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Abstract: This paper considers a Bayesian approach to linear system identification. One
motivation is the advantage of the minimum mean square error of the associated conditional
mean estimate. A further motivation is the error quantifications afforded by the posterior
density which are not reliant on asymptotic in data length derivations. To compute these
posterior quantities, this paper derives and illustrates a Gibbs sampling approach, which is a
randomized algorithm in the family of Markov chain Monte Carlo methods. We provide details
on a numerically robust implementation of the Gibbs sampler. In a numerical example, the
proposed method is illustrated to give good convergence properties without requiring any user

tuning.
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1. INTRODUCTION

This paper is directed at the problem of estimating a
parametrized linear state-space model on the basis of
observed data. This is a very well studied problem, for
which there are several well accepted solution techniques
such maximum-likelihood, prediction error and subspace-

based estimation methods [8].

While approaches such as these are now widely used
because of their effectiveness, their utility is commonly
dependent upon the availability of reliable error bounds
on the delivered estimate. To provide these, central limit
theorems that are asymptotic in the limit as the available
data length tends to infinity are assumed to hold approx-
imately for the finite data length available.

This leaves open the question of providing error bounds
that are accurate for short data lengths. It also leaves
open the question of providing error bounds for implicit
functions of the parameters, such as achieved phase margin
for a given controller.

Consideration of these and other motivations, such as
minimizing the variance of the estimate for a given avail-
able finite data length were the motivation for the recent
work by Ninness and Henriksen [10] wherein a Bayesian
approach was considered. The rationale is that if the
posterior distribution of the parameters can be computed,
then it can effectively define feasible parameter regions
in a manner that is accurate even for short data lengths.
Furthermore, if a point estimate is required, the posterior
mean, which is known to be the minimum mean-squared-
error estimate, may be employed.

Despite these advantages, a Bayesian estimate is not
commonly employed, save for special cases such as a
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linearly parametrized Gaussian situation where a Kalman
filter can be used to perform the necessary quantifications.
This is likely due to the fact that in general, computing
a conditional mean or marginal posterior density requires
the evaluation of a multi-dimensional integral.

In the previous work by Ninness and Henriksen [10],
this difficulty was addressed by employing randomized
algorithms to compute effective approximations to these
integrals. More specifically, the Metropolis—Hastings (MH)
algorithm (see e.g. [12]) was employed to generate realisa-
tions from the posterior density of the parameters. Sample
averages of these realisations then deliver approximations
for the posterior mean or marginal densities.

While these quantifications are approximate, they can be
made arbitrarily accurate by running the MH-algorithm
for sufficiently many iterations. Furthermore, sample aver-
ages or histograms of arbitrary functions (such as achieved
phase margin) of the realisations from the posterior pro-

vide an effective quantification of the values of these quan-
tities.

Despite these attractive features, the MH-algorithm ap-
proach has a significant drawback. A certain “proposal
density” needs to be tuned, usually by hand, to deliver re-
alisations that are sufficiently uncorrelated that the sample
averages converge at a sufficiently quick rate to the desired
expected value.

This paper addresses this weakness by employing a partic-
ular variant of the MH-algorithm known as “Gibbs sam-
pling”, for which no proposal density tuning is required.
This idea has been previously employed in [2] for state-
space models for the case of univariate state with no
control input. In this paper, we generalise the approach
by allowing a fully paramterized multivariable state-space
model and allow a more general noise structure and control
input.



As will be illustrated, this delivers a method for Bayesian
estimation of linear systems that does not require user
tuning, and enjoys good convergence properties. Unsur-
prisingly, this benefit comes at a cost. Namely, the nature
of the prior density that may be imposed is constrained.
However, in Section 6 we discuss a possible modification
of the proposed Gibbs sampler, aimed at mitigating this
drawback.

2. PROBLEM FORMULATION

Consider a linear time-invariant (LTI) state-space model

of the form
y: |~ |C D] |ug et]’
—— e =~
§t T Zt W

where z; € R"™ denotes the system state, u; € R™
denotes a known input (excitation) signal and y; € R™v
denotes an observed output. The noise w;, composed of
the process noise v; € R™ and the measurement noise
e € R™ is assumed to be a zero mean i.i.d. processes
with Gaussian distribution

(1a)

S
wy ~ N(0,1I), II= {5% R} . (1b)
Furthermore, let the data records X and Y be defined as
Xé{x17"'7$]\7+1}7 Yé{ylu"'7yN}7 (2&)

and let the parameters of the model (1) be defined accord-
ing to

o7 = [Vec " vec {H}T} e R"™. (3)

The aim in this work is to compute a point estimate 0 of
0 as the conditional mean

ééE{e\Y}:/ep(mY)do. (4)

Clearly, this requires knowledge of the posterior density
p(0 | V) and a further goal of this work is to compute

posteriors
p(f(0)|Y) ()
of general functions f : § — C™ of the parameters, such

as frequency response, achieved phase margin for a given
controller etc.

An attraction of the estimate (4) is its known minimum
mean square error property [1]. Despite this attraction,
is has not been widely used in a dynamic system iden-
tification context, presumably due to the computational
difficulty involved in calculating the multivariable integral
in (4). This paper will address this difficulty by employing
a randomized algorithm from the Markov Chain Monte
Carlo class of methods; namely a Gibbs sampler. As will be
seen, a dividend of this approach is that the computation
of the posterior (5) is straightforward for a very general
range of functions f.

3. MARKOV CHAIN MONTE CARLO

The key idea underlying Markov chain Monte Carlo meth-
ods is to generate samples from the desired distribution
p(6 | Y) by simulating a Markov chain, with this distribu-
tion as its stationary distribution.

These samples can then be used to form an appropriate
estimate. The basic MCMC sampler is known as the
Metropolis-Hastings (MH) algorithm after its inventors
Metropolis et al. [9] and Hastings [6]. It allows for com-
pletely general specification of the prior density p(#), but
has a drawback in that it requires specification of a so

called “proposal density” which often requires hand tuning
in order to obtain satisfactory results.

The paper here make use of a special case of the MH
sampler, referred to as the Gibbs sampler, wherein by
giving up some flexibility in the specification of the prior
p(0), the choice of the proposal density to deliver good
convergence properties is automatic.

The Gibbs sampler was first introduced by Geman and
Geman [4] and later popularised by Gelfand and Smith [3].
The theory of MCMC is by now well developed, including
rigorous convergence results, establishing the validity of
the approach [12, 13]. A recent introduction of the use
of MCMC to solve problems in system identification is
provided by Ninness and Henriksen [10].

In order to employ this approach in the linear system
identification setting of this paper, it is necessary to first
expand the problem to one wherein we see the joint
posterior

p(0, X |Y) (6)
of both the parameters and the complete state history.
This may seem strange and artificial, since it is only the
parameter posterior we are interested in. Nevertheless,
it is a key step in this paper, because as will be seen,
it simplifies the problem of drawing from the involved
posterior densities. At the same time, if one simply ignores
the realisations of the state history X that are generated,
we are left with samples from the sought marginal density
p(@ | Y). To be more specific, the Gibbs sampler with
target density (6) proceeds by drawing samples from the
density of one of the elements 6; of 6 or x; of X conditioned
on all the other variables being known. In other words,
at each iteration k of the Gibbs sampler, the following
random draws are required

e Sample 6f ~ p(6; | 6,1, X,Y).

° Sample 08 ~p(B2 | Oy, X,Y).
e Sample ¥ ~ p(z | 7\1,0,Y).

e Sample % _ | ~ p(zni1 | 2\N11,0,Y).
where x\; is used to denote all the elements in z, but z;,
i.e. o\; £ (x1,...,%-1,Ti41,..., o), and similarly for 6.
Hence, the Gibbs sampler requires full knowledge of all

the conditional distributions and the ability to generate
samples from these distributions.

The Gibbs sampler as outlined above does not perform
well when the variables are strongly dependent on one
another, which is the case for the state variables in
the dynamical system (1) under consideration. We will
reduce this problem by employing a so called blocked
Gibbs sampler, where several of the variables are grouped
together. This simplifies the algorithm to

(1) Given 0%, generate a sample of the state trajectory
according to

XE~p(X Y, 65). (7)

(2) Then, given X* generate a sample of 1 according
to

05t~ p(6 | X7,Y). (8)

The first step of the algorithm outlined above corresponds
to generating a sample from the joint smoothing density of
the states in a LTI state-space model. In Section 4 below
this is solved by making use of Kalman filter and a so called
backward simulator. Generating samples according to (8)



will be facilitated by employin% conjugate priors to deliver
tractable densities to sample from, which is described in
Section 5.

4. SAMPLING THE STATE TRAJECTORY

In order to generate samples from p(X | Y,0) we could
make use of the standard results for Gaussian conditional
distributions and draw samples from the resulting normal
distribution. This approach is valid for small N, but
for increasing N it soon becomes infeasible due to the
matrix inversions involved. It is also worth noting that
a standard formulation of the Kalman smoother cannot
be used here, since it only provide the marginal densities
p(z¢ | Y, 0) while we require the joint density p(X | Y,0) =
p(xlv L TN+ | }/30)

Here we solve this by employing a backward simulator,
which for the LTT state-space model (1) is developed in
Section 4.1. This idea has appeared before in [2]. Here,
we generalise this to the full linear state-space model
represented by (1).

In order to obtain a numerically reliable implementation
we have found it vital to make use of square-root formulas
for the forward filter backward simulation steps and these
formulas are developed in Section 4.2.

Since the sampling in step (7) of the blocked Gibbs sampler
is done for (conditioned on) a fixed parameter value, we

shall, for notational simplicity, omit 6 from the notation
throughout this section.

4.1 Backward simulation

For convenience, let us first define x;; = {z;, -+ ,z;},
implying that X = x1.x41, Y = y1.n5. With this notation
in place the conditional density of X given Y is

p(r1nt1 [yin) = p(z1 | 22841, yin)P(@aN11 | y1:N)
N
=...=plens1 | yun) Hp(fﬂt | Ze41:N 415 Y1n).-
t=1
This factorisation highlights the fact that we can sample
from p(X | Y) by using the following strategy; first, draw
a sample from the marginal density p(zny+1 | y1.n). Then,
conditioned on this sample we draw from the conditional
density p(xn | £n+1, y1.~) and continue in this fashion
until we reach time ¢ = 1. The generated state trajectory
is then a sample from the joint density p(X | Y).

We now proceed with the details of this backward simula-
tion technique. From the Markov property (which for the
state-space model (1) is valid both forward and backward
in time) we have that

P(@t|Teq1:N41, Y1:N) = D(@t|Teq1, Y1:8)- 9)

We can then make use of the fact that the measurements
are conditionally independent, given the state, which re-
sults in

P(Te| T4, Y10, Yer1:8) = P(Te|Tig1, Y1:t)- (10)

Put in other words, given the state at time ¢ + 1, there
in no additional information about the state x; present in
the measurements y;11.5. It follows that,

p(y ‘ Ti41:N+15 Y1:N) =p($t | Tet1, Yi)- (11)

Furthermore, note that

(e, Tey1 | Y1)
p(@e+1 | Yist)
_ p(@es1 | we)p(ay | yl:t). (12)
P(Teg1 | Y1ie)
Now since x4y and y;.; are given, the above denominator
is a non-zero number and

P(xy | Tpgrs Y1) X D@1 | @) p(we | Y1ee)- (13)

This provides a simple formula for recursively drawing
samples for the joint state sequence X given the measure-
ments Y. In particular, for the linear state-space model
with Gaussian noise in (1) we have that

P(xt | Ti+1, yl:t) =

—2log p(wi41 | @1) o |1 — Az — Bugllgy (14)

Further, the distribution p(x; | y1.¢) is provided by the
standard Kalman Filter recursions that deliver

—2logp(xs | y1.4) x ||zt — it\t“i—‘l (15)
t|t

Therefore

—2logp(zt | Te41, Y1:e) o< [T — jt\tH%l
t|t

+ lze41 — Azy — Bug|g

(16)
From [11] (Section A.2, Equation (A.7)), it follows that
—2logp(zt | Tet1, Y1) o [z — Mt||?\4;1 (17)
where
My = (ATQ ' A+ P (18a)
= Py — Pt|tAT(APt\tAT +Q) APy, (18b)
pe = My(AT Q™ w41 — Buy] + Pt‘_tli“t) (18¢c)

In Algorithm 1 below, we provide the steps required in
order to draw a sample X ~ p(X | Y, ). For convenience,
we will first transform the original system (1) into an
equivalent one with S = 0. This is necessary in order
to employ a square-root implementation of the forward
filter equations (see e.g. Chapter 11 in [7]). The resulting
equivalent system is given by [7],

A B -1 _
5] = [ B) [+ 5% ] + e
(o 53]
where

A=A-SR'C, B=B—-SR™'D, Q=Q— SR 'sT.

With this in place, the algorithm can be stated as in
Algorithm 1.

(19a)

(19b)

4.2 Implementing Algorithm 1 in square-root form

The recursion in Algorithm 1 can be implemented by
propagating the square-root of the covariance matrices
tts Drr1e and M. The benefit of using a square-root

implementation is that it improves numerical precision
[7], and in addition all the required covariance matrices
are ensured to be positive definite by construction. For
convenience, we will use the notation that the square-root

of a general matrix G is denoted by G'/2 so that
G'2G"? = q. (20)

In what follows, we will require the suare-root of R and Q,
denoted as R'/? and Q'/2, respectively. These quantities



Algorithm 1 Sample from p(X | Y,0)

1: Assume 219 and Pjjg are given and run the Kalman
filter recursions from t =1,..., N
et = yp — Cyp—y — Duy,
Ty = Tg—1 + Kiey,
Tpqp1pe = A@tu + Buy + SR 'y,
K, = Pt|t—1CT(0Pt\t—1CT +R)7!,
Py = Py — Pt\t—lcT(CPt\t—lcT + R)ilcPt\t—la
Py = APWAT +Q.
2: Draw #n41 ~ N(Znq1n, Pnyin) and iterate the

following backward simulation recursion from ¢ =
1

z ~ N (e, M),
My = Py — Pt\tAT(APﬂtAT +Q) APy,
pe = ny — LiAng,

e = &y + Pt|tATQ_1($t+1 — Buy),

L, = P, AT(AP,, AT + Q).

geeey

may be computed as follows. Let £ be a lower triangular

Cholesky factor so that
T __ [:11 0 ﬁ?l L{Q _ RST
LLt = [512 522} { 0 L3] |5 @
and note that
LLT =R, L1L1,=8T, LioLl, 4+ LooL), = Q.

(21)

(22a)
The last expression can be written as
£22£2TQ =Q- /~:12£1T2 =Q- S£1_1T131_115T
=Q - SR'ST, (23)

which is the required quantity, so that La is a square-root
of Q, i.e. Q'/? = Ly5. Furthermore, note that the square-
root of R is given by (22a), i.e. RY/? = L1, and that

SR™' = L1oL7] (24)
Therefore, expressions like S R~1C involve a forward sub-
stitution C' = L7 C followed by a matrix multiplication
L15C, and no explicit matrix inverse is calculated.

It is assumed that the square-root of Pjjq = Pll‘{)QPf%Z

is provided. With this in place, we can employ a QR-
decomposition to factor

R0 [RL R
= 2
A A
It can be verified that
(R32)" Ras
= Pyjt_1 — Piy—1CT (CPy;—1C" + R)'CPy1 (26)
so that P1/? = R1, is the required square-root. It can

¢
also be verified that K; = (R1,)”(R1;)~T. Employing this

square-root pr/?

fH in the following QR-decomposition

pr2 AT R2
e - Q2 ' 5 (27)
QT/2 0
it can be verified that - - -
(R%)T’Rf = APt|tAT +Q (28)

T/2 T/2
and therefore Pt-s-l\t Pt+1|t

similar arguments, it can be readily verified that

M =Ry, Li=®Y)'RW)T.(29)

where again we have used a QR-decomposition to provide
Q0] R, RY

PiAT P | [ORJ'

Algorithm 2 below summarises the above steps for the
square-root implementation.

is given by = R?2. Using very

(30)

Algorithm 2 Sample from p(X | Y, 0) in square-root form
1: Compute the Cholesky factor £ from (21) and set
A=A-Lp L7 C],
B=B-Ly[L'D],

QY2 = Lo,
RY? =Ly,

2: Assume 2|9 and Pll‘{f are given and run the Kalman
filter recursions from ¢t = 1, ..., N: For each t, compute
Q'R! from (25) and set

T/2 _
Pl* =Ry, Ki= Rl (RL)T
then compute Q?*R? from (27) and Q3R? from (30)
and set
T/2 T/2 _
Pt+/1|t = R?? Mt / = RgQa Lt = (R?2)T(R?1) T'
Compute

€t = Yt — Ci't|t—1 — Duy,
Tyjp = Typp—1 + Kiey,
Eyp1 = ARy + Buy + SRy,
3: Draw oy41 ~ N (Zn41)n, Py41jn) and iterate the fol-
lowing backward simulation recursion for t = N, ..., 1

Ty ~ N(Mt, Mt),
pe =1 — L Ang,
ne =& + Pt|tATQ71(xt+1 — Buy).

5. SAMPLING THE PARAMETERS

In this section we discuss how to draw a sample of § given
a sample of the state sequence X and the measurements
Y. Note as usual that

p(0 | X,Y) ocp(X,Y | 0)p(6). (31)
It is assumed in this section that the prior p(f) can
be adequately described using a Matrix-Normal-Inverse-
Wishart (MNIW) distribution [14]. The reason for this
assumption is that it is a conjugate prior for the linear
Gaussian state-space model, which means that p(6 | X,Y)
also has an MNIW distribution, and therefore we can
readily obtain samples from it. More specifically, it is

assumed that (recall that 6 = [vec {I'}" , vec {I1}"]7),

p(0) = p(T" | Mp(TD), (32)
and that I' conditioned on II is a matrix-normal distribu-
tion, written as MN (I'; M, 11, V') with density

_ |v|ntm)/2 1 Tr-1
p(T | II) = RT3 P <7§tr (@ —-mTo(r - M)V))
(33)
where M and V! are the prior mean and row covari-
ance matrices, respectively. Furthermore, it is assumed



that p(II) is distributed according to an inverse Wishart
distribution, written as ZW(IL; ¢, A) with density

|A|€/2|H|—(n+p+6+1)/2 ( 1 . )
P = exp | —=tr (II""A 34
( ) 2‘6(71“’17)/2’}/(”_;'_13) (5/2) 2 ( ) ( )

where ¥, 4p)(+) is the multivariate gamma function.

From the above it may be noticed that M,V A and /¢ are
all user specified choices for the priors on 6, commonly re-
ferred to as hyperparameters. The first two, M,V describe
the mean and row accuracy of the matrix I', while the
second two A, { describe a scaling and degree of freedom
for the covariance matrix II.

With a distribution for the prior p(6) in place, consider
the joint likelihood term p(X,Y | #) in (31). For the model
class in (1) we may write (using Bayes rule)

p(X,Y | 0) =pleni1,yn [ TN, yn—1, 141, 71,0)
X p(rN,YN—1," " ,¥Y1,21,0), (35)
and since the model is also Markov, then
p(@N+1,YN | TN YN-1, -, Y1, 71, 0)
=p(@n+1,yn | 7N, 0), (36)
so that (35) becomes
N
p(X,Y [ 0) = p(a1 | 0) [ [ p(werr,pe | 20,60).  (37)
t=1

This latter expression can be re-written using the defini-
tions in (1) and the fact that the initial state does not
depend on € (so that p(zq | 8) = p(x1)) to arrive at

—2logp(X,Y | 0) x NlogdetII
+tr{II7 Y@ — U7 — o7 + I2r?]},  (38a)
where

f:{l’t—i—l} [%H] LU= g:[xtH} {xt] . (38D)

t=1 t=1

T
— L] | Tt
s=3 [ "
t=1
It follows (see e.g. [14]) that the posterior distribution is
MNIW and given by,

(38¢)

p(F,H|X,Y):p(F|X,Y,H)p(H|X,Y),
with
p(T | X,Y,II) = MN(T; U1 I, 571, (39a)
p(T| X,Y)=IW(N + 4, A+ & -5 '0T)  (39b)
where
=0+ MVMT, O=U+MV, T=S+V. (39)

Note that for the purposes of implementation, it is worth
recalling that the matrix-normal and the vector-normal
distributions are linked by

vec {T'} ~ N(vec {UZ7'}, S71@1I). (40)

The above steps are summarised in Algorithm 3, where
again, we have been careful to compute the required ma-
trices in a numerically robust manner. The final algorithm
is presented in Algorithm 4.

6. DISCUSSION ON PRIORS

So far, we have assumed that the prior knowledge about
the system parameters can be described by an MNIW
density. This choice is made to enable closed form expres-
sions for the posterior densities used in the Gibbs sampler,
which is possible since the MNIW prior is conjugate to

Algorithm 3 Sample from p(d | X,Y)

1: Compute ®, ¥ and ¥ from (39¢) and (38b)—(38c).
2: Compute the Cholesky factor £ such that

L1 07 [c]) £ DR
ee = [ ) |5 28] - 5 %
and set
=0 = L5077, (41a)
M =& - U107 = £oL], (41b)
3: Sample II from
II ~IW(N + ¢, A +1I7). (42)
4: Sample I' from
[ ~ MN(I;T* 0,57, (43)

Algorithm 4 Blocked Gibbs Sampler

1: Assume that IT' = 0, 'Y, M, V, A and ¢ are given and
set k = 0. Iterate the following steps until k& > kpax,
where kpax > 0 is the maximum number of iterations.

2: Sample X* ~ p(X | Y,I* 11*) according to Algo-
rithm

3: Sample (I‘k'*'1 I+ ~ p(T, 10 | XFY
Algorithm 3.

4. Update k «— k+ 1.

Y) according to

the likelihood defined by the model (1). In many cases,
the MNIW prior is an adequate choice which does not
affect the posterior distribution to any significant extent.
Still, in some cases it might be desirable to use some
other parameter prior which might represent the a prior:
knowledge about the system in a better way. If this is the
case, it is possible to make a simple modification of the
proposed Gibbs sampler to account for such an alternative
prior.

The idea is to use the same mechanism to sample the
parameter values in the MCMC method, i.e. by running
Algorithm 3. Hence, when we sample 6 we “pretend” that
the parameter prior is MNIW. To compensate for the fact
that we use the wrong prior, we complement the sampling
with a Metroplis-Hastings (MH) accept /reject decision. In
other words, we use Algorithm 3 as a proposal density in
an MH sampler.

Consider again the posterior parameter density which can
be written,

p(0 | X,Y) < p(X,Y [ 0)p(6), (44)
where p(6) is the “true” parameter prior. We then con-
struct a proposal density according to

q(0 | X,Y) o< p(X,Y | 0)q(0), (45)
where ¢(0) is an MNIW density. Thus, at iteration k of
the MCMC sampler, we can run Algorithm 3 to generate
a sample ¢’ from ¢(0 | X,Y). With probability,

P01 XY) g | XY) _ pl#)
p(O*1X)Y) q(0' | X)Y) — p(6F)

(0" ")
q(0") ’
(46)
we accept the proposed sample and set 6% = ¢’. If the
sample is not accepted, we retain the previous state of the
Markov chain and set 6% = g%~

The success of this approach depends on how close the
artificial MNIW prior is to the “true” prior. If these
densities are very different, the acceptance probability in
(46) is likely to be too small to obtain a satisfactory mixing
of the Markov chain. However, if the priors are fairly
similar, the addition of such an accept/reject step is an




easy way to modify the stationary distribution of Markov
chain to represent a different prior than MNIW.

7. SIMULATION EXAMPLE

In this section we provide a simulation example that
demonstrates the potential of the blocked Gibbs sampler
provided in Algorithm 4 by generating the density of the
phase margin ¢ for a given controller design. In particular,
we generate a data set Y for a given true system and run
the Gibbs sampler to generate samples (6, X) ~ p(0, X |
Y) based on this data. More specifically, consider the
6’th order true system (4,B,C,D,Q,S,R) with Bode
response shown in Figure 1. We simulated an output signal
Y ={y1, - ,yn} for N =200 according to

Ti+1 = AZL't + But + wy, (47&)
vy = Cxy + Duy + ey, (47Db)
up ~ N(0,1), (47¢)

wi] 107%I 0

{et} N (0’ { 0 10—4D ’ (47d)

z; = 0. (47e)

Algorithm 4 requires an initial estimate for #!, and this
is provided by a standard Expectation Maximisation algo-
rithm [5], which delivers the maximum likelihood estimate
(A1, B1,C1, D1, Q1, 51, R1). Additionally, the Gibbs sam-
pler requires the priors M, V > 0, A > 0 and ¢ > 1, which
were selected according to

M:[‘éggg], VeI, A=I, (=1

(48)
As a means of utilising these samples {f',-- -, #Fmax} we
first consider the conditional mean estimate of the transfer
function G(z) = C(zI — A)~'B + D, which is shown in
Figure 1. Based on this estimate, we designed a controller
with nominal phase margin of ¢ = 22 degrees. The utility
of the MCMC approach is that we can compute the density
of ¢ for the given data set. This density is shown in
Figure 2 and is labelled as the “slow” controller. From
this figure it can be seen that there is a small probability
(based on the data) that the controller will be unstable. By
way of comparison, we designed another controller with a
nominal phase margin of ¢ = 14 degrees, and its density is
also shown in Figure 2 and labelled as “fast” controller. It
could be argued that this controller is unacceptable based
on the large number of cases where the closed loop system
is unstable.

8. CONCLUSION

This paper considers the problem of estimating the density
p(0,X | Y) for linear state-space models using a blocked
Gibbs sampler. Importantly, this requires the ability to
sample from both p(X | Y,0) and p(6 | Y, X) and we
have provided details of these two densities, including
their numerically robust square-root implementations. The
utility and potential of this approach is profiled on an
example where the posterior probability density function
of the phase margin of a given controller is examined.
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