
Joint work with (in alphabetical order): Fredrik Gustafsson (LiU), Joel Hermansson (Cybaero), Jeroen Hol (Xsens), 
Johan Kihlberg (Semcon), Manon Kok (LiU), Fredrik Lindsten (LiU), Henk Luinge (Xsens), Per-Johan Nordlund 
(Saab), Henrik Ohlsson (Berkeley), Simon Tegelid (Xdin), David Törnqvist (LiU), Niklas Wahlström (LiU).

Sensor fusion in dynamical systems

Thomas Schön
Division of Automatic Control
Linköping University
Sweden

users.isy.liu.se/rt/schon



Sensor fusion in dynamical systems
Thomas Schön, users.isy.liu.se/rt/schon

SIGRAD 2013
Norrköping, Sweden

The sensor fusion problem

• Inertial sensors
• Camera
• Barometer

• Inertial sensors
• Radar
• Barometer
• Map

• Inertial sensors
• Cameras
• Radars
•Wheel speed sensors
• Steering wheel sensor

• Inertial 
sensors
• Ultra-

wideband

How do we  combine the information from the different sensors?

Might all seem to be very different problems at first sight. However, the same 
strategies can be used in dealing with all of these applications (and many more).
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Introductory example (I/III)

Aim: Motion capture, find the motion (position, orientation, velocity and acceleration) of a person 
(or object) over time.

Industrial partner: Xsens Technologies.

ω"

a$g"

m"

Sensors used:

• 3D accelerometer (acceleration)
• 3D gyroscope (angular velocity)
• 3D magnetometer (magnetic field)

17 sensor units are mounted onto the 
body of the person.
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Introductory example (II/III)

1. Only making use of the inertial information.

Movie courtesy of Daniel Roetenberg (Xsens) 
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Introductory example (III/III)

2. Inertial + biomechanical model 3. Inertial + biomechanical model + world model

Movie courtesy of Daniel Roetenberg (Xsens) Movie courtesy of Daniel Roetenberg (Xsens) 
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Outlook

These introductory examples leads to several questions, e.g.,

• Can we incorporate more sensors?

• Can we make use of more informative world models?

• How do we solve the inherent inference problem?

• Perhaps most importantly, can this be solved systematically?

There are many interesting problems that can be solved systematically, by addressing the 
following problem areas

Sensor fusion

1. Probabilistic models of dynamical systems
2. Probabilistic models of sensors and the world
3. Formulate and solve the state inference problem
4. Surrounding infrastructure
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1. Probabilistic models of dynamical systems

Basic representation: Two discrete-time stochastic processes,

•             representing the state of the system
•             representing the measurements from the sensors{yt}t�1

{xt}t�1

This type of model is referred to as a state space model (SSM) or a hidden Markov 
model (HMM).

Model = PDF

Dynamics

Measurements

Known inputState

Measurements

Static 
parameters

The probabilistic model is described using two (f and g) probability density functions (PDFs):

xt+1 | xt ⇠ f✓(xt+1 | xt, ut),

yt | xt ⇠ g✓(yt | xt, ut).
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2. World model

The dynamical systems exist in a context. 

This requires a world model.

Valuable (indeed often necessary) source of information in computing situational awareness. 
There are more and more complex world models being built all the time.

An example is our new models of the magnetic contents in various objects, which opens up for 
interesting new possibilities....

Niklas Wahlström, Manon Kok, Thomas B. Schön and Fredrik 
Gustafsson. Modeling magnetic fields using Gaussian 
processes. Submitted to the 38th International Conference on 
Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, 
Canada, May 2013.

Manon Kok, Niklas Wahlström, Thomas B. Schön and Fredrik 
Gustafsson. MEMS-based inertial navigation based 
on a magnetic field map. Submitted to the 38th 
International Conference on Acoustics, Speech, and Signal 
Processing (ICASSP), Vancouver, Canada, May 2013

Very much work in progress, we presented some 
initial results at ICASSP last month:
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The inference problem amounts to combining the knowledge we have from the models 
(dynamic, world, sensor) and from the measurements.

The aim is to compute

and/or some of its marginal densities,

These densities are then commonly used to form point estimates, maximum likelihood 
or Bayesian.

3. Formulate and solve the inference problem

p(x1:t, ✓ | y1:t)

p(xt | y1:t)
p(✓ | y1:t)

• Everything we do rests on a firm foundation of probability theory and mathematical statistics.

• If we have the wrong model, there is no estimation/learning algorithm that can help us.
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3. Inference - the filtering problem

p(xt | y1:t) =

z }| {
p(yt | xt)

z }| {
p(xt | y1:t�1)

p(yt | y1:t�1)

p(xt+1 | y1:t) =
Z

p(xt+1 | xt)| {z } p(xt | y1:t)| {z } dxt

sensor model prediction density

filtering densitydynamical model

In the application examples these equations are solved using particle filters (PF), Rao-Blackwellized 
particle filters (RBPF), extended Kalman filters (EKF) and various optimization based approaches.
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4. The “surrounding infrastructure”

Besides models for dynamics, sensors and world, a successful sensor fusion solution heavily 
relies on a well functioning “surrounding infrastructure”.

This includes for example:

• Time synchronization of the measurements from the different sensors

• Mounting of the sensors and calibration

• Computer vision, radar processing

• Etc...

Relative pose calibration:

Compute the relative translation and rotation of the 
camera and the inertial sensors that are rigidly connected.

An example:

Jeroen D. Hol, Thomas B. Schön and Fredrik Gustafsson. Modeling and Calibration 
of Inertial and Vision Sensors. International Journal of Robotics Research (IJRR), 
29(2):231-244, February 2010.
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The story I am telling

2.5 Map 15

(a) Relative probability density for parts of
Xdin’s o�ce, the bright areas are rooms and
the bright lines are corridors that interconnect
the rooms
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Figure 2.7. Probability interpretation of the map.

those would su�ce to give a magnitude of the force. The force is intuitively
directed orthogonally from the wall towards the target and multiple forces can
be added together to get a resulting force a�ecting the momentum of the target.

Equation (2.9) describes how the force is constructed. The function wall
j

(p)
is a convex function giving the magnitude and direction of the force given the
position of the target, p.

f
i

=
ÿ
jœW

wall
j

(p
i

), where W is the set of walls. (2.9)

If positions from other targets are available, repellent forces from them can be
modeled as well, which is thoroughly discussed in [22]. The concept is visualized
in Figure 2.8 where the target T

i

is a�ected by two walls and another target
T

m

, resulting in the force f
i

.

Figure 2.8. Force vectors illustrating the resulting force a�ecting a pedestrian.

2. The dynamical systems exist in a context. 

This requires a world model.

3. The dynamical systems must be able to perceive their own 
(and others’) motion, as well as the surrounding world.

This requires sensors and sensor models.

4. We must be able to transform the measurements 
from the sensors into knowledge about the 

dynamical systems and their surrounding world.

This requires inference.

World model

Dynamic model

Sensor model

Inference

1. We are dealing with dynamical systems 

This requires a dynamical model.

ẋ = f(x, u, ✓)
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Sensor fusion - definition

Definition (sensor fusion)

Sensor fusion is the process of using information from several different sensors to infer 
what is happening (this typically includes finding states of dynamical systems and various static 
parameters).

World model

Inference

Dynamic model

Sensor model

...

Sensors
Sensor fusion

...

Applications

Situational 
awareness
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Outline

Sensor fusion

1. Probabilistic models of dynamical systems
2. Probabilistic models of sensors and the world
3. Formulate and solve the state inference problem
4. Surrounding infrastructure

Industrial application examples

1. Autonomous landing of a helicopter
2. Helicopter navigation
3. Indoor localization
4. Indoor motion capture

Conclusions

A few words about the particle filter
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State inference - simple special case

Consider the following special case (Linear Gaussian State Space (LGSS) model)

or, equivalently,

xt+1 = Axt +But + vt, vt ⇠ N (0, Q),

yt = Cxt +Dut + et, et ⇠ N (0, R).

It is now straightforward to show that the solution to the time update and measurement update 
equations is given by the Kalman filter, resulting in

p(xt | y1:t) = N
�
xt | bxt|t, Pt|t

�
,

p(xt+1 | y1:t) = N
�
xt+1 | bxt+1|t, Pt+1|t

�
.

xt+1 | xt ⇠ f(xt+1 | xt) = N (xt+1 | Axt +But, Q),

yt | xt ⇠ g(yt | xt) = N (yt | Cxt +Dut, R).
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State inference - interesting case

Obvious question: what do we do in an interesting case, for example when we have a 
nonlinear model including a world model in the form of a map?

• Need a general representation of the filtering PDF
• Try to solve the equations 

as accurately as possible.

p(xt | y1:t) =
g(yt | xt)p(xt | y1:t�1)

p(yt | y1:t�1)
,

p(xt+1 | y1:t) =
Z

f(xt+1 | xt)p(xt | y1:t)dxt,
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State inference - the particle filter (I/II)

p(xt | y1:t)

xt+1 | xt ⇠ f(xt+1 | xt, ut),

yt | xt ⇠ h(yt | xt, ut),

x1 ⇠ µ(x1).

The particle filter provides an approximation of the filter PDF

when the state evolves according to an SSM

The particle filter maintains an empirical distribution made up N samples (particles) and
corresponding weights

bp(x
t

| y1:t) =
NX

i=1

w

i

t

�

x

i
t
(x

t

)

Xiao-Li Hu, Thomas B. Schön and Lennart Ljung.  A Basic Convergence Result for Particle Filtering. IEEE Transactions on 
Signal Processing, 56(4):1337-1348, April 2008.

This approximation converge to the true filter PDF,

“Think of each particle as one simulation of the 
system state. Only keep the good ones.”
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The weights and the particles in 

are updated as new measurements becomes available. This approximation can for example be used 
to compute an estimate of the mean value,

State inference - the particle filter (II/II)

The theory underlying the particle filter has been developed over the past two decades and the 
theory and its applications are still being developed at a very high speed. For a timely tutorial, see

A. Doucet and A. M. Johansen. A tutorial on particle filtering and smoothing: fifteen years later. In Oxford 
Handbook of Nonlinear Filtering, 2011, D. Crisan and B. Rozovsky (eds.). Oxford University Press. 

or my new PhD course on computational inference in dynamical systems

users.isy.liu.se/rt/schon/course_CIDS.html

bp(x
t

| y1:t) =
NX

i=1

w

i

t

�

x

i
t
(x

t

)

bx
t|t =

Z
x

t

p(x
t

| y1:t)dxt

⇡
Z

x

t

NX

i=1

w

i

t

�

x

i
t
(x

t

)dx
t

=
NX

i=1

w

i

t

x

i

t
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Using world models in solving state inference problems

Consider a 1D localization example.

xt+1 = xt + ut + vt,

yt = h(xt) + et.

position
velocity (measured 

input)

measurement 
(altitude)

world model 
(terrain database)

Trajectory 
flown

World model 
(terrain database)
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Using world models in solving state inference problems

Filter PDF after 1 measurement
p(x1 | y1)
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Using world models in solving state inference problems

The simple 1D localization example is an illustration of a problem involving a multimodal filter PDF

• Straightforward to represent and work with using a PF
• Horrible to work with using e.g. an extended Kalman filter

The example also highlights the key capabilities of the PF: 

1. To automatically handle an unknown and dynamically changing 
number of hypotheses.

2. Work with nonlinear/non-Gaussian models

We have implemented a similar 
localization solution for this 
aircraft (Gripen).

Industrial partner: Saab
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Outline

Sensor fusion

1. Probabilistic models of dynamical systems
2. Probabilistic models of sensors and the world
3. Formulate and solve the state inference problem
4. Surrounding infrastructure

Industrial application examples

1. Autonomous landing of a helicopter
2. Helicopter navigation
3. Indoor localization
4. Indoor motion capture

Conclusions

A few words about the particle filter
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1. Autonomous helicopter landing (I/III)

Aim: Land a helicopter autonomously using information from a camera, GPS, compass and inertial 
sensors.

Industrial partner: Cybaero

World model

Inference

Dynamic model

Sensor model

Sensors

Sensor fusion

Pose and 
velocity

Camera

GPS

Compass

Inertial

Controller
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1. Autonomous helicopter landing (II/III)

The two circles mark 0.5m and 1m landing error, 
respectively. 

Dots = achieved landings
Cross = perfect landing

Results from 15 landings

Experimental helicopter

•  Weight: 5kg

•  Electric motor

Joel Hermansson, Andreas Gising, Martin Skoglund and Thomas B. Schön. Autonomous Landing of an Unmanned Aerial Vehicle. 
Reglermöte (Swedish Control Conference), Lund, Sweden, June 2010.
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1. Autonomous helicopter landing (III/III)
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2. Helicopter pose estimation using a map (I/III)

Aim: Compute the position and orientation of a helicopter by exploiting the information present 
in Google maps images of the operational area.

World model

Inference

Dynamic model

Sensor model

Sensors

Sensor fusion

Pose
Camera

Inertial

Barometer
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2. Helicopter pose estimation using a map (II/III)

Image from on-board camera Extracted superpixels Superpixels classified as grass, 
asphalt or house

Three circular regions used for 
computing class histograms

Map over the operational 
environment obtained from 

Google Earth.

Manually classified map with 
grass, asphalt and houses as pre-

specified classes.
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2. Helicopter pose estimation using a map (III/III)

“Think of each particle as one simulation of the system state (in the movie, only the horizontal position is 
visualized). Only keep the good ones.”

Fredrik Lindsten, Jonas Callmer, Henrik Ohlsson, David Törnqvist, Thomas B. Schön, Fredrik Gustafsson, Geo-referencing for UAV Navigation 
using Environmental Classification. Proceedings of the International Conference on Robotics and Automation (ICRA), Anchorage, Alaska, USA, May 2010.
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3. Indoor localization (I/III)

Aim: Compute the position of a person moving around indoors using sensors (inertial, 
magnetometer and radio) located in an ID badge and a map.

Industrial partner: Xdin

1.5 Xdin 3

(a) A Beebadge, carrying a number
of sensors and a IEEE 802.15.4 radio
chip.

(b) A coordinator, equipped both
with a radio chip and an Ethernet
port, serving as a base station for the
Beebadges.

Figure 1.1. The two main components of the radio network.

Figure 1.2. Beebadge worn by a man.
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3. Indoor localization (II/III)

48 Approach

(a) An estimated trajectory at Xdin’s of-
fice, 1000 particles represented as circles,
size of a circle indicates the weight of the
particle.

(b) A scenario where the filter have not
converged yet. The spread in hypotheses
is caused by a large coverage for a coordi-
nator.

Figure 4.10. Output from the particle filter.

Figure 4.11. Illustration of a problematic case where a correct trajectory (green) is
being starved by an incorrect trajectory (red), causing the filter to potentially diverge.

2.5 Map 15

(a) Relative probability density for parts of
Xdin’s o�ce, the bright areas are rooms and
the bright lines are corridors that interconnect
the rooms
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Figure 2.7. Probability interpretation of the map.

those would su�ce to give a magnitude of the force. The force is intuitively
directed orthogonally from the wall towards the target and multiple forces can
be added together to get a resulting force a�ecting the momentum of the target.

Equation (2.9) describes how the force is constructed. The function wall
j

(p)
is a convex function giving the magnitude and direction of the force given the
position of the target, p.

f
i

=
ÿ
jœW

wall
j

(p
i

), where W is the set of walls. (2.9)

If positions from other targets are available, repellent forces from them can be
modeled as well, which is thoroughly discussed in [22]. The concept is visualized
in Figure 2.8 where the target T

i

is a�ected by two walls and another target
T

m

, resulting in the force f
i

.

Figure 2.8. Force vectors illustrating the resulting force a�ecting a pedestrian.

PDF of an office environment, the bright areas 
are rooms and corridors (i.e., walkable space).

World model

Inference

Dynamic model

Sensor model

Sensors

Sensor fusion

Pose
Accelerometer

Gyroscope

Radio
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3. Indoor localization (III/III)
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Aim: Estimate the position and orientation of a human (i.e. human motion) using measurements 
from inertial sensors and ultra-wideband (UWB).

Industrial partner: Xsens Technologies

4. Indoor human motion estimation

4. Indoor human motion estimation (I/V)

World model

Inference

Dynamic model

Sensor model

Sensors Sensor fusion

Pose

Accelerometer

Gyroscope

Magnetometer

(17 IMU’s)

(UWB)

Transmitter

Receiver 1

Receiver 6

...



Sensor fusion in dynamical systems
Thomas Schön, users.isy.liu.se/rt/schon

SIGRAD 2013
Norrköping, Sweden

Sensor unit integrating an IMU and a UWB 
transmitter into a single housing.!

• Inertial measurements @ 200 Hz
• UWB measurements @ 50 Hz

4. Indoor human motion estimation (II/V)

UWB - impulse radio using very short pulses (~ 1ns)

• Low energy over a wide frequency band
• High spatial resolution
• Time-of-arrival (TOA) measurements
• Mobile transmitter and 6 stationary, synchronized 
receivers at known positions.

Excellent for indoor positioning
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4. Indoor human motion estimation (III/V)

Performance evaluation using a camera-based reference system (Vicon).

RMSE: 0.6 deg. in orientation and 5 cm in position.

Jeroen Hol, Thomas B. Schön and Fredrik Gustafsson, Ultra-Wideband Calibration for Indoor Positioning. Proceedings of the IEEE 
International Conference on Ultra-Wideband (ICUWB), Nanjing, China, September 2010.

Jeroen Hol, Fred Dijkstra, Henk Luinge and Thomas B. Schön, Tightly Coupled UWB/IMU Pose Estimation. Proceedings of the IEEE 
International Conference on Ultra-Wideband (ICUWB), Vancouver, Canada, September 2009.
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4. Indoor human motion estimation (IV/V)
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4. Indoor human motion estimation (V/V)
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Conclusions

Quite a few different applications from different areas, all solved using the 
same underlying sensor fusion strategy

• Model the dynamics

• Model the sensors

• Model the world

• Solve the resulting inference problem

and, do not underestimate the “surrounding infrastructure”!

• There is a lot of interesting research that remains to be done!

• The number of available sensors is currently skyrocketing 

• The industrial utility of this technology is growing as we speak!
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2.5 Map 15

(a) Relative probability density for parts of
Xdin’s o�ce, the bright areas are rooms and
the bright lines are corridors that interconnect
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Figure 2.7. Probability interpretation of the map.

those would su�ce to give a magnitude of the force. The force is intuitively
directed orthogonally from the wall towards the target and multiple forces can
be added together to get a resulting force a�ecting the momentum of the target.

Equation (2.9) describes how the force is constructed. The function wall
j

(p)
is a convex function giving the magnitude and direction of the force given the
position of the target, p.

f
i

=
ÿ
jœW

wall
j

(p
i

), where W is the set of walls. (2.9)

If positions from other targets are available, repellent forces from them can be
modeled as well, which is thoroughly discussed in [22]. The concept is visualized
in Figure 2.8 where the target T

i

is a�ected by two walls and another target
T

m

, resulting in the force f
i

.

Figure 2.8. Force vectors illustrating the resulting force a�ecting a pedestrian.

1.5 Xdin 3

(a) A Beebadge, carrying a number
of sensors and a IEEE 802.15.4 radio
chip.

(b) A coordinator, equipped both
with a radio chip and an Ethernet
port, serving as a base station for the
Beebadges.

Figure 1.1. The two main components of the radio network.

Figure 1.2. Beebadge worn by a man.

p(xt | y1:t) =
h(yt | xt)p(xt | y1:t�1)

p(yt | y1:t�1)
,

p(xt | y1:t�1) =

Z
f(xt | xt�1)p(xt�1 | y1:t�1)dxt�1,

xt+1 | xt ⇠ f✓(xt+1 | xt, ut),

yt | xt ⇠ h✓(yt | xt, ut).

Thank you for your attention!!

Joint work with (in alphabetical order): Fredrik Gustafsson (LiU), Joel Hermansson (Cybaero), Jeroen Hol (Xsens), 
Johan Kihlberg (Semcon), Manon Kok (LiU), Fredrik Lindsten (LiU), Henk Luinge (Xsens), Per-Johan Nordlund 
(Saab), Henrik Ohlsson (Berkeley), Simon Tegelid (Xdin), David Törnqvist (LiU), Niklas Wahlström (LiU).


