4: Particle filter time update and Kalman filter:
(a) Kalman filter measurement update:

x̂l
t|t = x̂l

t|t−1 + Kt(yt − ht − Ctx̂
l
t|t−1), (6a)

Pt|t = Pt|t−1 − KtMtK
T
t , (6b)

Mt = CtPt|t−1C
T
t + Rt, (6c)

Kt = Pt|t−1C
T
t M−1

t . (6d)

(b) Particle filter time update (prediction): Fori =
1, . . . , N , predict new particles,

x
n,(i)
t+1|t ∼ p(xn

t+1|t|Xn,(i)
t , Yt).

(c) Kalman filter time update:

x̂l
t+1|t = Āl

tx̂
l
t|t + Gl

t(Q
ln
t )T (Gn

t Qn
t )−1zt

+ f l
t + Lt(zt − An

t x̂l
t|t), (7a)

Pt+1|t = Āl
tPt|t(Āl

t)
T + Gl

tQ̄
l
t(G

l
t)

T − LtNtL
T
t ,

(7b)

Nt = An
t Pt|t(An

t )T + Gn
t Qn

t (Gn
t )T , (7c)

Lt = Āl
tPt|t(An

t )T N−1
t , (7d)

where

zt = xn
t+1 − fn

t , (8a)

Āl
t = Al

t − Gl
t(Q

ln
t )T (Gn

t Qn
t )−1An

t , (8b)

Q̄l
t = Ql

t − (Qln
t )T (Qn

t )−1Qln
t . (8c)

5: Sett := t + 1 and iterate from step 2.

the Rao-Blackwellization idea is explained. Second, the
computational burden of MPF is analyzed in detail. Fi-
nally, quantization effects in the measurement relation
are described.

Variance Reduction

The variance of a function or estimator g(U, V ), depend-
ing on two random variables, U and V can be written
as

Var (g(U, V )) = Var (E (g(U, V )|V ))
+ E (Var (g(U, V )|V )) , (10)



where E (·) is the expected value. Hence, in principle,
the conditional inequality

Var
(
E

(
g(xl

t, X
n
t )|Xn

t

)) ≤ Var
(
g(xl

t, X
n
t )

)
, (11)

can be employed. This is sometimes referred to as Rao-
Blackwellization, see e.g., [38]. This is the basic part that
improves performance using the marginalization idea. In
the MPF setup, U and V are represented by the linear
and nonlinear states.

Computational Complexity

In discussing the use of the MPF it is sometimes better to
partition the state vector into one part that is estimated
using the particle filter, xp

t ∈ R
p, and one part that is

estimated using the Kalman filter, xk
t ∈ R

k. Obviously
all the nonlinear states, xn

t , are included in xp
t . However,

we could also choose to include some of the linear states
there as well. Under the assumption of linear dynamics,
this notation allows us to write (3) according to

xp
t+1 = Ap

t x
p
t + Ak

t xk
t + wp

t , wp
t ∈ N(0, Qp

t ), (12a)

xk
t+1 = F p

t xp
t + F k

t xk
t + wk

t , wk
t ∈ N(0, Qk

t ), (12b)

yt = ht(x
p
t ) + Ctx

k
t + et, et ∈ N(0, Rt). (12c)

First, the case Ct = 0 is discussed. For instance, the
first instruction Pt|t(Ak

t )T corresponds to multiplying
Pt|t ∈ R

k×k with (Ak
t )T ∈ R

k×p, which requires pk2

multiplications and (k − 1)kp additions [21]. The total
equivalent flop (EF)1 complexity is derived in [32],

C(p,k, N) ≈ 4pk2 + 8kp2 +
4
3
p3 + 5k3 − 5kp + 2p2+

(6kp + 4p2 + 2k2 + p − k + pc3 + c1 + c2)N. (13)

Here, the coefficient c1 has been used for the calcula-
tion of the Gaussian likelihood, c2 for the resampling
and c3 for the random number complexity. Note that,
when Ct = 0 the same covariance matrix is used for all
Kalman filters, which significantly reduce the computa-
tional complexity.

By requiring C(p + k, 0, NPF) = C(p, k, N(k)), where NPF

corresponds to the number of particles used in the stan-
dard particle filter we can solve for N(k). This gives the
number of particles, N(k), that can be used by the MPF
in order to obtain the same computational complexity
as if the standard particle filter had been used for all
states. In Figure 2 the ratio N(k)/NPF is plotted for sys-
tems with m = 3, . . . , 9 states. Hence, using Figure 2 it is
possible to directly find out how much there is to gain in
using the MPF from a computational complexity point
of view. The figure also shows that the computational
complexity is always reduced when the MPF can be used
instead of the standard particle filter. Furthermore, as

1The EF complexity for an operation is defined as the number of flops that
result in the same computational time as the operation.
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Figure 2. RatioN(k)/NPF for systems withm = 3, . . . , 9
states andCt = 0, n = 2 is shown. It is apparent that the
MPF can use more particles for a given computational com-
plexity, when compared to the standard PF.

previously mentioned, the quality of the estimates will
improve or remain the same when the MPF is used [14].

Second, if Ct 6= 0, the Riccati recursions have to be eval-
uated separately for each particle. This results in a sig-
nificantly increased computational complexity. Hence,
different covariance matrices have to be used for each
Kalman filter, implying that (13) has to be modified.
Approximately the complexity is given by [32],

C(p, k, N) ≈ (6kp + 4p2 + 2k2 + p − k + pc3 + c1 + c2+

4pk2 + 8kp2 +
4
3
p3 + 5k3 − 5kp + 2p2 + k3)N. (14)

In Figure 3 the ratio N(k)/NPF is plotted for systems
with m = 3, . . . , 9 states. For systems with few states the
MPF is more efficient than the standard particle filter.
However, for systems with more states, where most of
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state dimension and many marginalized states the standard PF
can use more particles than the MPF.



the states are marginalized the standard particle filter
becomes more efficient than the MPF. This is due to the
Riccati recursions mentioned above.

Quantization Effects

When implementing filters or estimators in hardware,
the calculations can usually be performed with sufficient
precision. However, the sensor or measurement relation
may not always have sufficient resolution. This is re-
ferred as measurement quantization, and is a common
problem in for instance telecommunication, where the
channel bandwidth is limited. To be able to use lim-
ited communication resources, severe quantization may
be needed. Also for large sensor networks applications,
many very simple and cheap sensors with large quanti-
zation effects are used. Furthermore, many sensors or
signal processing devices are naturally quantized, for in-
stance range measurements in a pulsed radar or pixelized
information from a vision system.

Here we will discuss quantization using a multi-level uni-
form quantization. Consider the problem of estimating x
from the quantized measurements y = Qm (x + e). The
uniform quantization discussed here is implemented as
the midriser quantizer, as described in [34]. If not satu-
rated it is given as

Qm (z) = ∆
⌊ z

∆

⌋
+

∆
2

. (15)

Here, Qm (·) denotes the nonlinear quantization map-
ping with m levels, all with equal quantization height
∆. The b·c operator rounds downwards to the nearest
integer. To keep a unified notation with the sign quan-
tization Q1 (z) = sign(z), the midriser convention will
be used, so y ∈ {−m∆ + ∆

2 , . . . , (m − 1)∆ + ∆
2 }, with

∆ = 2−b, using b bits, 2m = 2b levels and 2b − 1 thresh-
olds. The sign quantization corresponds to b = 1, m = 1
and ∆ = 2 in this notation.

In [29], this static problem is analyzed using the maxi-
mum likelihood(ML) estimator. The performance is also
investigated using the Fisher information or Cramér-Rao
lower bound (CRLB). The resulting likelihood function
can also be used in the particle filter, allowing for a sta-
tistically correct treatment of measurement quantization
effects in dynamic systems. If the model is in accordance
with the requirement of the MPF algorithm, it is possible
to handle the nonlinearity introduced by the quantiza-
tion in the measurement equation in the MPF. In [29]
different quantizers are studied. Below, only the sim-
plest sign quantizer, yt = Q1 (xt + et), et ∈ N(0, σ2), is
discussed. The probability function for y can be calcu-
lated using

p(y = −1|x) = Prob(x + e < 0) = Prob(e < −x)

=
∫ −x/σ

−∞

1√
2π

exp− t2
2 dt

M= Φ (−x/σ) . (16)

Similarly,

p(y = +1|x) = Prob(x + e ≥ 0) = 1 − Φ (−x/σ) . (17)

Hence, the discrete likelihood needed in the PF/MPF,
in (5), can be written as

p(y|x) = Φ (−x/σ) δ(y + 1)
+ (1 − Φ (−x/σ)) δ(y − 1), (18)

where

δ(i) =

{
1, i = 0,

0, i 6= 0.
(19)

The calculated likelihood can be used in the PF/MPF to
incorporate the quantization effect in a statistically cor-
rect way. Similar for multi-level quantization. See [17]
for an application of a particle smoother to handle the
quantization problem.

Example 1 (Filtering – sign quantizer) Consider the fol-
lowing scalar system with a sign quantizer

xt+1 = Ftxt + wt, x0 = 0,

yt = Q1 (xt + et),

where

Ft = 0.95, Var (wt) = 0.102, Var (et) = 0.582.

In Figure 4 the RMSE for the KF and the PF are presented us-
ing 200 Monte Carlo simulations. The measurement noise in
the KF was adjusted in the filter to handle the quantization by
adding an extra variance of∆2/12. The PF used the correct
sign quantized likelihood using1000 particles. The theoret-
ical Cramér-Rao lower bound is also given in Figure 4. For
details, see [29].
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Figure 4. RMSE for the PF and KF for a linear Gaussian sys-
tem with a sign quantizer in the measurement relation, com-
pared to the Cram´er-Rao lower bound .



Note that for the example presented only one state was
used, hence no marginalization was applied. If the prob-
lem is formulated with linear-Gaussian dynamics and
quantization in the measurement, these nonlinear states
can be handled by the PF and the rest by the KF in the
MPF framework.

4. INTRODUCING THE APPLICATIONS

As discussed in the previous section, the different esti-
mation methods handle nonlinearities in different ways.
In the applications studied in this paper a framework
consisting of linear-Gaussian system dynamics and non-
linear measurements is considered. Basically, two differ-
ent areas are studied: GPS-free positioning, where the
aim is to estimate the own platform’s position and tar-
get tracking, where the state of an unknown, observed
target is estimated from measurements. These applica-
tions also represent typical examples where sensor fusion
techniques are important. The MPF provides an efficient
way to incorporate both linear and nonlinear measure-
ment relations. Both results from simulated data and
experimental data are presented. More precisely, the
studied applications are:

Positioning applications:
• Underwater terrain-aided positioning:Depth infor-

mation from a geographical information system (GIS)
database is used together with sonar depth measure-
ments to improve positioning. A demonstrator system
has been developed in co-operation with Saab Under-
water Systems.
• Aircraft terrain-aided positioning: A height GIS

database is used together with radar height measure-
ments to improve the position, compared to only iner-
tial navigation system (INS) measurements. A demon-
strator system has been developed by Saab Aerospace.
• Automotive map-aided positioning:Utilizing wheel

speed sensors from the ABS and information from a
street-map database, car positioning independent of
GPS is possible. This is available as a commercial prod-
uct from NIRA Dynamics.
Target tracking applications:
• Automotive target tracking: Intelligent automotive

systems require information about the host vehicle and
its surroundings (lane geometry and the position of
surrounding vehicles). Using vision and radar mea-
surements, the corresponding estimation problem is ad-
dressed. A demonstrator vehicle has been developed in
co-operation with Volvo Car Corporation.
• Bearings-only target tracking:When passive sensors,

such as an infrared (IR) sensor are used, we can only
measure the direction, bearing, to the unknown target.
However, by appropriate maneuvering, the range and
range rate can be estimated. This is studied in an air-
to-sea application, i.e., an aircraft tracking a ship.
• Radar target tracking: A radar sensor measures at

least range and direction (azimuth, elevation) to the

target. In this particular application the computational
aspects of the MPF are studied in detail.

The dynamic models employed in the applications all
have a linear motion model and a nonlinear measure-
ment model. By partitioning the state vector xt into two
parts, one for the linear state variables xl

t and one for
the nonlinear state variables xn

t the model fits the MPF
framework perfectly. For example, consider Cartesian
position coordinates (X, Y, Z) and introduce the state
vector xt =

(
Xt Yt Zt Ẋt Ẏt Żt

)T
, with position

and velocity states. In target tracking the relative dis-
tance between the target and the observation platform is
often used as state. Furthermore, the first order deriva-
tives of this distance, relative velocity, are included in
the state vector. The resulting motion model is given by

xt+1 = Ftxt + Gtwt, (20a)

where

Ft =
(

I3 TI3

O3 I3

)
, Gt =

(
T 2

2 I3

TI3

)
, (20b)

Here, I3 denotes the 3 × 3 unity matrix and O3 denotes
the 3 × 3 null matrix. The measurement relation is in
the sequel treated as a nonlinear relation of the state,
subject to additive measurement noise,

yt = h(xn
t ) + et. (20c)

It can for instance represent range and bearing measure-
ment from a radar, height or depth measurements for
terrain navigation applications. In all these situations
it is a function of the position states. For the example
above, xn

t =
(
Xt Yt Zt

)T and xl
t =

(
Ẋt Ẏt Żt

)T
.

Another common state variable is the heading or course.

For a more thorough discussion regarding models for po-
sitioning, navigation, and tracking applications within
the present setting we refer to [23]. Interesting to note
is also that common phenomena such as bias or scale-
factor estimation can often be introduced in the linear-
Gaussian sub-system. Hence, the MPF provides an effi-
cient way to handle such problems.

5. POSITIONING APPLICATIONS

This section is concerned with position estimation, where
information from geographical information systems is
used together with different distance measuring equipment
(DME). First, an underwater positioning method based
on sonar depth measurements is presented. Second, the
same idea is employed to solve the aircraft positioning
problem using height measurements from a radar al-
timeter. Finally, the automotive positioning problem is
briefly presented.

Underwater Terrain-aided Positioning

In this section we describe an underwaterpositioning
method based DME information from sonar depth read-



ings and a comparison with a depth database to find the
position of the host vessel. It is based on the preliminary
studies in [27, 31], together with [28].

Using a sonar sensor and a differential GPS(DGPS), an
underwater depth map was constructed, illustrated in
Figure 5, together with the platform at depth dt = 0
and with sonar depth measurements rt. After the data
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Figure 5. Underwater positioning using sonar depth mea-
surements and a true terrain database. The sonar depth isdt,
and the sonar indicates the relative range to the sea floorrt.
The database givesh(xt).

for map generation was collected, an independent test
run in the map region was performed, in order to collect
measurements to test the PF/MPF map-aided position-
ing system. In [27] a coordinated turn model extended
with bias terms was used. In order to apply the MPF
a Taylor expansion was calculated, enabling for a model
approximately in the correct form. The estimation per-
formance reported for the MPF was similar to the PF,
but to a much smaller computational burden. In order
to fit the linear-Gaussian dynamics framework, we will
only consider the model from [28]. The number of par-
ticles used initially was N = 50000, but quickly reduced
to N = 10000, when the particle cloud had most of its
particles clustered around the true position. The result
is presented in Figure 6, where the parametric CRLB
is calculated using an extended Kalman filter, evaluated
around the true trajectory.

Aircraft Terrain-Aided Positioning

The Swedish fighter aircraft Gripen is equipped with an
accurate radar altimeter as DME sensor and a terrain
elevation database, similar to the discussion in the pre-
vious section. These measurements are used together
with an inertial navigation system(INS) in order to solve
the aircraft positioning problem. This problem has pre-
viously been studied, see e.g., [1, 6, 42]. The overall
structure of the model used in this application is in the
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Figure 6. The position RMSE from the PF (solid line) using
the experimental test data together with the parametric CRLB
(dashed line) as the EKF solution around the true trajectory.
The nominal speed is between0.9–1.5m/s. Note that only
one experimental test run was available for the RMSE calcu-
lation.

form (12), with the following measurement equation,

yt = h

((
Xt

Yt

)
+ xn

t

)
+ et (21)

where Xt and Yt denotes the error in latitude and longi-
tude respectively. The feasibility study performed used a
sub-model with 9 states. This sub-model contains all in-
gredients of the total system and the principle is scalable
to the full model with 27 states. For details regarding
the model we refer to [35] and the references therein.

The measurement equation (21) is highly nonlinear, due
to the use of the terrain elevation database. This implies
that the EKF cannot be used. Furthermore, the high
dimension of the problem prevents the use of the par-
ticle filter. However, the model structure fits perfectly
into the marginalized particle filter framework. This ap-
proach has been evaluated using authentic flight data
with promising results, see Figure 7 where we provide
a plot of the error in horizontal position for a different
number of particles. From this plot it is clear that the
main difference in performance is in the transient phase,
in the stationary phase the performance is less sensitive
to the number of particles used. Hence, the idea of us-
ing more particles in the transient phase suggests itself.
This idea was used, for the same reason, in the previous
section as well. For a more detailed account on these
experiments, see [19, 35, 40].

Automotive Map-Aided Positioning

The idea is to use the information available from the
wheel speed sensors together with digital map informa-
tion to estimate the position of the car, without the need
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Figure 7. Horizontal position error as a function of time
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for GPS information. The resulting problem is nonlinear
and fits into the framework provided by the particle filter
and the marginalized particle filter. For further details
on this approach, see e.g., [18, 24, 43].

6. TARGET TRACKING APPLICATIONS

In this section three target tracking applications are
studied. First, an automotive target tracking problem
is discussed. This is followed by a bearings-only esti-
mation problem. Finally, a radar target tracking appli-
cation highlight different computational aspects of the
marginalized particle filter.

Automotive Target Tracking

This application deals with the problem of estimating
the vehicle surroundings (lane geometry and the position
of other vehicles), which is required by advanced auto-
motive safety systems, such as adaptive cruise control,
collision avoidance and lane guidance. For a thorough
treatment of this application, see [16].

The main difference between tracking in automotive ap-
plications and tracking in other applications, such as air
traffic control or naval tracking, is that in automotive
tracking it can be assumed that the motion of the tracked
objects, with a certain probability, is constrained to the
road. In order to be able to use and benefit from this
fact we make use of a curved coordinate system which
is attached to and follows the road [15]. The measure-
ments are provided by a vision system and a radar sys-
tem. The vision system provides measurements of the
road curvature, the yaw angle and the distance to the
right and left lane markings. Furthermore, the radar
provides range measurements to the surrounding vehi-
cles. The final model, thoroughly derived in [15, 16] is in
the form (12), which opens up for using the marginalized
particle filter. The nonlinear part of the measurement

equation for a given target i is

yt = h(X i
t , Y

i
t ) + et, (22)

where h(·) described the geometric transformation from
a curved, road-aligned coordinate system to a Cartesian
coordinate system, in which the measurements are regis-
tered. For details, see [16]. In evaluating the estimation
performance we study the estimate of the road curvature.
It is crucial to several automotive applications, such as
adaptive cruise control systems, collision warning or any
system that relies on assigning leading vehicles to the
correct lane. For a leading vehicle 100 m in front of the
host vehicle, a small curvature error of, say 0.5 · 10−3

m−1 will result in an error of 2.5 m in the lateral direc-
tion [16]. This is enough to assign the leading vehicle to
the wrong lane.

The data set used was collected in the northern parts of
Sweden during winter. This implies that the visibility is
low, which in turn implies that the measurements from
the vision system definitely have to be supported by the
radar measurements to obtain a solid overall estimate.
In Figure 8 we provide the absolute curvature estima-
tion error using the MPF and the EKF. Furthermore,
the raw vision measurement of the curvature is also in-
cluded. From Figure 8 it is clear that both filters improve
the quality of the curvature estimate substantially. How-
ever, the performance of the MPF is only slightly better
than the EKF. Hence, in this particular setting is might
be hard to motivate using the MPF, due to its higher
computational complexity. If we were to use more ad-
vanced measurement equations, such as those based on
map information the MPF might be the only option.
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Bearings-Only Target Tracking

In this section, an air-to-sea bearings-only application
is studied. Assume that the ship (target) and the air-
craft (tracking platform) are described by the same type
of linear dynamics as in Section 4 for the position and
the velocity, save for the fact the relative quantities have
been used as states. For bearings-only applications the
measurement relation for the azimuth angle, ϕ, and ele-
vation angle, θ, is given as

yt = h(xt) + et =
(

ϕt

θt

)
+ et

=


 arctan (Yt/Xt)

arctan
(

−Zt√
X2

t +Y 2
t

)
 + et, (23)

where Xt, Yt, and Zt denote the Cartesian components
of the relative position.

In a simulation study the range estimation problem us-
ing an infrared (IR) sensor is considered. The PF and
MPF are compared to a bank of EKFs, using the range
parameterized extended Kalman filter(RPEKF) method,
[5, 36]. The relative distance and the aircraft trajectory
are illustrated in Figure 9. The target model used in the
simulations assumes a small constant velocity. The ter-
rain database has a resolution of 50m. In Figure 9 the
scenario is presented together with the marginal posi-
tion densities in each direction, p(X) and p(Y ), for time
t = 1 s, using terrain constraints. In Figure 10 the posi-
tion RMSE is presented for the PF and the MPF with
and without the map constraints, and for the RPEKF.
Obviously the incorporation of constraints improves the
performance. The different particle filters have basically
the same performance for this scenario. For details re-
garding the simulation study, the reader is referred to
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[30], where similar bearings-only applications are de-
scribed in detail, both for simulated data and for ex-
perimental data. For instance, experimental data from
a passive sonar system on a torpedo is used for bearings-
only tracking.

Radar Target Tracking

In this section, the radar target tracking application from
[32] is highlighted. The general method for analyzing the
computational complexity presented in [32] and briefly
reviewed in Section 3, is illustrated using a common tar-
get tracking model. The problem of estimating the po-
sition and velocity of an aircraft is studied using the dy-
namics from Section 4, and the following measurement
equation, which gives the range and azimuth from the
radar system,

yt = h(xt) + et =
( √

X2
t + Y 2

t

arctan (Yt/Xt)

)
+ et, (24)

where Cov(w) = diag(1 1 1 1 0.01 0.01), Cov(e) =
diag(100 10−6) and the state vector is xt =
(X Y Ẋ Ẏ Ẍ Ÿ )T , i.e., position, velocity and accel-
eration.

The model has two nonlinear state variables and four
linear state variables. Two cases are now studied, the
full PF, where all states are estimated using the PF and
the completely marginalized PF, where all linear states
are marginalized out and estimated using the KF. If we
want to compare the two approaches under the assump-
tion that they use the same computational resources, i.e.,
C(6, 0, NPF ) = C(2, 4, NMPF ), we obtain

NPF =
(

1 − 4c3 + 56
c1 + c2 + 6c3 + 150

)
︸ ︷︷ ︸

<1

NMPF. (25)

From (25) it is clear that for a given computational com-
plexity more particles can be used in the MPF than in



the standard PF. This is verified experimentally in [32].

Using a constant computational complexity the number
of particles that can be used is computed. The study is
performed by first running the full PF and measure the
time consumed by the algorithm. An Monte Carlo sim-
ulation, using N = 2000 particles, is performed in order
to obtain a stable estimate of the time consumed by the
algorithm. In Table 6 the number of particles (N), the
total RMSE from 100 Monte Carlo simulations, and the
simulation times are shown for the different marginal-
ization cases. From Table 6 it is clear that the different

Table 1. Results from the simulation, using a constant
computational complexity. If a certain state variable is

estimated using the PF this is indicated with a P and if the
KF is used this is indicated with a K.

PPPPPP PPKKPP PPPPKK PPKKKK

N 2000 2029 1974 2574
RMSE pos 7.10 5.81 5.76 5.60
RMSE vel 3.62 3.27 3.28 3.21
RMSE acc 0.52 0.47 0.45 0.44
Time 0.59 0.58 0.57 0.60

MPFs can use more particles for a given time, which is in
perfect correspondence with the theoretical result given
in (25).

Let us now discuss what happens if a constant veloc-
ity RMSE is used. First the velocity RMSE for the
full PF is found using an Monte Carlo simulation. This
value is then used as a target function in the search for
the number of particles needed by the different MPFs.
Table 2 clearly indicates that the MPF can obtain the

Table 2. Results using a constant velocity RMSE.

PPPPPP PPKKPP PPPPKK PPKKKK

N 2393 864 943 264
RMSE pos 7.07 6.98 7.12 7.27
RMSE vel 3.58 3.60 3.65 3.61
RMSE acc 0.50 0.51 0.49 0.48
Time 0.73 0.26 0.28 0.10

same RMSE using fewer particles. The result is that
using full marginalization only requires 14% of the com-
putational resources as compared to the standard PF in
this example.

7. CONCLUDING DISCUSSION

In this paper several positioning and target tracking ap-
plications are solved using the marginalized particle fil-
ter. In the framework employed the dynamic motion
models are linear, subject to Gaussian noise and the
measurement models are nonlinear. This important spe-
cial case of the general MPF allows for an efficient im-
plementation.

The computational complexity of the MPF algorithm is

thoroughly analyzed for a radar application, but because
of the similarities in the studied models in the applica-
tions, these results are approximately valid for them as
well. The radar application also illustrates another im-
portant property of the MPF, namely that the quality
of the estimates is enhanced compared to the standard
particle filter.

Another unifying feature among the various applications
is that they all use measurements from various different
sources, implying that we are indeed solving the sensor
fusionproblem using the MPF. Terrain-aided positioning
problems are quite hard to handle using methods based
on linearization, due to the fact that it is very hard to
obtain a good linear description of the map database,
used to form the measurement equations. Hence, the
MPF is a very powerful tool for these applications. We
saw that the computational complexity can be reduced
substantially by decreasing the number of particles when
the stationary phase is reached. This is a common idea,
employed in all the applications, since more computa-
tional resources should be used in the transient phase.

Common for the measurement relation is that nonlin-
earities and non-Gaussian noise is handled in a statis-
tically optimal way, by the particle filter. Particularly,
if the measurement relation is subject to severe quanti-
zation this is important to handle. Quantization arises
naturally in many applications, but typically in sensor
networks where sensor fusion is applied based on infor-
mation from a large number of very cheap sensors, this
can be a major issue.
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