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Abstract:
In this paper we present a solution to the simultaneous localisation and mapping (SLAM)
problem using a camera and inertial sensors. Our approach is based on the maximum a
posteriori (MAP) estimate of the complete SLAM problem. The resulting problem is posed
in a nonlinear least-squares framework which we solve with the Gauss-Newton method. The
proposed algorithm is evaluated on experimental data using a sensor platform mounted on an
industrial robot. In this way, accurate ground truth is available, and the results are encouraging.
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1. INTRODUCTION

In this paper we present an optimisation based solution
to the simultaneous localisation and mapping (SLAM)
problem formulated as nonlinear least-squares, and solved
with the Gauss-Newton method. The method aims at
providing high quality SLAM estimates which could e.g.,
be used as priors for computing detailed terrain maps.

SLAM is the problem of estimating a map of the surround-
ing environment from a moving platform, while simultane-
ously localising the platform. These estimation problems
usually involve nonlinear dynamics and nonlinear measure-
ments of a high dimensional state space. In Dellaert and
Kaess [2006] a nonlinear least-squares approach to SLAM,

called square root Smoothing and Mapping (
√

SAM) is
presented. We extend this approach by considering a full
6 DOF platform, 3 DOF landmarks, inputs using inertial
sensors and camera measurements. The resulting algo-
rithm is evaluated on experimental data from a structured
indoor environment and compared with ground truth data.

For more than twenty years SLAM has been a popular
field of research and is considered an important enabler for
autonomous robotics. An excellent introduction to SLAM
is given in the two part tutorial by Durrant-Whyte and
Bailey [2006], Bailey and Durrant-Whyte [2006] and for a
thorough overview of visual SLAM Chli [2009] is highly
recommended. In the seminal work of Smith et al. [1990]
the idea of a stochastic map was presented and was first
used in Moutarlier and Chatila [1989], where the estimate
is computed with an Extended Kalman Filter (EKF).
There are by now quite a few examples of successful
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EKF SLAM implementations, see e.g., Guviant and Nebot
[2001], Leonard et al. [2000]. Another popular approach
is the FastSLAM method [Montemerlo et al., 2002, 2003]
which uses particle filters. These are known to handle
nonlinearities very well. Both EKF SLAM and FastSLAM
suffer from inconsistencies due to poor data association,
linearisation errors [Bailey et al., 2006a] and particle
depletion [Bailey et al., 2006b].

Some impressive work where the SLAM problem is solved
solely with cameras can be found in Davison et al. [2007],
Davison [2003], Eade [2008], Klein and Murray [2007].
The camera only SLAM methods have many similarities
with bundle adjustment techniques, [Hartley and Zisser-
man, 2004, Triggs et al., 2000], and the stochastic map
estimation problem can be seen as performing structure
from motion estimation [Fitzgibbon and Zisserman, 1998,
Taylor et al., 1991]. Without any other sensors measuring
the platform dynamics, the image frame rate and the
visual information contents in the environment are limiting
factors for the ego motion estimation, and hence the map
quality.

Recent years’ increase in computational power has made
smoothing an attractive option to filtering. One of the first
SLAM related publications, where the trajectory is not
filtered out to a single estimate is Eustice et al. [2006],
where the whole time history is estimated with a so called
delayed state information filter. Other, more optimisation
like approaches are Dellaert and Kaess [2006], Kaess et al.
[2008], Bibby and Reid [2007], Bryson et al. [2009], which
all optimise over the whole trajectory and a feature based
map.

2. PROBLEM FORMULATION

We assume that the dynamic model and the measurements
are on the following form



xt = f(xt−1, ut) +Bwwt︸ ︷︷ ︸
w̃t

, (1a)

lt = lt−1, (1b)

ytk = h(xtk , ltk) + etk , (1c)

where xt and lt are vehicle and landmark states, respec-
tively, and the inertial measurements can be modelled as
inputs ut. The meaning of ytk is a measurement relative
to landmark ltk at time tk, and this is because the mea-
surements and the dynamic model deliver data in different
rates. If we assume that all the measurements and the
inputs for t = {0 : N} and k = {1 : K} (K � N)
are available and the noise is independent and identically
distributed (i.i.d.), then the joint probability density of (1)
is

p(x0:N , lN |y1:K , u1:N ) =

p(x0)

N∏
t=1

pw̃t(xt|xt−1, ut)

K∏
k=1

petk (ytk |xtk , ltk). (2)

Note that the map, lN , is static and the estimate is
given for the last time step only. Furthermore, the initial
platform state x0 is fixed to the origin without uncertainty.
This is a standard SLAM approach and x0 is therefore
treated as a constant. The smoothed maximum a posteriori
(MAP) estimate of x0:N and lN is then

[x∗0:N , l
∗
N ] = arg max

x0:N , lN

p(x0:N , lN |yt1:tK , u1:N ) =

arg min
x0:N , lN

− log p(x0:N , lN |yt1:tK , u1:N ). (3)

If the noise terms w̃t and etk are assumed to be Gaussian

and white, i.e., etk ∼ N (0, Rtk) and w̃t ∼ N (0, Q̃t), (3)
then becomes

[x∗0:N , l
∗
N ] = arg min

x0:N , lN

N∑
t=1

||xt − f(xt−1, ut)||2
Q̃−1

t

+

K∑
k=1

||ytk − h(xtk , ltk)||2
R−1

tk

, (4)

which is a nonlinear least-squares formulation.

3. MODELS

Before we introduce the details of the dynamic model some
coordinate frame definitions are necessary:

• Body coordinate frame (b), moving with the sensor
and with origin fixed in the IMU’s inertial centre.
• Camera coordinate frame (c), moving with the sensor

and with origin fixed in the camera’s optical centre.
• Earth coordinate frame (e), fixed in the world with

its origin arbitrary positioned.

When the coordinate frame is omitted from the states it
is assumed that they are expressed in the earth frame e.

3.1 Dynamics

The dynamic model used in this application has 10 states
consisting of the position and velocity of the b frame
expressed in the e frame, pe = [px py pz]

T and ve =
[vx vy vz]

T , respectively. The orientation is described
using a unit quaternion qbe = [q0 q1 q2 q3]T defining
the orientation of the b frame expressed in the e frame.

The IMU measurements are treated as inputs, reducing
the state dimension needed, and we denote the specific
force uba = [abx aby abz]

T and denote the angular rate

ubω = [ωbx ωby ω
b
z]
T . The dynamics of the sensor in (1a)

is then petvet
qbet


︸ ︷︷ ︸
xt

=

[
I3 TI3 0
0 I3 0
0 0 I4

]pet−1
vet−1

qbet−1

+

T 2

2 I3 0
TI3 0

0 T
2

[R(qbet−1)Tuba,t + ge

S(ubω,t)q
be
t−1

]
︸ ︷︷ ︸

f(xt−1,ut)

+

T 2

2 I3 0
TI3 0

0 T
2 S̃(qbet−1)


︸ ︷︷ ︸

Bw(xt−1)

[
wba,t
weω,t

]
︸ ︷︷ ︸
wt

, (5)

where

wba,t ∼ N (0, Qa), Qa = σaI3, (6a)

wew,t ∼ N (0, Qw), Qw = σwI3, (6b)

S(ubω,t) =

 0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

 , S̃(qbet ) =

−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

 ,
(6c)

where R(qbet ) ∈ SO(3) is the rotation matrix parametrised
using the unit quaternion and R(qbet )Tuba,t + ge is the
specific force input expressed in the e frame, where
ge = [0 0 − 9.81]T compensates for the earth gravitational
field.

3.2 Landmark State Parametrisation

Landmark states are encoded in the Inverse Depth
Parametrisation (IDP) [Civera et al., 2008]. The first three
states, xe, ye and ze, represent the 3D position of the cam-
era when the landmark was first observed. The last three
states describe a vector to the landmark in spherical co-
ordinates parametrised with azimuthal angle ϕe, elevation
angle θe and inverse distance ρe, giving le = [x y z θ φ ρ]T .
The angles ϕe, θe and the inverse distance ρe are expressed
in the right handed earth coordinate frame e with ze-axis
pointing upwards. This means that a landmark l, with
earth fixed coordinates [xel y

e
l z

e
l ]
T is parametrised as[

xel
yel
zel

]
=

[
xe

ye

ze

]
+

1

ρe
m(ϕe, θe), (7a)

m(ϕe, θe) =

[
cosϕe sin θe

sinϕe sin θe

cos θe

]
. (7b)

Since the camera is calibrated, as in Zhang [2000] using
the toolbox [Bouguet, 2010], the landmark states can
be introduced using normalised pixel coordinates [u v]T

according to



pe =

[
xe

ye

ze

]
, (8a)

ge =

[
gex
gey
gez

]
= R(qbet )TR(qbc)

[
u
v
1

]
, (8b)

ϕe = arctan 2(gey, g
e
x), (8c)

θe = arctan 2
(
||[gex gey]T ||2, gez

)
, (8d)

ρe =
1

de0
. (8e)

Here, qbc is the unit quaternion describing the fixed ro-
tation from the camera frame to the body frame. Fur-
thermore, pe is the camera position when the landmark
is observed and d0 is the initial depth for the landmark.
Finally, θ = arctan 2(·) is the four-quadrant arc-tangent,
θ ∈ [−π, π]. The complete landmark vector is of the
dimension 6×nlandmarks and nlandmarks will vary depending
on when new landmarks are initiated.

3.3 Camera Measurements

The measurements are sub-pixel coordinates in the images
given by the SIFT feature extractor [Lowe, 1999]. The
dimension of the measurement vector ytk is 2×naf, where
naf denotes the number of associated features. The mea-
surements are expressed in normalised pixel coordinates.
The camera measurement equation relating states and
measurements has the form

ytk = h(xtk , ltk)︸ ︷︷ ︸
yctk

+etk , (9)

where

etk ∼ N (0, Rtk), Rtk = σfeaturesI2×naf
. (10)

Using the IDP, (7) and (8), for a single landmark j
and omitting time dependency, the measurement (9) is
calculated as

lcj =

lcx,jlcy,j
lcz,j

 =

R(qbc)TR(qbe)
(
ρej
(
pe − pej −R(qbe)T rbc

)
+m(ϕj , θj)

)
,

(11a)

ycj =
1

lcz,j

[
lcx,j
lcy,j

]
, (11b)

where pej and ρej are defined in (8a) and (8e), respectively.

The translation rbc and orientation R(qbc) defines the
constant relative pose between the camera and the IMU.
The parameters in rbc and R(qbc) were estimated in the
previous work by Hol et al. [2010].

4. SOLUTION

The proposed solution starts with an initialisation of the
states using EKF SLAM and the initial states are then
smoothed using nonlinear least squares.

4.1 Initialisation

The nonlinear least-squares algorithm needs an initial
estimate x00:N , l

0
N , which is obtained using EKF SLAM.

The time update is performed with the model (5) in a
standard EKF, for details, see e.g., Kailath et al. [2000].
The the landmark states (1b) are stationary and will
therefore only be corrected in the measurement update.

The measurement update needs some further explanation.
Each time an image is available (which in our experiments
is 8 times slower than the specific force and the angular
rate inputs) a measurement update is made. The measure-
ment update needs an association between the features ex-
tracted from the current image and the landmarks present
in the state vector. The associations computed during EKF
SLAM are found in the following way; first, all landmarks
are projected into the image according to (9) and the most
probable landmarks are chosen as the nearest neighbours
inside a predefined region. Second, the SIFT feature de-
scriptors for the landmarks and features inside the region
are matched. In this way a data association sequence is
created for each image, relating the measurements and
the landmarks in the state vector. To enhance the feature
tracking we discard unstable features (i.e., those that are
only measured once or twice) and features are proclaimed
usable only if they are found at least three times.

4.2 Nonlinear Least-Squares Smoothing

The nonlinear problem (4) is in our approach solved using
the Gauss-Newton method, i.e., at each iteration we solve
the linearised version of the problem.

In order to formulate the linearised least-squares smooth-
ing problem for our specific setup we first need some
definitions:

Ft ,
∂f(x, u)

∂x

∣∣∣∣
(x,u)=(x0

t−1
,ut)

, (12)

is the Jacobian of the motion model and

Hj
tk

,
∂h(x, l)

∂x

∣∣∣∣
(x,l)=(x0

tk
,l0
j
)

, (13)

is the Jacobian of the measurement k at time tk with
respect to the vehicle states. The IDP gives a special
structure to the equations since the measurements of the
features are related to the pose where the features where
initialised. Therefore, the landmark Jacobian is split into
two parts. The first part is

Jjxtk
,
∂h(x, l)

∂x

∣∣∣∣
(x,l)=(x0

tk
,l0
j
)

, (14)

which is the Jacobian of measurement k at time tk, with
respect to the position where landmark j was initialised.
The second part is the Jacobian of measurement k at time
tk of the states φj , θj and ρj of landmark j

Jjtk ,
∂h(x, l)

∂l

∣∣∣∣
(x,l)=(x0

tk
,l0
j
)

. (15)

From the initialisation, Section 4.1, a trajectory x00:N and
a landmark l0N estimate is given and is therefor treated as
a constant. The linearised process model at time t is then

x0t + δxt = Ft(x
0
t−1 + δxt−1) +But +Bw(x0t−1)wt. (16)

The linearised measurement equations are given by

yjtk = h(x0tk , l
0
j ) +Hj

tk
δxtk + Jjxtk

δxtk + Jjtkδlj + ejtk . (17)



The linearised least-squares problem for the prediction and
measurement errors is then

[δx∗t , δl
∗
j ] = arg min

δxt,δlj

N∑
t=1

||Ftδxt−1 − Iδxt − at||2
Q̃−1

t

+

K∑
k=1

||Hj
tk
δxtk + Jjxtk

δxtk + Jjtkδlj − c
j
tk
||2
R−1

tk

(18)

where at = x0t − Ftx0t−1 − But and cjtk = yjtk − h(x0tk , l
0
j ).

Here at and cjtk are the prediction errors of the linearised

dynamics around x0t and the innovations, respectively.
The stacked version of the problem (18) can be solved
iteratively according to

ηi+1 = arg min
η

||A(ηi)η − b(ηi)||22, η0 = 0, (19)

where we define η = [δxt, δlj ], and A(η) and b(η) is the
matrix part and the vector part of (18), respectively.

The structure of the A matrix is perhaps best explained
using an example:

A(η) =

[
A11 0
A21 A22

]
=

−I
F2 −I

F3
. . .
. . . −I

F6
. . .
. . . −I

F10
. . .
. . . −I

J1
x5

H1
5 J1

5

J2
x5

H2
5 J2

5

J2
x9

H2
9 J2

9

J1
x13

H1
13 J

1
13



, (20)

tk = 1 : Two landmarks are seen for the first time giving
the landmarks’ initialisation positions, i.e., the
columns where the Jacobians (14) are placed.

tk = 5 : The second camera measurement arrives, land-
marks 1 and 2 are observed and the first two
block rows of A21 and A22 are added.

tk = 9 : Camera measurement 3 arrives, landmark 2 is
observed and the third block row of A21 and
A22 is added.

tk = 13 : Camera measurement 4 arrives, landmark 1 is
observed and the fourth block row of A21 and
A22 is added.

A single iteration of the nonlinear least-squares smoothing
algorithm can be summarised in pseudo code as seen in
Algorithm 1.

The least-squares problem is weighted, so it is assumed
that all of the terms in (18) are multiplied with the
corresponding matrix square root of the inverse of the
covariance matrices for the process and the measurement
noise, respectively. Note that the covariance matrix of

the process noise, Q̃t = Bw(x0t )QtBw(x0t )
T , is singular

rendering the use of normal inversion impossible. In order

Algorithm 1 Nonlinear Least-Squares Smoothing for
SLAM

Input: x0, l0 (trajectory and map from previous itera-
tion), u (inputs), data association
Output: xs, ls (smoothed estimate of the trajectory and
the map)
N = # IMU measurements
A = [ ], a = [ ], c = [ ]
for i = 1 to N do

predict states, xi = f(x0i−1, ui)
if image available then

use the data association and calculate h(x0i , l
0
i )

calculate A11 = [A11 A
i
11]T ,

A21 = [A21 A
i
21] and

A22 = [A22 A
i
22] according to (12) - (20)

calculate ai = x0i − xi
calculate ci = yi − h(x0i , l

0
i )

set a = [aT aTi ]T

set c = [cT cTi ]T

else
calculate A11 = [A11 A

i
11]T

calculate ai = x0i − xi
set a = [aT aTi ]T

end if
end for
Assemble up A according to (20) and b = [aT cT ]T

solve the least squares problem (19)

calculate [xsT , lsT ]T = [x0
T
, l0

T
]T + η

to overcome this, we simply regularise the problem by
adding a diagonal matrix ∆I to the covariance matrix,
with ∆ being a small number, rendering the covariance
matrix invertible. Furthermore, it is assumed that the
associations from the initialisation is good enough and
that we do not have to compute new associations after
each iterate.

5. EXPERIMENTS

The implementation is done in Matlab, except for the
SIFT binaries, where we use a C code library from Hess
[2010].

5.1 Experimental Setup

For the purpose of obtaining high quality ground truth
motion data we used an IRB 1400 industrial robot from
ABB. In an industrial robot the rotation and translation
of the end tool can be logged with high accuracy. This gives
an excellent performance evaluation possibility, which is
otherwise difficult. The actual robot trajectory was not
possible to acquire during the experiment. However, since
the industrial robot is very accurate the actual output of
the robot will be very close to the programmed trajectory.

We constructed a small synthetic environment with known
topography to obtain realistic ground truth map data,
see Fig. 1b. We use a combined IMU/camera sensor
unit, shown in Fig. 1a. The sensor unit is mounted at
the end tool position of the industrial robot. The IMU
measurements are sampled at 100 Hz and images of size
640× 480 pixels are sampled at 12.5 Hz.



(a) The combined strap down
IMU and camera system.

(b) An image from the camera
during the experiment.

Fig. 1. The IMU/camera sensor unit used in the exper-
iments and an image from the camera over-viewing
the synthetic environment.

5.2 Results

The resulting trajectories and map obtained with the data
from an experiment are presented in Fig. 2. The Ground
truth trajectory is a reference trajectory for the robot.
From these plots it is clearly visible that the smoothed
estimate is closer to the true trajectory than the initial
estimate. The improvement is also visible if the initial
estimate and the final smoothed landmark estimate are
compared as in Fig. 3. Note that some landmark positions
are already quite accurately estimated since the change is
small after the smoothing. The smoothed estimate also has
a more accurate universal scale.
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Fig. 2. The smoothed trajectory in red, the initial EKF
trajectory in blue and the ground truth trajectory in
black. The black crosses are the smoothed landmark
estimates.

Both the smoothed horizontal speed of the platform, de-
fined as ||[vxt v

y
t ]T ||2, and resulting estimate from the ini-

tialisation are plotted in Fig. 4. We see that the smoothed
speed is much closer to 0.1 m/s, which is the true speed.

6. CONCLUSIONS AND FUTURE WORK

In this work we have presented the SLAM problem formu-
lated as nonlinear least-squares. For evaluation we have
used a combined camera and IMU sensor unit mounted
at the manipulator of an industrial robot which gives
accurate ground truth.
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Fig. 3. The initial landmark estimates given by the EKF
in blue bullets and the final smoothed estimate in red
diamonds, where the black dashed line illustrate the
relative displacement.
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Fig. 4. The smoothed horizontal speed of the camera in red
and EKF in blue. The true speed is 0.1 m/s except
for when the robot stops and changes direction, this
happens at about 4 seconds and 6 seconds.

The experimental results in Section 5.2 show that the
nonlinear least-squares trajectory, Fig. 2, and the speed
estimate, Fig. 4, show a significant improvement of the
initial estimate. The sparse point cloud in Fig. 3, illus-
trating the initial landmark estimate and final smoothed
estimate, shows also an improvement. The universal scale
of the environment is improved since the landmarks have
moved towards more probable positions.

For a long-term solution another initialisation procedure is
necessary, since EKF SLAM is intractable for large maps.
A possible alternative is to use IMU supported visual
odometry to get a crude initial estimate. This approach
needs a supporting global data association scheme.
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