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Outline 2(42)

Parameter inference
1. The nonlinear Maximum Likelihood (ML) problem

• Problem formulation
• Solution using expectation maximization and a particle smoother

2. The nonlinear Bayesian problem
• Problem formulation
• Sketch of solution using MCMC and SMC

Sensor fusion

1. Problem formulation

2. Three industrial application examples
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Problem formulation – ML (I/II) 3(42)

A state space model (SSM) consists of a Markov process {xt}t≥1
and a measurement process {yt}t≥1, related according to

xt+1 | xt ∼ fθ,t(xt+1 | xt, ut),
yt | xt ∼ hθ,t(yt | xt, ut),

x1 ∼ µθ(x1), (θ ∼ p(θ)).

Identification problem: Find θ based on {u1:T, y1:T}.

ML amounts to solving,

θ̂
ML

= arg max
θ

log pθ(y1:T)

where the log-likelihood function is given by

log pθ(y1:T) =
T

∑
t=1

log pθ(yt | y1:t−1)

Thomas Schön, Sensor fusion and parameter inference in nonlinear dynamical systems

Seminar at the University of Cambridge, April 18, 2013.

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET



Problem formulation – ML (II/II) 4(42)

There are at least two challenges with the ML formulation:

1. The one-step prediction PDF pθ(yt | y1:t−1) has to be
computed.

2. In solving the optimization problem

θ̂
ML

= arg max
θ

log pθ(y1:T)

the derivatives ∂
∂θ pθ(yt | y1:t−1) are useful.

The Expectation Maximisation (EM) algorithm together with a
Particle Smoother (PS) provides a systematic way of dealing with

both of these challenges.
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Expectation Maximization (EM) – strategy and idea 5(42)

The Expectation Maximization (EM) algorithm computes ML
estimates of unknown parameters in probabilistic models involving
latent variables.

Strategy: Use structure inherent in the probabilistic model to
separate the original ML problem into two closely linked
subproblems, each of which is hopefully in some sense more
tractable than the original problem.

EM focus on the joint log-likelihood function of the observed variables
y1:T and the latent variables Z , {x1, . . . , xT},

`θ(x1:T, y1:T) = log pθ(x1:T, y1:T).
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EM – the algorithm 6(42)

Algorithm 1 Expectation Maximization (EM)

1. Initialise: Set i = 1 and choose an initial θ1.
2. While not converged do:

(a) Expectation (E) step: Compute

Q(θ, θi) = Eθi [log pθ(x1:T, y1:T) | y1:T]

=
∫

log pθ(x1:T, y1:T)pθi(x1:T | y1:T)dx1:T

(b) Maximization (M) step: Compute

θi+1 = arg max
θ∈Θ

Q(θ, θi)

(c) i← i + 1
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Expectation (E) step – approximating Q 7(42)

In computing the Q-function

Q(θ, θi) = Eθi [log pθ(x1:T, y1:T) | y1:T]

=
∫

log pθ(x1:T, y1:T)pθi(x1:T | y1:T)dx1:T,

we start by noting that

log pθ(x1:T, y1:T) = log pθ(y1:T | x1:T) + log pθ(x1:T)

= log pθ(x1) +
T−1

∑
t=1

log pθ(xt+1 | xt) +
T

∑
t=1

log pθ(yt | xt)
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Approximating the Q-function 8(42)

This results in the following expression for the Q-function

Q(θ, θi) = I1 + I2 + I3,

where

I1 =
∫

log pθ(x1)pθi(x1 | y1:N)dx1,

I2 =
T−1

∑
t=1

∫ ∫
log pθ(xt+1 | xt)pθi(xt+1, xt | y1:N)dxtdxt+1,

I3 =
T

∑
t=1

∫
log pθ(yt | xt)pθi(xt | y1:N)dxt.

Nonlinear state smoothing problem, which we approximately solve
using sequential Monte Carlo (here, particle smoothers).
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Microfact – the particle filter 9(42)

The particle filter provides an approximation of the filter PDF
p(xt | y1:t), when the state evolves according to an SSM,

xt+1 | xt ∼ fθ,t(xt+1 | xt, ut),
yt | xt ∼ hθ,t(yt | xt, ut),

x1 ∼ µθ(x1).

The particle filter maintains an empirical distribution made up N
samples (particles) and corresponding weights

p̂N(xt | y1:t) =
N

∑
i=1

wi
tδxi

t
(xt).

“Think of each particle as one simulation of the system state. Only
keep the good ones.”
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Microfact – the particle filter 10(42)

Consider a toy 1D localization problem.
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Dynamic model:

xt+1 = xt + ut + vt,

where xt denotes position, ut denotes velocity
(known), vt ∼ N (0, 5) denotes an unknown
disturbance.

Measurements:

yt = h(xt) + et.

where h(·) denotes the world model (here the
terrain height) and et ∼ N (0, 1) denotes an
unknown disturbance.
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Microfact – the particle filter 11(42)

Highlights two key
capabilities of the PF:

1. Automatically
handles an unknown
and dynamically
changing number of
hypotheses.

2. Work with
nonlinear/non-
Gaussian
models.
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Approximating the Q-function 12(42)

Inserting the PS approximations into the integrals yields the
approximation we are looking for,

Î1 =
∫

log pθ(x1)
N

∑
i=1

wi
1|Tδxi

1
(x1)dx1

=
N

∑
i=1

wi
1|T log pθ(xi

1),

Î3 =
T

∑
t=1

∫
log pθ(yt | xt)

N

∑
i=1

wi
t|Tδxi

t
(xt)dxt

=
T

∑
t=1

N

∑
i=1

wi
t|T log pθ(yt | xi

t),

and similarly for I2.
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Final ML identification algorithm 13(42)

Algorithm 2 EM for identifying nonlinear systems

1. Initialise: Set i = 1 and choose an initial θ1.
2. While not converged do:

(a) Expectation (E) step: Run a FFBS PS and compute

Q̂(θ, θi) = Î1(θ, θi) + Î2(θ, θi) + Î3(θ, θi)

(b) Maximization (M) step: Compute θi+1 = arg max
θ∈Θ

Q̂(θ, θi)

using an off-the-shelf numerical optimization algorithm.

(c) i← i + 1

Thomas B. Schön, Adrian Wills and Brett Ninness. System Identification of Nonlinear State-Space Models. Automatica,
47(1):39-49, January 2011.
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Example – blind Wiener identification (I/III) 14(42)

Lut

h1(zt, β)

h2(zt, β)

Σ

e1,t

y1,t

Σ

e2,t

y2,t

zt

xt+1 =
(
A B

) (xt
ut

)
, ut ∼ N (0, Q),

zt = Cxt, yt = h(zt, β) + et, et ∼ N (0, R).

Identification problem: Find A, B, C, β, Q, and R based on
{y1,1:T, y2,1:T} using EM.
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Example – blind Wiener identification (II/III) 15(42)

• Second order LGSS model with
complex poles.

• Employ the EM-PS with
N = 100 particles.

• Results obtained using
T = 1000 samples.

• The plots are based on 100
realizations of data.

• Nonlinearities (dead-zone and
saturation) shown on next slide.
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Example – blind Wiener identification (III/III) 16(42)
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Adrian Wills, Thomas B. Schön, Lennart Ljung and Brett Ninness. Identification of Hammerstein-Wiener Models.
Automatica, 49(1): 70-81, January 2013.
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Outline 17(42)

Parameter inference
1. The nonlinear Maximum Likelihood (ML) problem

• Problem formulation
• Solution using expectation maximization and a particle smoother

2. The nonlinear Bayesian problem
• Problem formulation
• Sketch of solution using MCMC and SMC

Sensor fusion

1. Problem formulation

2. Three industrial application examples
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Problem formulation – Bayesian identification 18(42)

Bayesian model: θ is a random variable with a prior density p(θ).

The goal in Bayesian modeling is to compute the posterior
p(θ, x1:T︸ ︷︷ ︸

,η

| y1:T) = p(η | y1:T) (or one of its marginals).

Bayesian modeling/identification amounts to:
1. Find an expression for the likelihood p(y1:T | η).
2. Assign priors p(η) to all unknown stochastic variables η present

in the model.
3. Determine the posterior distribution p(η | y1:T).

The key challenge is that there is no closed form expression
available for the posterior.
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Bayesian problem formulation again 19(42)

Consider a Bayesian SSM

xt+1 | xt ∼ fθ,t(xt+1 | xt, ut),
yt | xt ∼ hθ,t(yt | xt, ut),

x1 ∼ µθ(x1),
θ ∼ p(θ).

We observe DT , {u1:T, y1:T}.

Goal: Compute the posterior p(θ, x1:T | DT).
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Solution used here – Gibbs sampler 20(42)

Markov chain Monte Carlo (MCMC) methods allows us to generate
samples from an arbitrary target distribution by simulating a Markov
chain.

Gibbs sampling (blocked) for SSMs amounts to iterating

• Draw θ[m] ∼ p(θ | x1:T[m− 1], DT),

• Draw x1:T[m] ∼ p(x1:T | θ[m], DT).

The result is a Markov chain

{θ[m], x1:T[m]}m≥1

with p(θ, x1:T | DT) as its stationary distribution!
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Gibbs sampler for a general SSM 21(42)

What would a Gibbs sampler for a general nonlinear/non-Gaussian
SSM look like?

• Draw θ[m] ∼ p(θ | x1:T[m− 1], DT),

• Draw x1:T[m] ∼ p(x1:T | θ[m], DT).

Problem: p(x1:T | θ, DT) is not available!!

Idea: Approximate p(x1:T | θ, DT) using a particle smoother (PS).

(Non-trivial) solution: Careful and clever analysis of how to
combine MCMC and PF/PS results in the PMCMC family of
algorithms.
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PMCMC methods 22(42)

Facts about Particle Markov Chain Monte Carlo (PMCMC) samplers:

• Provides a systematic and provably correct combination of
PF/PS and MCMC.

• Standard MCMC samplers on non-standard spaces.
• Constitutes a family of Bayesian inference methods, including

• Particle Independent Metropolis Hastings (PIMH)
• Particle Marginal Metropolis Hastings (PMMH)
• Particle Gibbs (PG)

Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal of the
Royal Statistical Society: Series B, 72:269-342, 2010.

Thomas Schön, Sensor fusion and parameter inference in nonlinear dynamical systems

Seminar at the University of Cambridge, April 18, 2013.

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET



Particle Gibbs with ancestor sampling (PG-AS) 23(42)

PG with backward simulation (PG-BS) sampler targeting
p(θ, x1:T | DT).

• Conditional particle filter (CPF) and backward simulation
• Run a CPF, targeting p(x1:T | θ, DT);
• Run a backward simulator to sample x?1:T;

• Draw θ? ∼ p(θ | x?1:T, DT).

Powerful and important property of PG-BS: Provably convergent
for any N ≥ 2 particles and it works in practice!

Similarly to PG-BS, we use backward sampling to (considerably)
improve the mixing of the PG kernel. Instead of using separate
forward and backward sweeps as in PG-BS, however, PG-AS
achieve the same effect in a single forward sweep.
Fredrik Lindsten, Michael I. Jordan and Thomas B. Schön. Ancestor Sampling for Particle Gibbs. Proceedings of Neural
Information Processing Systems (NIPS), Lake Tahoe, NV, USA, December, 2012.
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Example – semiparametric Wiener model 24(42)

Lut h(·) Σ

vt et

yt
zt

Parametric LGSS and a nonparametric static nonlinearity:

xt+1 =
(
A B

)︸ ︷︷ ︸
Γ

(
xt
ut

)
+ vt, vt ∼ N (0, Q),

zt = Cxt.
yt = h(zt) + et, et ∼ N (0, R).
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Semiparametric model 1 – known model order 25(42)

First step towards a fully data driven model (the order of the LGSS
model is still assumed known).

Parameters: θ = {Γ, Q, r, h(·)}.
Bayesian model specified by priors:
• Conjugate priors for Γ = [A B], Q and r,

• p(Γ, Q) = Matrix-normal inverse-Wishart
• p(r) = inverse-Wishart

• Gaussian process prior on h(·),

h(·) ∼ GP(z, k(z, z′)).

x1:T

y1:T

Γ Q
u1:T

h(·) r
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Example – known model order (I/II) 26(42)

We can quantify the uncertainty for this model rather nicely.

• Bayesian semiparametric model
with conjugate prior (MNIW).

• 6th order LGSS model and a
saturation.

• Using T = 1000 measurements.

• Employ the PG-BS sampler with
N = 15 particles.

• Run 15000 MCMC iterations,
discard 5000 as burn-in.
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Example – known model order (II/II) 27(42)
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Semiparametric model 2 - unknown model order 28(42)

Show movie
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Fredrik Lindsten, Thomas B. Schön and Michael I. Jordan. Bayesian semiparametric Wiener system identification.
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Outline 29(42)

Parameter inference
1. The nonlinear Maximum Likelihood (ML) problem

• Problem formulation
• Solution using expectation maximization and a particle smoother

2. The nonlinear Bayesian problem
• Problem formulation
• Sketch of solution using MCMC and SMC

Sensor fusion

1. Problem formulation

2. Three industrial application examples
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Sensor fusion and parameter inference in nonlinear dynamical systems
Thomas Schön, users.isy.liu.se/rt/schon

University of Cambridge, April 18, 2013,
Cambridge, UK

The sensor fusion problem

• Inertial sensors
• Camera
• Barometer

• Inertial sensors
• Radar
• Barometer
• Map

• Inertial sensors
• Cameras
• Radars
•Wheel speed sensors
• Steering wheel sensor

• Inertial 
sensors
• Ultra-

wideband

Might all seem to be very different problems at first sight. However, the same 
strategy can be used in dealing with all of these applications.

How do we  combine the information from the different sensors?

30(42)
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Sensor fusion - definition

Definition (sensor fusion)

Sensor fusion is the process of using information from several different sensors to infer 
what is happening (this typically includes finding states of dynamical systems and various static 
parameters).

World model

Inference

Dynamic model

Sensor model

...

Sensors
Sensor fusion

...

Applications

Situational 
awareness
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Sensor fusion and parameter inference in nonlinear dynamical systems
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Cambridge, UK

Illustrative example (I/III)

Aim: Motion capture, find the motion (position, orientation, velocity and acceleration) of a person 
(or object) over time.

Industrial partner: Xsens Technologies.

ω"

a$g"

m"

Sensors used:

• 3D accelerometer (acceleration)
• 3D gyroscope (angular velocity)
• 3D magnetometer (magnetic field)

17 sensor units are mounted onto the 
body of the person.
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Illustrative example (II/III)

1. Only making use of the inertial information.

Movie courtesy of Daniel Roetenberg (Xsens) 
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Illustrative example (III/III)

2. Inertial + biomechanical model 3. Inertial + biomechanical model + world model

Movie courtesy of Daniel Roetenberg (Xsens) Movie courtesy of Daniel Roetenberg (Xsens) 
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The story I am telling

2.5 Map 15

(a) Relative probability density for parts of
Xdin’s o�ce, the bright areas are rooms and
the bright lines are corridors that interconnect
the rooms
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Figure 2.7. Probability interpretation of the map.

those would su�ce to give a magnitude of the force. The force is intuitively
directed orthogonally from the wall towards the target and multiple forces can
be added together to get a resulting force a�ecting the momentum of the target.

Equation (2.9) describes how the force is constructed. The function wall
j

(p)
is a convex function giving the magnitude and direction of the force given the
position of the target, p.

f
i

=
ÿ
jœW

wall
j

(p
i

), where W is the set of walls. (2.9)

If positions from other targets are available, repellent forces from them can be
modeled as well, which is thoroughly discussed in [22]. The concept is visualized
in Figure 2.8 where the target T

i

is a�ected by two walls and another target
T

m

, resulting in the force f
i

.

Figure 2.8. Force vectors illustrating the resulting force a�ecting a pedestrian.

2. The dynamical systems exist in a context. 

This requires a world model.

3. The dynamical systems must be able to perceive their own 
(and others’) motion, as well as the surrounding world.

This requires sensors and sensor models.

4. We must be able to transform the measurements 
from the sensors into knowledge about the 

dynamical systems and their surrounding world.

This requires sensor fusion.

World model

Dynamic model

Sensor model

Inference

1. We are dealing with dynamical systems 

This requires a dynamical model.

ẋ = f(x, u, ✓)
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Sensor unit integrating an IMU and a UWB 
transmitter into a single housing.!

Example 1 - Indoor pose estimation of a human body

In this experiment we also make use of ultra-wideband (UWB).
This allows for indoor positioning as well.
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Example 2 - Fighter aircraft navigation

Sensors Sensor fusion

Pose, etc.Inertial

Radar

Inference

Dynamic model

Sensor model

Barometer

World model

Aim: Find the position, velocity and orientation of a fighter aircraft.

Industrial partner: Saab
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Example 2 - Fighter aircraft navigation

“Think of each particle as one simulation of the system state (in the movie, only the horizontal position is 
visualized). Only keep the good ones.”

Thomas Schön, Fredrik Gustafsson, and Per-Johan Nordlund. Marginalized Particle Filters for Mixed Linear/Nonlinear State-
Space Models. IEEE Transactions on Signal Processing, 53(7):2279-2289, July 2005.
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Example 3 - Indoor localization (I/III)

Aim: Compute the position of a person moving around indoors using sensors (inertial, 
magnetometer and radio) located in an ID badge and a map.

Industrial partner: Xdin

1.5 Xdin 3

(a) A Beebadge, carrying a number
of sensors and a IEEE 802.15.4 radio
chip.

(b) A coordinator, equipped both
with a radio chip and an Ethernet
port, serving as a base station for the
Beebadges.

Figure 1.1. The two main components of the radio network.

Figure 1.2. Beebadge worn by a man.
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Example 3 - Indoor localization (II/III)

48 Approach

(a) An estimated trajectory at Xdin’s of-
fice, 1000 particles represented as circles,
size of a circle indicates the weight of the
particle.

(b) A scenario where the filter have not
converged yet. The spread in hypotheses
is caused by a large coverage for a coordi-
nator.

Figure 4.10. Output from the particle filter.

Figure 4.11. Illustration of a problematic case where a correct trajectory (green) is
being starved by an incorrect trajectory (red), causing the filter to potentially diverge.

2.5 Map 15

(a) Relative probability density for parts of
Xdin’s o�ce, the bright areas are rooms and
the bright lines are corridors that interconnect
the rooms
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ent n

Figure 2.7. Probability interpretation of the map.

those would su�ce to give a magnitude of the force. The force is intuitively
directed orthogonally from the wall towards the target and multiple forces can
be added together to get a resulting force a�ecting the momentum of the target.

Equation (2.9) describes how the force is constructed. The function wall
j

(p)
is a convex function giving the magnitude and direction of the force given the
position of the target, p.

f
i

=
ÿ
jœW

wall
j

(p
i

), where W is the set of walls. (2.9)

If positions from other targets are available, repellent forces from them can be
modeled as well, which is thoroughly discussed in [22]. The concept is visualized
in Figure 2.8 where the target T

i

is a�ected by two walls and another target
T

m

, resulting in the force f
i

.

Figure 2.8. Force vectors illustrating the resulting force a�ecting a pedestrian.

PDF of an office environment, the bright areas 
are rooms and corridors (i.e., walkable space).

World model

Inference

Dynamic model

Sensor model

Sensors

Sensor fusion

Pose
Accelerometer

Gyroscope

Radio
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Example 3 - Indoor localization (III/III) 41(42)
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Conclusions

• Maximum likelihood identification

• EM (nonlinear optimization and particle smoothing)

• Bayesian identification

• PMCMC = combination of MCMC and PF/PS
• We use Particle Gibbs with ancestor sampling

• Solved various Wiener identification problems for illustration 

• Sensor fusion

• Model the sensors, the dynamics and the world. Solve the 
resulting inference problem.
• The industrial utility of this technology is growing as we speak!

• Much interesting research remains to be done!!

users.isy.liu.se/rt/schon/course_CIDS.html

In this talk I introduced strategies and showed a few concrete example. Should you be 
interested in the details I am developing a PhD course on the topic of computational inference 
in dynamical systems,

42(42)



Sensor fusion and parameter inference in nonlinear dynamical systems
Thomas Schön, users.isy.liu.se/rt/schon

University of Cambridge, April 18, 2013,
Cambridge, UK

2.5 Map 15

(a) Relative probability density for parts of
Xdin’s o�ce, the bright areas are rooms and
the bright lines are corridors that interconnect
the rooms
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Figure 2.7. Probability interpretation of the map.

those would su�ce to give a magnitude of the force. The force is intuitively
directed orthogonally from the wall towards the target and multiple forces can
be added together to get a resulting force a�ecting the momentum of the target.

Equation (2.9) describes how the force is constructed. The function wall
j

(p)
is a convex function giving the magnitude and direction of the force given the
position of the target, p.

f
i

=
ÿ
jœW

wall
j

(p
i

), where W is the set of walls. (2.9)

If positions from other targets are available, repellent forces from them can be
modeled as well, which is thoroughly discussed in [22]. The concept is visualized
in Figure 2.8 where the target T

i

is a�ected by two walls and another target
T

m

, resulting in the force f
i

.

Figure 2.8. Force vectors illustrating the resulting force a�ecting a pedestrian.

1.5 Xdin 3

(a) A Beebadge, carrying a number
of sensors and a IEEE 802.15.4 radio
chip.

(b) A coordinator, equipped both
with a radio chip and an Ethernet
port, serving as a base station for the
Beebadges.

Figure 1.1. The two main components of the radio network.

Figure 1.2. Beebadge worn by a man.

Sensor unit integrating an IMU and a UWB 
transmitter into a single housing.!

p(xt | y1:t) =
h(yt | xt)p(xt | y1:t�1)

p(yt | y1:t�1)
,

p(xt | y1:t�1) =

Z
f(xt | xt�1)p(xt�1 | y1:t�1)dxt�1,

xt+1 | xt ⇠ f✓(xt+1 | xt, ut),

yt | xt ⇠ h✓(yt | xt, ut).

Thank you for your attention!!

Joint work with (alphabetical order): Fredrik Gustafsson (Linköping University), Jeroen Hol (Xsens technologies), Michael 
I. Jordan (UC Berkeley), Johan Kihlberg (Xdin), Fredrik Lindsten (Linköping University), Lennart Ljung (Linköping 
University), Brett Ninness (University of Newcastle, Australia), Per-Johan Nordlund (Saab), Simon Tegelid (Xdin) and 
Adrian Wills (MRA, Newcastle, Australia).
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