
Learning models of nonlinear dynamical
systems

– Strategies and concrete examples

Thomas Schön

Division of Automatic Control
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Probabilistic models of dynamical systems (I/III) 2(38)

1. Dynamics modelled using a Markov process {xt}t≥1 (the state),

xt+1 | xt ∼ fθ,t(xt+1 | xt, ut), x1 ∼ µθ(x1).

2. Observations modelled using a measurement process {yt}t≥1

yt | xt ∼ hθ,t(yt | xt, ut).

(3.) A Bayesian model also require p(θ), θ ∼ p(θ).

Model = probability density function (pdf)
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Probabilistic models of dynamical systems (II/III) 3(38)
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Figure: Graphical model for the SSM. Each stochastic variable is encoded
using a node, where the nodes that are filled (gray) corresponds to
variables that are observed and nodes that are not filled (white) are latent
variables. The arrows pointing to a certain node encodes which variables
the corresponding node are conditioned upon.

The SSM is an instance of a graphical model called Bayesian
network, or belief network.
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Probabilistic models of dynamical systems (IIII/III) 4(38)

The time invariant linear Gaussian state space (LGSS) model is
defined by

xt+1 = Axt + But + vt,
yt = Cxt + Dut + et,

where xt ∈ Rnx denotes the state, ut ∈ Rnu denotes the known
input signal and yt ∈ Rny denotes the observed measurement. The
initial state and the noise are distributed according tox1

vt
et

 ∼ N
µ

0
0

 ,

P1 0 0
0 Q S
0 ST R

 .
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State inference in dynamical systems 5(38)

The filtering density p(xt | y1:t) is computed by the forward
computations, summarized below in terms of the measurement
update

p(xt | y1:t) =

measurement︷ ︸︸ ︷
h(yt | xt)

prediction pdf︷ ︸︸ ︷
p(xt | y1:t−1)

p(yt | y1:t−1)
,

and the time update

p(xt | y1:t−1) =
∫

f (xt | xt−1)︸ ︷︷ ︸
dynamics

p(xt−1 | y1:t−1)︸ ︷︷ ︸
filtering pdf

dxt−1,
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Outline 6(38)

Problem formulation:

• Maximum likelihood learning

• Bayesian learning

• Wiener model

1. Solving the ML problem
• Expectation maximization combined with a particle smoother
• Example – blind learning of a Wiener model.

2. Solving the Bayesian problem
• Markov chain Monte Carlo (MCMC) combined with a particle

filter/smoother
• Examples – learning a semiparametric Wiener model

3. Conclusions
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Problem formulation 7(38)

A state space model (SSM) consists of a Markov process {xt}t≥1
and a measurement process {yt}t≥1, related according to

xt+1 | xt ∼ fθ,t(xt+1 | xt, ut),
yt | xt ∼ hθ,t(yt | xt, ut),

x1 ∼ µθ(x1), (θ ∼ p(θ)).

Learning problem: Find θ based on {u1:T, y1:T}.

We will study two different learning problems for finding static
parameters θ in SSMs:

1. Maximum likelihood: Find the value for θ that maximizes the
likelihood function pθ(y1:T).

2. Bayesian: Compute the posterior distribution p(θ | y1:T).
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Problem formulation – ML learning (I/II) 8(38)

The three steps of ML learning (applied to SSMs) are:
1. Model the obtained measurements y1, . . . , yT as a realisation

from the stochastic variables Y1, . . . , YT.
2. Assume yt | xt ∼ hθ(yt | xt) and xt | xt−1 ∼ fθ(xt | xt−1).
3. Assume that the stochastic variables Y1, . . . , YT are

conditionally iid.

ML amounts to solving,

θ̂
ML

= arg max
θ

log pθ(y1:T)

where the log-likelihood function is given by

log pθ(y1:T) =
T

∑
t=1

log pθ(yt | y1:t−1)
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Problem formulation – ML learning (II/II) 9(38)

There are at least two challenges with the ML formulation:

1. The one-step prediction pdf pθ(yt | y1:t−1) has to be computed.

2. In solving the optimization problem

θ̂
ML

= arg max
θ

log pθ(y1:T)

the derivatives ∂
∂θ pθ(yt | y1:t−1) are useful.
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Problem formulation – Bayesian learning 10(38)

Bayesian model: θ is a random variable with a prior density p(θ).

The goal in Bayesian modeling is to compute the posterior
p(θ, x1:T︸ ︷︷ ︸

,η

| y1:T) = p(η | y1:T) (or one of its marginals).

Bayesian modeling/learning amounts to:
1. Find an expression for the likelihood p(y1:T | η).
2. Assign priors p(η) to all unknown stochastic variables η present

in the model.
3. Determine the posterior distribution p(η | y1:T).

The key challenge is that there is no closed form expression
available for the posterior.
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Example used – the Wiener model 11(38)

As an example we will study how to learn a Wiener model.

Lut h(·) Σ

vt et

yt
zt

A Wiener model is a linear dynamical model (L) followed by a static
nonlinearity (h(·)).

Learning problem: Find L and h(·) based on {u1:T, y1:T}.
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Wiener model – explicit state space equations 12(38)

Dynamics: Linear Gaussian state space (LGSS) model:

xt+1 =
(
A B

) (xt
ut

)
+ vt, vt ∼ N (0, Q),

zt = Cxt.

Measurements: Static nonlinearity:

• Parametric: yt = h(zt, β) + et, et ∼ N (0, R).
• Non-parametric: yt = h(zt) + et, et ∼ N (0, R).
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Wiener model – common simplifying assumptions 13(38)

Most of the existing work deals with special cases of the general
problem. Typical restrictions imposed are:

• The nonlinearity h(·) is assumed to be invertible.

• The measurement noise et is absent.

• The LGSS model is deterministic (vt is absent).

• The LGSS model is stochastic, but vt is assumed white.

In the models and solutions provided here we do not have to make
any of these restrictive assumptions.
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Outline – rest of the talk 14(38)

Presents solutions to the two problems just formulated. These
solutions are illustrated using the special case of the Wiener model.

1. Solving the ML problem
• Expectation maximization combined with a particle smoother
• Example – blind learning of a Wiener model.

2. Solving the Bayesian problem
• Markov chain Monte Carlo (MCMC) combined with a particle

filter/smoother
• Examples – learning a semiparametric Wiener model

3. Conclusions
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AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET



Expectation Maximization (EM) – strategy and idea 15(38)

The strategy underlying the EM algorithm is to separate the original
ML problem into two closely linked subproblems, each of which is
hopefully more tractable than the original problem.

This separation is accomplished by exploiting the structure inherent
in the probabilistic model.

The idea is to consider the joint log-likelihood function of the
observed variables y1:T and the latent variables Z , {x1, . . . , xT},

`θ(x1:T, y1:T) = log pθ(x1:T, y1:T).
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EM – the algorithm 16(38)

Algorithm 1 Expectation Maximization (EM)

1. Initialise: Set i = 1 and choose an initial θ1.
2. While not converged do:

(a) Expectation (E) step: Compute

Q(θ, θi) = Eθi [log pθ(x1:T, y1:T) | y1:T]

=
∫

log pθ(x1:T, y1:T)pθi(x1:T | y1:T)dx1:T

(b) Maximization (M) step: Compute

θi+1 = arg max
θ∈Θ

Q(θ, θi)

(c) i← i + 1

Thomas Schön, Learning models of nonlinear dynamical systems

Seminar at the Division of Statistics, Linköping University, February 12, 2013.
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Expectation (E) step – approximating Q 17(38)

In computing the Q-function

Q(θ, θi) = Eθi [log pθ(x1:T, y1:T) | y1:T]

=
∫

log pθ(x1:T, y1:T)pθi(x1:T | y1:T)dx1:T,

we start by noting that

log pθ(x1:T, y1:T) = log pθ(y1:T | x1:T) + log pθ(x1:T)

= log pθ(x1) +
T−1

∑
t=1

log pθ(xt+1 | xt) +
T

∑
t=1

log pθ(yt | xt)
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Approximating the Q-function (I/III) 18(38)

This results in the following expression for the Q-function

Q(θ, θi) = I1 + I2 + I3,

where

I1 =
∫

log pθ(x1)pθi(x1 | y1:N)dx1,

I2 =
T−1

∑
t=1

∫ ∫
log pθ(xt+1 | xt)pθi(xt+1, xt | y1:N)dxtdxt+1,

I3 =
T

∑
t=1

∫
log pθ(yt | xt)pθi(xt | y1:N)dxt.

This leads us to a nonlinear state smoothing problem, which we can
solve using sequential Monte Carlo (here, particle smoothers).
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Approximating the Q-function (II/III) 19(38)

Using particle filters and particle smoothers we straightforwardly
obtain the following approximations

pθi(x1 | y1:T) ≈ p̂N
θi (x1 | y1:T) =

N

∑
i=1

wi
1|Tδxi

1
(x1),

pθi(xt:t+1 | y1:T) ≈ p̂N
θi (xt:t+1 | y1:T) =

N

∑
i=1

wi
t|Tδxi

t:t+1
(xt:t+1).

The particle smoother employed is the so called forward filtering
backward simulation (FFBS) particle smoother derived by
R. Douc, A. Garivier, E. Moulines, and J. Olsson. Sequential Monte Carlo smoothing for general state space hidden
Markov models. Annals of Applied Probability, 21(6):2109 2145, 2011.
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Approximating the Q-function (III/III) 20(38)

Inserting the above approximations into the integrals yields the
approximation we are looking for,

Î1 =
∫

log pθ(x1)
N

∑
i=1

wi
1|Tδxi

1
(x1)dx1

=
N

∑
i=1

wi
1|T log pθ(xi

1),

Î3 =
T

∑
t=1

∫
log pθ(yt | xt)

N

∑
i=1

wi
t|Tδxi

t
(xt)dxt

=
T

∑
t=1

N

∑
i=1

wi
t|T log pθ(yt | xi

t),

and similarly for I2.
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Final ML learning algorithm 21(38)

Algorithm 2 EM for learning nonlinear systems

1. Initialise: Set i = 1 and choose an initial θ1.
2. While not converged do:

(a) Expectation (E) step: Run a FFBS PS and compute

Q̂(θ, θi) = Î1(θ, θi) + Î2(θ, θi) + Î3(θ, θi)

(b) Maximization (M) step: Compute θi+1 = arg max
θ∈Θ

Q̂(θ, θi)

using an off-the-shelf numerical optimization algorithm.

(c) i← i + 1

Thomas B. Schön, Adrian Wills and Brett Ninness. System Identification of Nonlinear State-Space Models. Automatica,
47(1):39-49, January 2011.
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Example – blind Wiener learning (I/III) 22(38)

Lut

h1(zt, β)

h2(zt, β)

Σ

e1,t

y1,t

Σ

e2,t

y2,t

zt

xt+1 =
(
A B

) (xt
ut

)
, ut ∼ N (0, Q),

zt = Cxt, yt = h(zt, β) + et, et ∼ N (0, R).

Learning problem: Find L, β, r1, and r2 based on {y1,1:T, y2,1:T}.
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Example – blind Wiener learning (II/III) 23(38)

• Second order LGSS model with
complex poles.

• Employ the EM-PS with
N = 100 particles.

• EM-PS was terminated after
100 iterations.

• Results obtained using
T = 1000 samples.

• The plots are based on 100
realisations of data.

• Nonlinearities (dead zone and
saturation) shown on next slide.
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Example – blind Wiener learning (III/III) 24(38)
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Adrian Wills, Thomas B. Schön, Lennart Ljung and Brett Ninness. Identification of Hammerstein-Wiener Models.
Automatica, 49(1): 70-81, January 2013.
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Bayesian problem formulation again 25(38)

Consider a Bayesian SSM

xt+1 | xt ∼ fθ,t(xt+1 | xt, ut),
yt | xt ∼ hθ,t(yt | xt, ut),

x1 ∼ µθ(x1),
θ ∼ p(θ).

We observe DT , {u1:T, y1:T}.

Goal: Compute the posterior p(θ, x1:T | DT).

Thomas Schön, Learning models of nonlinear dynamical systems

Seminar at the Division of Statistics, Linköping University, February 12, 2013.
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Solution used here – Gibbs sampler 26(38)

Markov chain Monte Carlo (MCMC) methods allows us to generate
samples from an arbitrary target distribution by simulating a Markov
chain.

Gibbs sampling (blocked) for SSMs amounts to iterating

• Draw θ[m] ∼ p(θ | x1:T[m− 1], DT),

• Draw x1:T[m] ∼ p(x1:T | θ[m], DT).

The result is a Markov chain

{θ[m], x1:T[m]}m≥1

with p(θ, x1:T | DT) as its stationary distribution!
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Ex – Gibbs sampler for LGSS learning 27(38)

Whenever you are working on an algorithm for nonlinear systems,
always make sure that it solves the simple LGSS systems first!

Consider a fully parameterized LGSS model (θ , {Γ, Π}).(
xt+1
yt

)
| xt ∼ N

((
xt+1
yt

)
|
(

A B
C D

)
︸ ︷︷ ︸

Γ

(
xt
ut

)
,
(

Q S
ST R

)
︸ ︷︷ ︸

Π

)
.

The posterior distribution p(θ | DT) is computed using (blocked)
Gibbs sampling,

• Draw θ[m] ∼ p(θ | x1:T[m− 1], DT),

• Draw x1:T[m] ∼ p(x1:T | θ[m], DT).

Adrian Wills, Thomas B. Schön, Fredrik Lindsten and Brett Ninness, Estimation of Linear Systems using a Gibbs Sampler,
Proceedings of the 16th IFAC Symposium on System Identification (SYSID), Brussels, Belgium, July 2012.
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Gibbs sampler for a general SSM 28(38)

What would a Gibbs sampler for a general nonlinear/non-Gaussian
SSM look like?

• Draw θ[m] ∼ p(θ | x1:T[m− 1], DT),

• Draw x1:T[m] ∼ p(x1:T | θ[m], DT).

Problem: p(x1:T | θ, DT) is not available!!

Idea: Approximate p(x1:T | θ, DT) using a particle smoother (PS).

(Non-trivial) solution: Careful and clever analysis of how to
combine MCMC and PF/PS results in the PMCMC family of
algorithms.
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PMCMC methods 29(38)

Facts about Particle Markov Chain Monte Carlo (PMCMC) samplers:

• Provides a systematic and provably correct combination of
PF/PS and MCMC.

• Standard MCMC samplers on non-standard spaces.
• Constitutes a family of Bayesian inference methods, including

• Particle Independent Metropolis Hastings (PIMH)
• Particle Marginal Metropolis Hastings (PMMH)
• Particle Gibbs (PG)

Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal of the
Royal Statistical Society: Series B, 72:269-342, 2010.
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Particle Gibbs with backward simulation (PG-BS) 30(38)

PG-BS sampler targeting p(θ, x1:T | DT).

• Conditional particle filter and backward simulation
• Run a conditional PF, targeting p(x1:T | θ, DT);
• Run a backward simulator to sample x?1:T;

• Draw θ? ∼ p(θ | x?1:T, DT).

Powerful and important property of PG-BS: Provably convergent
for any N ≥ 2 particles and it works in practice!
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Reminder – semiparametric Wiener model 31(38)

Lut h(·) Σ

vt et

yt
zt

LGSS and a static nonlinearity:

xt+1 =
(
A B

)︸ ︷︷ ︸
Γ

(
xt
ut

)
+ vt, vt ∼ N (0, Q),

zt = Cxt.
yt = h(zt) + et, et ∼ N (0, R).
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Semiparametric model 1 – known model order 32(38)

First step towards a fully data driven model (the order of the LGSS
model is still assumed known).

Parameters: θ = {Γ, Q, r, h(·)}.
Bayesian model specified by priors:
• Conjugate priors for Γ = [A B], Q and r,

• p(Γ, Q) = Matrix-normal inverse-Wishart
• p(r) = inverse-Wishart

• Gaussian process prior on h(·),

h(·) ∼ GP(z, k(z, z′)).

x1:T

y1:T

Γ Q
u1:T

h(·) r
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Learning algorithm – PG-BS 33(38)

Gibbs sampler targeting p(θ, x1:T | DT).

• Conditional particle filter and backwards simulation
• Run a conditional PF, targeting p(x1:T | θ, DT);
• Run a backward simulator to sample x?1:T;

• Draw {Γ?, Q?, r?} ∼ p(Γ, Q, r | h, x?1:T, DT);

• Draw h? ∼ p(h | r?, x?1:T, DT).

Thomas Schön, Learning models of nonlinear dynamical systems

Seminar at the Division of Statistics, Linköping University, February 12, 2013.
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Example – known model order (I/II) 34(38)

• Bayesian semiparametric model
with conjugate prior (MNIW).

• 6th order LGSS model and a
saturation.

• Using T = 1000 measurements.

• Employ the PG-BS sampler with
N = 15 particles.

• Run 15000 MCMC iterations,
discard 5000 as burn-in.
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Example – known model order (II/II) 35(38)
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Show movie
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Conclusions 37(38)

• Maximum likelihood modeling learning:
• EM (nonlinear optimization and PS)

• Bayesian modeling and learning:
• PMCMC = combination of MCMC and PF/PS
• PMCMC is systematic and provably correct

• Solved various Wiener learning problems for illustration.
• Much interesting research remains to be done!!

In this talk I introduced the strategies and showed a few concrete
examples. Should you be interested in the details, I am offering a

PhD course on this topic.

users.isy.liu.se/rt/schon/course_CIDS.html
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